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ON THE NUMBER OF TURNS IN REDUCED
RANDOM LATTICE PATHS
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Abstract

We consider the tree-reduced path of a symmetric random walk on Z
d . It is interesting to

ask about the number of turns Tn in the reduced path after n steps. This question arises
from inverting the signatures of lattice paths: Tn gives an upper bound of the number
of terms in the signature needed to reconstruct a ‘random’ lattice path with n steps. We
show that, when n is large, the mean and variance of Tn in the asymptotic expansion have
the same order as n, while the lower-order terms are O(1). We also obtain limit theorems
for Tn, including the large deviations principle, central limit theorem, and invariance
principle. Similar techniques apply to other finite patterns in a lattice path.
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1. Introduction

Let G be the free group with d generators e1, . . . , ed . Start with the empty word at time 0.
At each time k, choose one from the 2d elements (d generators and their inverses) uniformly
randomly to multiply the current word on the right. For example, the first six choices e2, e3,
e3

−1, e2, e1
−1, e4 will produce the reduced word e2e2e1

−1e4 at time 6. Every word at time n

has a unique reduced word with length at most n. It is then interesting to ask about the length
and number of turns in the reduced word.

Definition 1.1. Let w be a word at time n, and let ŵ = ai1 · · · aik be its reduced word, where
aj is either ej or ej

−1. Define the number of turns of w to be

T (w) = #{aij aij+1 : ij �= ij+1, 1 ≤ j ≤ k − 1}.
There is a canonical bijection between words of length n and random walks in Z

d with
n steps. The quantity T (w) counts the number of times the reduced trajectory of the walk
corresponding to w has changed its direction. In the above example, the number of turns in
the reduced word e2e2e1

−1e4 is 2. If two words reduce to the same word then they necessarily
have the same number of turns.

The main goal of this paper is to calculate asymptotics for Tn when n is large. The question
of estimating Tn arises from inverting the signature for lattice paths, where at most T + 2 terms
in the signature are needed for inversion if one knows in advance that the reduced lattice path
has T turns.
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1.1. Motivation from inversion of signature for axis paths

Besides the purely probabilistic interest of Tn, one motivation for our study is from inversion
of the signatures for lattice paths, and our aim is to provide an upper bound of the number of
terms needed in the signature to reconstruct a random lattice path withn steps for largen. We will
give some background material on the path signature in this subsection. A path γ : [s, t] → R

d

is a continuous function mapping a time interval into R
d . The length of the path is defined as

|γ | := sup
P

∑
i

|γ (ui+1) − γ (ui)|,

where the supremum is taken over all finite partitions of [s, t]. If |γ | < +∞, we say that γ has
bounded variation. Let BV(Rd) denote the space of all paths of bounded variations in R

d .

Definition 1.2. Let γ : [s, t] → R
d be an element in BV(Rd). The signature of γ , Xs,t (γ ), is

defined as
Xs,t (γ ) = 1 + X1

s,t (γ ) + · · · + Xn
s,t (γ ) + · · · ,

where

Xn
s,t (γ ) =

∫
s<u1<···<un<t

dγ (u1) ⊗ · · · ⊗ dγ (un)

is an element in (Rd)⊗n.

Let (e1, e2, . . . , ed) be a standard basis of R
d . Then γ can be written in terms of its coordinate

decomposition as
γ = (γ1, . . . , γd).

If w = ei1 · · · ein is a word of length n, we write

Cs,t (w) = Cs,t (ei1 · · · ein) =
∫

s<u1<···<un<t

dγi1(u1) · · · dγin(un)

as the coefficient of w. As all words of length n form a basis of V ⊗n, we can rewrite Xn
s,t (γ )

as the linear combination of basis elements, i.e.

Xn
s,t (γ ) =

∑
|w|=n

Cs,t (w)w,

where the sum is taken over all words of length n.
Re-parametrizing the path does not change the signature. For any paths α : [0, s] → R

d and
β : [0, t] → R

d , we can form the concatenation α ∗ β : [0, s + t] → R
d as

α ∗ β(u) :=
{

α(u), u ∈ [0, s],
β(u − s) + α(s) − α(0), u ∈ [s, s + t];

the decomposition of one path into two can be carried out in the same fashion.
For any path γ : [s, t] → R

d , the path ‘γ run backwards’, γ −1, is defined as

γ −1(u) := γ (s + t − u), u ∈ [s, t],
and the trajectories of γ ∗ γ −1 cancel each other out.

Concatenation and ‘backwards’ of paths of bounded variation are still paths of bounded
variation. In fact, we have |α ∗ β| = |α| + |β|, and |γ −1| = |γ |. The following proposition,
first proved by Chen [1], asserts that the signature map is a homomorphism from BV(Rd) to
the tensor algebra.
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Proposition 1.1. Let α, β ∈ BV(Rd). Then X(α ∗ β) = X(α) ⊗ X(β).

The signature of a path is an important object to study as it determines paths of bounded
variation up to tree-like equivalence. More precisely, Hambly and Lyons [4] showed that if
α, β ∈ BV(Rd) then X(α) = X(β) if and only if α ∗ β−1 is tree like, which is a continuous
analogue of a null path. This tree-like relation defines an equivalence relation on BV(Rd).
Within every equivalent class, there is a unique path with minimal length, called the tree-
reduced path. A natural question then is how one can reconstruct the tree-reduced path from
the given signature. This is in general a very hard problem, but, for the case of axis paths, the
answer was provided by Lyons and Xu [6].

Definition 1.3. γ : [s, t] → R
d is a (finite) axis path if its movements are parallel to the

Euclidean coordinate axes, has finitely many turns, and each straight line component has
finite length.

Any axis path has a unique reduced axis path; integer lattice paths are special cases of axis
paths. An R

d axis path can move in d different directions (up to the sign). At time 0, it starts to
move along a direction ei1 for some distance r1; then it turns a right angle, and moves along ei2

for a distance r2, and so on, and stops after finitely many turns. Thus, up to re-parametrization,
an axis path γ can be represented as

γ = (r1ei1) ∗ · · · ∗ (rnein),

where the ris are real numbers, with the sign denoting the direction (we mean −rej = re−1
j ).

Using Chen’s identity (Proposition 1.1), the signature of γ can be conveniently expressed
as

X(γ ) = exp(r1ei1) ⊗ · · · ⊗ exp(rnein),

which should be understood as the product of n power series in the letters {ei1 , . . . , ein}.
If γ is already in its reduced form then it is clear that ik �= ik+1, and we call the word

w = (ei1 , . . . , ein) the shape of γ . If a word w is in its reduced form, we use |w| to denote
the number of letters in w, or the length of w. We introduce the notion of square-free words to
characterize an axis path.

Definition 1.4. Let w = ei1 · · · ein be a word. We call it a square-free word if, for all k ≤ n−1,
ik �= ik+1.

In other words, a word is square free if no two consecutive letters in it are identical. The
coefficients of square-free words in the signature give a precise description of the moving
directions of the path. The following theorem, provided by Lyons and Xu [6], gives an inversion
procedure for finite axis paths with the aid of square-free words.

Theorem 1.1. For any finite axis path γ : [s, t] → R
d , there exists a unique square-free

word w with the property that Cs,t (w) �= 0, and if w′ is any other square-free word with
Cs,t (w

′) �= 0 then |w′| < |w|. Furthermore, suppose that the unique longest square-free word
is w = ei1 · · · ein , and let

wk := ei1 · · · eik−1e
2
ik
eik+1 · · · ein ,

which has length n + 1. Then we have

γ = (r1ei1) ∗ · · · ∗ (rnein),

where rk = 2Cs,t (wk)/Cs,t (w).
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Thus, if an axis path has n turns then at most n + 2 terms in the signature are needed for
inversion. For a lattice path with length L, it can have at most L − 1 turns, so we only need the
first L + 1 terms in the signature to recover it.

In practice, lattice paths in R
d are often generated by drawing n letters and their inverses

uniformly randomly from an alphabet, and putting them in the order they are drawn. It is then
important to understand the behavior of the number of turns in the reduced word after a large
number of steps, as this gives an asymptotic upper bound for the number of terms needed in the
signature for inverting a random lattice path, and also the efficiency of the inversion algorithm.

1.2. Outline of the method and summary of results

Let Tn be the number of turns of the reduced trajectory of a simple symmetric random walk
on Z

d , as defined in Definition 1.1. Then, we can write

Tn =
n∑

i=1

Vi,

where Vi denotes the number of turns created at step i. Note that the Vi can be 1, 0, or −1, and
are correlated. The distribution of Vi depends on the whole history in the past.

On the other hand, one can condition on the length of the reduced path Ln. Then Tn|Ln has
a binomial distribution. A detailed study of Ln yields asymptotic behaviors of Tn. A natural
coupling Ln = Sn + Dn simplifies the study of Ln, where Sn is a sum of n independent and
identically distributed (i.i.d.) random variables and Dn is dominated by a geometric random
variable.

The main results in this paper are as follows.

(i) Proposition 2.5.

ETn − 2(d − 1)2

d(2d − 1)
n → −2d2 − 4d + 1

d(2d − 1)

and

varTn − 2(d − 1)2(5d − 2)

d2(2d − 1)2 n

also converges.

(ii) Theorem 3.1—large deviations principle. The sequence of the laws for the random
variables {Tn/n}n≥1 satisfies the large deviations principle with rate function

I (x) = sup
θ

[θx − log h(θ)],

where

h(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2d

[
2(d − 1)eθ + 2d − 1

1 + 2(d − 1)eθ
+ 1

]
, θ ≥ log

√
2d − 1 − 1

2(d − 1)
,

√
2d − 1

d
, θ < log

√
2d − 1 − 1

2(d − 1)
.

(iii) Theorem 4.4—invariance principle. For each n, define a C0([0, 1])-valued random
variable {W(n)

t : t ∈ [0, 1]} by

W
(n)
t = 1

σ
√

n

[
Ttn − 2(d − 1)2

d(2d − 1)
tn

]
for t ∈ [n]/n,
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and linearly interpolated for other values of t . Then the sequence converges in law to the
standard one-dimensional Brownian motion on [0, 1] as n → ∞.

As a generalization, analogous results hold for the number of occurrences of any finite collection
of finite length pattern P = {Pi = (ei1 , . . . , eiki

)} in a lattice path: the key is to establish a
central limit theorem for the number of occurrences of elements in P conditioned on the
length of the path Lt , which is essentially an i.i.d. sum of m-dependent random variables
(see [7]), where m is bounded above by maxi ki . The number of turns Tt corresponds to
P = {Pij = (ei, ej ) : i �= j}. For the sake of clarity, we will focus only on the number of
turns.

The paper is organized as follows. In Section 2 we show that the lower-order terms in the
mean and variance of Ln are O(1); we then obtain similar results for Tn. A key ingredient in
the derivation is to prove that cov(Sn, Dn) is O(1). We compare it with cov(Sn+1, Dn+1), and
show that their difference decays exponentially with n, thus proving convergence.

Section 3 is devoted to the proof of the large deviations principle for {Tn/n}. We derive the
rate function, and, thus, prove the principle, by comparison of the Laplace transform of Ln with
that of Sn. It turns out that the rate function deviates from the normal one as predicted by Sn

on the lower side of the real line.
In Section 4 we prove the central limit theorem and invariance principle for Tn. This result

shows that, although the components of Tn are correlated, the increments are still asymptotically
independent under proper scaling.

2. Lower-order terms in the mean and variance

Let Ln denote the length of the reduced path after n steps. Then, Tn|Ln has a binomial
distribution with parameters (Ln −1, (2d −2)/(2d −1)). Let Xi be a sequence of i.i.d. random
variables with P(Xi = 1) = (2d − 1)/2d and P(Xi = −1) = 1/2d. Let L0 = 0. Then Ln can
be defined inductively as

Li+1 = Li + Xi+1, Li > 0; Li+1 = 1, Li = 0.

We want to compare Ln − Sn, where Sn = ∑n
i=1 Xi . It is well known that Ln/n → (d − 1)/d

almost surely. We compute a finer estimate to show that ELn − n(d − 1)/d = O(1).
Since Li − Si does not change when L is away from 0, a difference only occurs when L

hits 0. Let Rn denote the number of times that Ln hits 0 after the first step up to time n. Since
P(L ever comes back to 0) = 1/(2d − 1), Rn converges to a geometric distributed random
variable R, with

P(R = k) = 2d − 2

2d − 1

(
1

2d − 1

)k−1

(see, e.g. [3]). Here, step 0 is counted as a return, because L and S can be different in the
first move. Let Dn = Ln − Sn. Then 1

2Dn|Rn−1 has a binomial distribution with parameters
(Rn−1, 1/2d). In particular, Dn ≤ 2Rn−1. So the mean of the difference is

EDn = EE(Dn | Rn−1) = 1

d
ERn−1 → 2d − 1

2d(d − 1)
.

Thus, we get an error term for ELn.
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Lemma 2.1. Let Ln denote the length of the reduced word after n steps. Then

lim
n→∞

(
ELn − d − 1

d
n

)
= 2d − 1

2d(d − 1)
.

Now we compute the lower-order terms in varLn. Since varLn = varSn + 2cov(Sn, Dn) +
varDn, it suffices to show that cov(Sn, Dn) = O(1). We show it in the following lemma.

Lemma 2.2. Under the above coupling Ln = Sn + Dn, we have

lim
n→∞(ESnDn − ESnEDn) = −u(d),

where 0 ≤ u(d) ≤ 2d2(2d − 1)(d2 + 2d − 1)/(d − 1)5.

Proof. Let Un = (Sn − n(d − 1)/d)Dn. We will show that EUn+1 − EUn decays
exponentially fast. Note that we have

Un+1 = 1{Ln=0}
(

Sn + Xn+1 − d − 1

d
(n + 1)

)
(Dn + 1 − Xn+1)

+ 1{Ln>0}
(

Sn + Xn+1 − d − 1

d
(n + 1)

)
Dn

= Un +
(

Xn+1 − d − 1

d

)
Dn + 1{Ln=0}(1 − Xn+1)

(
Sn+1 − d − 1

d
(n + 1)

)
.

Since Xn+1 is independent of Dn, and −n ≤ Sn ≤ 0 when conditioned on Ln = 0, taking the
expectation of both sides yields

−4(n + 1)P(Ln = 0) ≤ EUn+1 − EUn ≤ 0. (2.1)

Also, P(L2n+1 = 0) = 0, and

P(L2n = 0) ≤ P(S2n ≤ 0) ≤
n∑

k=0

22n

(
1

2d

)n+k(2d − 1

2d

)n−k

≤ 2d − 1

2(d − 1)

(
2d − 1

d2

)n

.

We can then deduce from (2.1) that EUn is decreasing and bounded from below, and, thus, that
it has a finite limit. Adding up all (EUn − EUn−1) gives EUn → −u(d), where 0 ≤ u(d) ≤
2d2(2d − 1)(d2 + 2d − 1)/(d − 1)5.

Remark 2.1. The negative correlation agrees with probabilistic intuition: when Sn is small,
the process Ln tends to visit 0 more times, and, thus, Dn is likely to be large.

Proposition 2.1. Let u(d) be a constant as in the previous lemma. Then

lim
n→∞

(
varLn − 2d − 1

d2 n

)
= β(d),

where β(d) = −2u(d) + (2d − 1)(4d2 − 6d + 3)/4d2(d − 1)2.

Proof. Since

varDn = Evar(Dn | Rn−1) + varE(Dn | Rn−1) → (2d − 1)(4d2 − 6d + 3)

4d2(d − 1)2 ,
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we have

varLn − 2d − 1

d2 n = 2cov(Sn, Dn) + varDn → β(d),

where β(d) = −2u(d) + (2d − 1)(4d2 − 6d + 3)/4d2(d − 1)2. This completes the proof.

Combining the above estimates for Ln, we then have similar estimates for Tn:

ETn = EE(Tn | Ln) = 2d − 2

2d − 1
ELn − 2d − 2

2d − 1
,

varTn = Evar(Tn | Ln) + varE(Tn | Ln)

= 2(d − 1)

(2d − 1)2 ELn + 4(d − 1)2

(2d − 1)2 varLn − 2(d − 1)

(2d − 1)2 .

This gives the following proposition.

Proposition 2.2. Let β(d) be the error term in varLn as above. Then

lim
n→∞

(
ETn − 2(d − 1)2

d(2d − 1)
n

)
= −2d2 − 4d + 1

d(2d − 1)

and

lim
n→∞

(
varTn − 2(d − 1)2(5d − 2)

d2(2d − 1)2 n

)
= 4(d − 1)2

(2d − 1)2 β(d) − 2d2 − 4d + 1

d(2d − 1)2 .

3. Large deviations

The goal of this section is to prove the following large deviations theorem for Tn/n.

Theorem 3.1. The sequence of the laws for the random variables {Tn/n}n≥1 satisfies the large
deviations principle with rate function

I (x) = sup
θ

[θx − log h(θ)],

where

h(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2d

[
2(d − 1)eθ + 2d − 1

1 + 2(d − 1)eθ
+ 1

]
, θ ≥ log

√
2d − 1 − 1

2(d − 1)
,

√
2d − 1

d
, θ < log

√
2d − 1 − 1

2(d − 1)
.

We postpone the proof of this theorem to the end of the section. In light of the Gartner-Ellis
theorem (see [2, Section 2.3]), it suffices to show that

lim
n→+∞(EeθTn)1/n = h(θ)

for every θ ∈ R, with the limit h essentially smooth.
Note that Tn|Ln has a binomial distribution with parameter ((2d − 2)/(2d − 1), Ln − 1) for

Ln ≥ 1, and Tn = 0 if Ln = 0, so we have

EeθTn = P(Ln = 0) + P(Ln > 0)Ew(θ)Ln−1,
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where

w(θ) = 2d − 2

2d − 1
eθ + 1

2d − 1
.

The first term is bounded by

P(Ln = 0) ≤
n∑

k=0

P(Sn = −k) ≤ C

(√
2d − 1

d

)n

,

and we need to estimate Ew(θ)Ln for large n.
In the context below, we regard w to be a positive real number independent of θ , and study

the asymptotics of (EwLn)1/n as n → +∞.

Proposition 3.1. If w ≥ 1 then we have

lim
n→+∞(EwLn)1/n = 2d − 1

2d
w + 1

2d

1

w
.

Proof. We compare the difference between EwLn+1 and EwLn :

EwLn+1 = E 1{Ln=0} wLn+1 + E 1{Ln>0} wLn+1

= wP(Ln = 0) + E 1{Ln>0} wLn+Xn+1

= wP(Ln = 0) + EwXn+1E 1{Ln>0} wLn

= wP(Ln = 0) + EwXn+1EwLn − EwXn+1P(Ln = 0)

=
(

2d − 1

2d
w + 1

2d

1

w

)
EwLn + 1

2d

(
w − 1

w

)
P(Ln = 0).

Let

xn = EwLn, a = 2d − 1

2d
w + 1

2d

1

w
, b = 1

2d

(
w − 1

w

)
, pn = P(Ln = 0).

Then we have the following recursive relation:

xn = axn−1 + bpn−1.

Since x1 = w, adding them up yields

xn = an−1w + b(an−2p1 + an−3p2 + · · · + apn−2 + pn−1).

For w ≥ 1, we have b ≥ 0. In this case, since an−1 ≤ xn ≤ nan−1 from the expression above,
we obtain

lim
n→∞ (xn)

1/n = a = 2d − 1

2d
w + 1

2d

1

w
,

thus proving the proposition.

The situation for w ∈ (0, 1) is more involved. We prove it based on comparison with
(EwSn)1/n. Note that Sn is a sum of i.i.d. random variables, so, by Cramer’s theorem, it
satisfies the large deviations principle with rate function

J (x) = sup
θ

[
θx − log

(
2d − 1

2d
eθ + 1

2d
e−θ

)]
.
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Lemma 3.1. For any w > 0, the equation

wαe−J (α) = 2d − 1

2d
w + 1

2d

1

w
(3.1)

has a unique solution at α∗ = ((2d − 1)w2 − 1)/((2d − 1)w2 + 1). Furthermore, α∗ is the
global maximizer for

fw(α) = wαe−J (α).

Proof. We first obtain an expression for J in terms of α only. It is clear that J (α) = +∞
for |α| > 1. For α ∈ [−1, 1], the maximizer θ∗ is

θ∗(α) = 1

2

[
log

1 + α

1 − α
− log(2d − 1)

]
, α ∈ [−1, 1],

passing to the limit ±∞ for α = ±1. Substituting into J , we have

J (α) = 1

2
α

[
log

1 + α

1 − α
− log(2d − 1)

]
− log

√
2d − 1

2d
− log

(√
1 + α

1 − α
+

√
1 − α

1 + α

)
for α ∈ [−1, 1]. Differentiating with respect to α, we obtain

J ′(α) = 1

2

[
log

1 + α

1 − α
− log(2d − 1)

]
(3.2)

for α ∈ (−1, 1). Note that

f ′
w(α) = d

dα
(wαe−J (α)) = wαe−J (α)(log w − J ′(α)),

and, since J is convex, fw has the global maximizer α∗ satisfying

J ′(α∗) = log w.

By (3.2), solving the above first-order condition yields

α∗ = (2d − 1)w2 − 1

(2d − 1)w2 + 1
,

and, thus,

fw(α∗) = 2d − 1

2d
w + 1

2d

1

w
.

Since α∗ is the global maximizer of fw, we conclude that (3.1) has a unique solution at α∗.

Proposition 3.2. Let α∗ = α∗(w) = ((2d − 1)w2 − 1)/((2d − 1)w2 + 1) as above. Then

lim
ε↓0

lim
n→+∞(EwSn 1{Sn/n∈(α∗−ε,α∗+ε)})1/n = 2d − 1

2d
w + 1

2d

1

w
.

This proposition shows that the major contribution to EwSn is from the Sns with values
near α∗n.

Lemma 3.2. (a) Let α > 0. For all ε ∈ (0, α) and all small enough δ > 0, there exists
N = N(α, ε, δ) such that

P

(
Ln − Sn ≤ δn

∣∣∣∣ Sn

n
∈ (α − ε, α + ε)

)
≥ 1 − n

(
1 − α + ε

1 + α − ε

)δn/4

for all n ≥ N .
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(b) For all ε > 0 and all small enough δ > 0, there exists N = N(ε, δ) such that

P(Ln ≤ δn | Sn ≤ −εn) ≥ 1 − n

(
1 − ε

1 + ε

)δn/4

for all n ≥ N .

Proof. We first prove part (a). Observe that Dn = Ln − Sn = 2| min0≤k≤n Sk|. We first
consider the quantity P(min0≤k≤n Sk ≥ −δn | Sn = αn), where, without loss of generality, we
have assumed that (1 + α)n/2 is an integer, and have replaced δ/2 by δ. Once conditioned on
the event {Sn = αn}, all possible paths contain

(
n

(1+α)n/2

)
positive movements and

(
n

(1−α)n/2

)
negative movements. Since all these paths have the same (conditional) weight, the quantity
P(min0≤k≤n Sk ≥ −δn | Sn = αn) is independent of d. Thus, we may assume that d = 1,
where all paths are the trajectories of the (conditional) simple symmetric random walk. That
is,

P

(
min

0≤k≤n
Sk < −δn

∣∣∣ Sn = αn
)

= P

(
min

0≤k≤n
S̃k < −δn

∣∣∣ S̃n = αn
)
,

where S̃n is a one-dimensional simple symmetric random walk. By the reflection principle we
have

P

(
min

0≤k≤n
S̃k < −δn, S̃n = αn

)
= P(S̃n = −�(α + 2δ)n).

Using Stirling’s approximation, we estimate the ratio

P(S̃n = −�(α + 2δ)n)
P(S̃n = αn)

=
(

n

(1 − α − 2δ)n/2

)/(
n

(1 + α)n/2

)

=
(

1 − α

2
n

)
!
(

1 + α

2
n

)
!
/[(

1 − α − 2δ

2
n

)
!
(

1 + α + 2δ

2
n

)
!
]

≈
[

(1 − α)1−α(1 + α)1+α

(1 − α − 2δ)1−α−2δ(1 + α + 2δ)1+α+2δ

]n/2

= e[g(α)−g(α+2δ)]n/2,

where g(x) = (1 − x) log(1 − x) + (1 + x) log(1 + x). It is straightforward to check that

g′(x) = log
1 + x

1 − x
> 0

for x ∈ (0, 1), and, thus, for small enough δ > 0, we have

P

(
min

0≤k≤n
Sk < −δn

∣∣∣∣ Sn

n
∈ (α − ε, α + ε)

)

=
∑

β∈(α−ε,α+ε)

P

(
min

1≤k≤n
S̃k < −δn,

S̃n

n
∈ (α − ε, α + ε)

)/
P

(
S̃n

n
∈ (α − ε, α + ε)

)

≤ n sup
β∈(α−ε,α+ε)

[
P(S̃n = −(β + 2δ)n)

P(S̃n = βn)

]

≤ n sup
β∈(α−ε,α+ε)

e[g(β)−g(β+2δ)]n/2

≤ n

(
1 − α + ε

1 + α − ε

)δn/2

,
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and, consequently,

P

(
min

0≤k≤n
Sk ≥ −δn

∣∣∣∣ Sn

n
∈ (α − ε, α + ε)

)
≥ 1 − n

(
1 − α + ε

1 + α − ε

)δn/2

.

As Ln − Sn = 2| min0≤k≤n Sk|, replacing δ by δ/2 gives (a).
The proof of part (b) is similar, and is thus omitted.

Proposition 3.3. For w ∈ (0, 1), the limit (EwLn)1/n exists as n → +∞, and we have

lim
n→+∞(EwLn)1/n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2d − 1

2d
w + 1

2d

1

w
, w ∈

(
1√

2d − 1
, 1

)
,

√
2d − 1

d
, w ∈

(
0,

1√
2d − 1

]
.

Proof. We first consider the case in which w ∈ (1/
√

2d − 1, 1) and α∗ = ((2d − 1)w2 −
1)/((2d − 1)w2 + 1) > 0. In this case, we have

(EwLn)1/n ≥
[
E

(
wLn 1{Ln−Sn≤δn}

∣∣∣∣ Sn

n
∈ (α∗ − ε, α∗ + ε)

)

× P

(
Sn

n
∈ (α∗ − ε, α∗ + ε)

)]1/n

≥ wα∗+ε+δ
P

(
Sn

n
∈ (α∗ − ε, α∗ + ε)

)1/n

× P

(
Ln − Sn ≤ δn

∣∣∣∣ Sn

n
∈ (α∗ − ε, α∗ + ε)

)1/n

.

Taking n → +∞ on both sides yields

lim inf
n→+∞(EwLn)1/n ≥ wα∗+ε+δe−J (α∗+ε).

Since ε and δ are arbitrary, we have

lim inf
n→+∞(EwLn)1/n ≥ wα∗

e−J (α∗) = 2d − 1

2d
w + 1

2d

1

w
.

On the other hand, EwLn ≤ EwSn for all w < 1, so

lim sup
n→+∞

(EwLn)1/n ≤ 2d − 1

2d
w + 1

2d

1

w
.

Thus, we conclude that

lim
n→+∞(EwLn)1/n = 2d − 1

2d
w + 1

2d

1

w

for w ∈ (
√

2d − 1/d, 1).
We now consider the case in which w ∈ (0, 1/

√
2d − 1) and α∗ < 0. In this case, we have

(EwLn)1/n ≥ [E(wLn 1{Ln≤δn} | Sn ≤ −εn)P(Sn ≤ −εn)]1/n

≥ wδ
P(Ln ≤ δn | Sn ≤ −εn)1/n

P(Sn ≤ −εn)1/n.
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Again, sending n → +∞, and taking ε and δ arbitrarily small yields

lim inf
n→+∞(EwLn)1/n ≥ e−I (0) =

√
2d − 1

d
.

On the other hand,

lim
w↓1/

√
2d−1

lim
n→+∞(EwLn)1/n =

√
2d − 1

d
.

By monotonicity we have

lim sup
n→+∞

(EwLn)1/n ≤
√

2d − 1

d
,

and, thus,

lim sup
n→+∞

(EwLn)1/n =
√

2d − 1

d

for all w ∈ (0, 1/
√

2d − 1).
Finally, we consider the case in which w = 1/

√
2d − 1 and α∗ = 0. Again, by monotonicity

in w we have

lim
n→+∞(E

√
2d − 1

−Ln
)1/n =

√
2d − 1

d
.

This completes the proof.

The following corollary is an immediate consequence of Propositions 3.1 and 3.3.

Corollary 3.1. The laws for the random variables {Ln/n}n≥1 satisfy the large deviations
principle with rate function

IL(x) = sup
θ

[θx − log hL(θ)],

where

hL(θ) =

⎧⎪⎪⎨
⎪⎪⎩

2d − 1

2d
eθ + 1

2d
e−θ , θ ≥ −1

2
log(2d − 1),

√
2d − 1

d
, θ < log

√
2d − 1 − 1

2(d − 1)
.

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Recall that

EeθTn = P(Ln = 0) + P(Ln ≥ 1)Ew(θ)Ln−1,

where we have

P(Ln = 0) ≤ C

(√
2d − 1

d

)n

for all n. On the other hand, Propositions 3.1 and 3.3 imply that

lim
n→+∞(EwLn)1/n ≥

√
2d − 1

d

for all w > 0. Thus, we see that

lim
n→+∞(EeθTn)1/n = lim

n→+∞(Ew(θ)Ln)1/n = h(θ),

where h is defined in the theorem. It is also straightforward to check that h is essentially smooth.
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Thus, the Gartner-Ellis theorem implies that the laws for {Tn/n} satisfy the large deviations
principle with rate function

I (x) = sup
θ

[θx − log h(θ)].

This completes the proof.

We end this section with two remarks.

Remark 3.1. As an alternative to the Gartner-Ellis theorem, one can compute the rate function
for Tn/n directly, i.e.

P

(
Tn

n
∈ (α − ε, α + ε)

)

=
∑
β

P

(
Tn

n
∈ (α − ε, α + ε)

∣∣∣∣ Ln

n
∈ (β − δ, β + δ)

)
P

(
Ln

n
∈ (β − δ, β + δ)

)
,

where the sum is taken over appropriate β ∈ (0, 1). In each product, the first probability
is known as Tn|Ln and has a binomial distribution, while the second probability can be
asymptotically computed from the large deviations principle for Ln. Finally, sending δ → 0,
one can get the rate function for {Tn/n}.
Remark 3.2. We give a heuristic explanation why limn(EwLn)1/n, if it exists, is a constant for
w below the critical value. Let w = eη, and consider the Laplace transform

(EwLn)1/n = (EeηLn)1/n.

Call the limit of the right-hand side 	(η), if it exists. For w > w∗ = 1/
√

2d − 1, the limit
exists and is equal to (2d − 1)eη/2d + e−η/2d. Note that η∗ is a maximizer for this quantity
on [η∗, +∞), so we have

	′+(η∗) = 0. (3.3)

On the other hand, as a limit of the Laplace transform, 	 must be convex if it exists. We have
already seen that

	(η) ≤
√

2d − 1

d

for all η ≤ η∗, so, together with (3.3), the convexity of 	 forces the graph to be flat on (−∞, η∗],
and is thus equal to

√
2d − 1/d .

4. Central limit theorem and the invariance principle

In this section we derive the asymptotic distribution of Tn for large n, including the central
limit theorem and invariance principle. Under the natural coupling Ln = Sn + Dn, Dn ≤ 2Rn,
whereRn is (almost) surely bounded by a geometric random variableR. As we will be frequently
using this property, we state it as a lemma below.

Lemma 4.1. Let Ln = Sn + Dn, and let Rn be defined as above. Then, Dn ≤ wRn and
R = supn Rn has a geometric distribution with

P(Rn = k) = 2d − 2

2d − 1

(
1

2d − 1

)1/n

.
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Theorem 4.1. Under the above assumptions, n−1/2(Ln−(d−1)n/d) converges in distribution
to N(0, (2d − 1)/d2), and n−1/2(Tn − 2(d − 1)2n/d(2d − 1)) converges in distribution to
N(0, 2(d − 1)2(5d − 2)/d2(2d − 1)2).

Proof. For any x ∈ R,

Fn(x) = P

(
1√
n

(
Ln − 2d − 1

d2 n

)
≤ x

)

= P

(
1√
n

(
Sn − 2d − 1

d2 n

)
+ Dn√

n
≤ x

)
→ F(x),

where F is the distribution function for N(0, (2d − 1)/d2). The convergence in the last line
follows from the fact that Dn/

√
n → 0 almost surely, as R = supn Rn is almost surely finite.

Now we compute the moment generating function for n−1/2(Tn − 2(d − 1)2n/d(2d − 1)).
For simplicity, let µ = 2(d − 1)2/d(2d − 1) and p = (2d − 2)/(2d − 1). Then

Eeθ(Tn−µn)/
√

n = e−θµ
√

n
EeθTn/

√
n

= e−θµ
√

n
EE(eθTn/

√
n | Ln)

= e−θµ
√

n
E(1 − p + peθ/

√
n)Ln−1

= e−θµ
√

n
E exp

(
(Ln − 1) log

(
1 + pθ√

n
+ pθ2

2n
+ o

(
1

n

)))

= e−θµ
√

n
E exp

(
(Ln − 1)

[
pθ√
n

+ 1

2n
(pθ2 − p2θ2) + o

(
1

n

)])

= E exp

(
pθ√
n

(
Ln − µ

p
n

)
+ 1

2
θ2p(1 − p)

Ln

n
+ o(1)

)

→ exp

(
(d − 1)2(5d − 2)

d2(2d − 1)2 θ2
)

.

The convergence in the last line follows from the law of large numbers and central limit theorem
for Ln, and the dominated convergence. This implies that n−1/2(Tn − 2(d − 1)2n/d(2d − 1))

converges in distribution to N(0, 2(d − 1)2(5d − 2)/d2(2d − 1)2).

Since Ln behaves very much like Sn, we expect that, under proper scaling, it converges to
the standard Brownian motion.

Proposition 4.1. Let (
, P, F ) be a probability space affording the discrete-time process
{Si, i ∈ N}. For each n ∈ N, define a C0([0, 1])-valued random variable {W(n)

t : t ∈ [0, 1]}
by

W
(n)
t =

[
Ltn − d − 1

d
tn

]/√
n

2d − 1

d2

for t ∈ [n]/n, and linearly interpolated for other values of t . Then the sequence converges in
law to the standard one-dimensional Brownian motion on [0, 1] as n → ∞.

Proof. This is plain in light of Lemma 4.1, as L[tn]−S[tn] is bounded by a geometric random
variable, uniformly in t .
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More difficult is the invariance principle for Tn, the number of turns at time n. We prove it
in the next theorem. Let σ 2 = 2(d − 1)2(5d − 2)/d2(2d − 1)2.

Theorem 4.2. For each n, define a C0([0, 1])-valued random variable {W(n)
t : t ∈ [0, 1]} by

W
(n)
t = 1

σ
√

n

[
Ttn − 2(d − 1)2

d(2d − 1)
tn

]

for t ∈ [n]/n, and linearly interpolated for other values of t . Then the sequence converges in
law to the standard one-dimensional Brownian motion on [0, 1] as n → ∞.

4.1. Proof of Theorem 4.4

Recall that, for a sequence of processes to converge to Brownian motion, it suffices to
check that their finite-dimensional joint distributions converge to that of a Brownian motion
and Prohorov tightness criterion (see Theorem 16.5 of [5]).

Lemma 4.2. Let W
(n)
t be defined as above. Then

(W
(n)
t1

, W
(n)
t2

, . . . , W
(n)
tk

) → (Bt1 , Bt2 , . . . , Btk ),

where Bt is a standard one-dimensional Brownian motion starting at 0.

Proof. It suffices to show that L(W
(n)
t − W

(n)
s | W

(n)
r : r ≤ s) is asymptotically N(0, t − s)

and independent of {W(n)
r : r ≤ s}. This is a generalization of the central limit theorem for Tn,

which corresponds to the case s = 0, and also suggests that, for general s, we can compare
with the case s = 0. We couple W

(n)
t − W

(n)
s with two extreme cases, as considered below.

Let T(·) be the standard process of the number of turns, and define

U[m,n] := T |[m,n],

that is, the number of turns in the segment of the walk during the time interval [m, n]. Then,
one immediately sees that

T�tn − T�sn ≤ U[�sn,�tn],
as the former may cancel turns created before time sn.

On the other hand, we have the reversed inequality

T�tn − T�sn ≥ U[�sn,�tn] − 2
∣∣∣ min

1≤k≤�(t−s)n Sk

∣∣∣,
and it suffices to estimate the behavior of | min0≤k≤n Sk|. Since

P

(∣∣∣ min
0≤k≤n

Sk

∣∣∣ = M
)

≤
�(t−s)n∑

k=0

P(Sk = −M) ≤ C

(√
2d − 1

d

)M

,

we see that it is bounded by a geometric random variable, and, thus,

1

σn

∣∣∣ min
0≤k≤(t−s)n

Sk

∣∣∣ → 0 in probability.

Note that U[m,n] has the same distribution as Tn−m; therefore, L(Wn
t − Wn

s | Wn(0, s))

converges to N(0, t − s), and is clearly independent of Wn(0, s). By induction, we also
get the asymptotically independent increment property for the sequence Wn.
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Lemma 4.3. W
(n)
t satisfies Prohorov’s tightness condition, i.e.

lim
h→0

lim sup
n→∞

E

(
sup

|t−s|≤h

|W(n)
t − W(n)

s | ∧ 1
)

= 0.

Proof. Let T̄n := Tn − 2(d − 1)2n/d(2d − 1) be the centered number of turns at step n.
The idea of the proof is similar to Ottaviani’s maximal inequality for the random walk on R

(see Lemma 14.8 of [5]).
Fix ε > 0. Let t ∈ [0, 1) and h ∈ (0, 1 − t). Define τ := min{k ∈ (tn, (t + h)n] : |T̄k −

T̄[tn]| ≥ 2εσ
√

n}. Then

P(|T̄�(t+h)n − T̄�tn| > εσ
√

n)

≥ P(τ ≤ (t + h)n, |T̄�(t+h)n − T̄τ | ≤ εσ
√

n)

=
�(t+h)n∑
k=�tn+1

P(τ = k)P(|T̄�(t+h)n − T̄k| ≤ εσ
√

n | τ = k)

≥ P(τ ≤ n) min
k∈(tn,(t+h)n] P(|T̄�(t+h)n − T̄k| ≤ εσ

√
n | τ = k).

We want to bound P(τ ≤ n) = P(maxk |T̄k − T̄�tn| > 2εσ
√

n). First note that, when hn is
large enough, T̄�(t+h)n − T̄�tn behaves like a Gaussian with mean 0 and variance hσ 2n. So,
there exists N(ε) such that, for all n > N(ε)/h, we have

P(|T̄�(t+h)n − T̄�tn| > εσ
√

n) ≤ exp

(
− ε2

2h

)
. (4.1)

On the other hand, |T̄�(t+h)n − T̄k| ≤ U(k,(t+h)n) + M�hn. According to Proposition 2.2, the
variance of the former term on the right-hand side is (t + h)n − k with an error uniformly
bounded in t , h, k, and n. The second term is dominated by a geometric random variable, and,
thus, has a finite variance. So, by Chebyshev’s inequality we have

P(|T̄�(t+h)n − T̄k| ≤ εσ
√

n | τ = k) ≥ 1 − 2[(t + h)n − k + C]
n

.

Since k takes values between tn and (t +h)n, the minimum bound is achieved at k = �tn+ 1,
so we obtain

min
k∈(tn,(t+h)n] P(|T̄�(t+h)n − T̄k| ≤ εσ

√
n | τ = k) ≥ 1 − 2h

ε2 − C

n
,

where C is independent of t , h, k, and n. The last inequality is valid as long as the right-hand
side is positive, which requires h to take small values and n to take large values. These values
depend on ε only. The last bound, together with the bound (4.1), implies that

P

(
max

k∈(tn,(t+hn)] |T̄k − T̄tn| > 2εσ
√

n
)

≤
(

1 − 2h

ε2 − C

n

)−1

exp

(
− ε2

2h

)
. (4.2)

Since, for n > 16/ε2σ 2, we have

P

(
sup

δ∈(0,h)

|W(n)
t+δ − W

(n)
t | > ε

)
≤ P

(
sup

k∈(tn,(t+h)n)

|T̄k − T̄�tn| >
ε

2
σ
√

n

)
,
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and the bound on the right-hand side of (4.2) is independent of t , we obtain

sup
t∈(0,1)

P

(
sup

δ∈(0,h)

|W(n)
t+δ − W

(n)
t | > ε

)
<

(
1 − 2h

ε2 − C

n

)−1

exp

(
− ε2

32h

)

for all n > max{N(ε)/h, 16/ε2σ 2}. Now divide the interval (0, 1) into �1/h+1 subintervals,
each with length at most h. Then |t−s| < h implies that either s and t are in the same subinterval
or they are in two adjacent intervals. This observation gives

P

(
sup

|t−s|<h

|W(n)
t − W(n)

s | > ε
)

<

(
2

h
+ 2

)(
1 − 2h

ε2 − C

n

)−1

exp

(
− ε2

32h

)
(4.3)

for all n > max{N(ε), 16/ε2σ 2}. Since

E

(
sup

|t−s|<h

|W(n)
t − W(n)

s | ∧ 1
)

≤ ε + P

(
sup

|t−s|<h

|W(n)
t − W(n)

s | > ε
)
,

the maximal inequality (4.3) quickly gives

lim
h→0

lim sup
n→∞

E

(
sup

|t−s|≤h

|W(n)
t − W(n)

s | ∧ 1
)

≤ ε,

which implies Prohorov’s tightness condition since ε is arbitrary.

Combining the above two lemmas completes the proof of the invariance principle.
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