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LOCALIZATION OPERATORS ON DISCRETE ORLICZ MODULATION
SPACES

APARAJITA DASGUPTA AND ANIRUDHA PORIA

ABSTRACT. In this paper, we introduce Orlicz spaces on Z™ x T™ and Orlicz modulation spaces
on Z", and study inclusion relations, convolution relations, and duality of these spaces. We
show that the Orlicz modulation space M®(Z") is close to the modulation space M?(Z™) for
some particular Young function ®. Then, we study localization operators on Z™. In particular,
using appropriate classes for symbols, we prove that these operators are bounded on Orlicz
modulation spaces on Z", compact and in the Schatten—von Neumann classes.

1. INTRODUCTION

Operators that localize in time and frequency serve as an important mathematical instru-
ment for examining functions across different areas on the time-frequency plane. These can be
considered transformations that alter a function’s characteristics in both time and frequency
domains, resulting in a reconstructed filtered signal. Daubechies in [9-11], Ramanathan and
Topiwala in [23] introduced the time-frequency localization operators, and these operators were
extensively investigated in [14,28,30]. This category of operators is found across diverse fields
of both applied and pure mathematics and has attracted the attention of numerous researchers.
Recognized as a significant novel mathematical instrument, localization operators have been
widely applied in areas such as differential equations theory, signal processing, time-frequency
analysis, and quantum mechanics (see [6,16,21-23,30]). These operators are also referred to as
Gabor multipliers, anti-Wick operators, Toeplitz operators, or wave packets (see [2,7,14,22]).
For an in-depth exploration of localization operators theory, we direct readers to the series of
papers authored by Wong [3, 18,29, 31, 32|, and the book of Wong [30]. In this paper, our aim
is to explore the localization operators on Orlicz modulation spaces on Z".

Localization operators have been characterized through the Schrédinger representation and
the short-time Fourier transform, indicating their study as components of time-frequency anal-
ysis. To gain a deeper insight into these operators, modulation spaces serve as suitable function
spaces, given their connection with the short-time Fourier transform. Introduced by Feichtinger
in [12], modulation spaces constitute a family of spaces for functions and distributions. Since
then, the theory of these spaces has been expanded in various ways (see [16]). The concept of
modulation spaces was extended and investigated using Orlicz spaces and mixed-norm Orlicz
spaces in [25]. Orlicz spaces are important types of Banach function spaces that are considered in
mathematical analysis. These spaces naturally generalize LP-spaces and contain certain Sobolev
spaces as subspaces. Orlicz spaces appear in various computations such as the Zygmund space
Llog™ L, which is a Banach space related to Hardy-Littlewood maximal functions. Like many
other function spaces, there has been a recent interest in the case of Orlicz modulation spaces.
Such spaces are obtained by imposing Orlicz norm estimates on the short-time Fourier trans-
forms of the involved functions and distributions. Since the family of Orlicz spaces contains all
Lebesgue spaces, the family of Orlicz modulation spaces contain all classical modulation spaces.
In particular, the Orlicz modulation spaces are a subfamily of broader classes of modulation
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spaces. For a detailed study on comparisons of the existing modulation spaces and Orlicz mod-
ulation spaces, we refer to [17]. Some recent investigations on Orlicz modulation spaces can be
found in [25,27]. In this paper, we introduce Orlicz spaces on Z" x T", and Orlicz modulation
spaces on Z", and study inclusion relations, convolution relations, and duality properties of these
spaces. Moreover, we prove that the Orlicz modulation space M ‘I’(Z”) is close to the modulation
space M?(Z") for some particular Young function ®.

Given that localization operators fall within the category of pseudo-differential operators,
recent research on pseudo-differential operators on Z™ (see [4]) and AZ"™ (see [5]) has inspired us
to investigate the localization operator on Z". Also, our recent works on localization operators
on discrete modulation spaces established a strong connection between the theory of pseudo-
differential operators and localization operators on Z" (see [8]). In this paper, our main aim
is to introduce the Orlicz modulation space on Z™ using the short-time Fourier transform on
Z" x'T". Then, using suitable conditions on symbols and windows, we show that the localization
operators are bounded on Orlicz modulation spaces on Z", compact and in the Schatten—von
Neumann class.

In the exploration of the localization operator on Z", an important question emerges regarding
the appropriate types of spaces to be used for the symbol. For the localization operator on R",
the symbol is represented by a function on R™ x R". Recent studies on pseudo—diﬁ’erentigl
operators on topological groups G indicate that the ideal phase space for operation is G x G,
with G being the dual group of G (see [20]). Given that the dual group of R™ is identical to R"
itself, the phase space for defining symbols is thus R™ x R™. In the case of the group Z", its
dual group is T", making the phase space Z" x T". In our paper, we consider the symbol as a
function defined on Z™ x T™ and focus our investigation on the localization operator on Z™.

This paper is organized as follows. In Section 2, we recall some basic facts on the short-time
Fourier transform and Orlicz spaces. Also, we study the mixed Orlicz spaces on Z" x T™ param-
eterized with two (quasi-)Young functions. In Section 3, we introduce the Orlicz modulation
spaces on Z", and study inclusion relations, convolution relations, and duality properties of these
spaces. Then, we show that the Orlicz modulation space M ‘I’(Z”) is close to the modulation
space M?(Z™) for some particular Young function ®. Finally, in Section 4, using suitable mod-
ulation spaces, Lebesgue spaces or mixed Orlicz spaces on Z"™ x T" as appropriate classes for
symbols, we study the localization operator on Z" and show that these operators are bounded
on Orlicz modulation spaces on Z", compact and in the Schatten—von Neumann class.

2. PRELIMINARIES

In this section, we recall some necessary definitions and results related to the short-time
Fourier transform and Orlicz spaces. Let us start with some basic definitions.

Definition 2.1. Let 1 < p < co.
(1) We define (P(Z") to be the set of all measurable functions F' on Z™ such that

1F 1y = 3 [E(RP < oo,
keZm

(2) We define LP(T™) to be the set of all measurable functions f on T™ for which

1 pgeny = [ WP di < o
(3) The Fourier transform FznF of F € £1(Z") is the function on T", and defined by

(FznF) (w) = > e ?™F“F(k), weT"
keZm
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(4) Let f be a function on T™. The Fourier transform Frn f of f is the function on Z™, and
defined by

Foef) )= [ s ) dw, ke
jl‘n
(5) The space of all measurable functions H on Z™ x T™ such that

HHHLP(ZnX'H‘n) Z / H(k,w)|P dw < 0o
kezn

is denoted by LP (Z™ x T™).
Notice that, Fzn = ]:fnl = Fin, and for F' € 2z, H]:ZnFHLQ(Tn) = HF||Z2(Z7L). Moreover,
Fzn  02(Z") — L?(T™) is a surjective isomorphism.
Next, we define the Schwartz space S (Z™) on Z"™ to be the space of rapidly decreasing functions
g:7Z" — C. That is, g € S (Z") if for any M < oo there exists a constant Cy s for which

lg(k)| < Cyar(1+ K[)™,  for all k € Z".
For j € Ng = NU{0}, we define the seminorms p;(g) := sup (1+|k|)?|g(k)|. Then, the topology
kezr

on S (Z™) is given by seminorms p;. Also, we define the space of tempered distributions S’ (Z")
to be the space of all continuous linear functionals on S (Z").

Now, we define the short-time Fourier transform (STFT) on Z" x T". Let f € £*(Z"), and
fix k € Z", w € T". For m € Z", we define the translation operator Ty by Ty f(m) = f(m — k)
and the modulation operator M,, by M, f(m) = €™ ™ f(m). For a fixed window function

g € §(Z"), we define the STFT of a function f € &' (Z™) with respect to g to be the function
on Z" x T™ given by

Vof(m,w) = (f, MyTing) = > f()MyTrmg(k) = Y f(k)g(k —m)e2m*,

kezn kezn
Let g(k) = g(—k), for k € Z™. Using the convolution on Z", we write V, f as

Vo f (m,w) = g~ 2miwm (f * MwE) (m).
The STFT on Z™ x T" satisfies the following properties (see [8]).
Proposition 2.2. (1) For any f1, fa2, 91, g2 € £3(Z"),
(Vo f1, Voo 2) 12 znermy = (15 f2) 2@y (92, 91) 220 (1)
(2) Let g € (*(Z"). For any f € (*(Z"™), we have
Vol z2@znsrny = 1fle2zny ll9lle2(zny- (2)
(3) Let g,h € £2(Z"™) and (g, h)gz @zn) # 0. For any f € (*(Z"), we have
f= hgezzn %Z:n/ Vyf (m, w) MyTph dw.
Next, we define the Orlicz spaces on Z™ x T™. We first need to define the convex function. A

function @ : [0, 00] — [0, o] is called convex if

O (x1y1 + @2y2) < 1P (y1) + 22P (32)

where z;,y; € R satisfy z;,y; > 0 for j = 1,2 and 21 + 22 = 1.
We recall the definition of the Young function and quasi-Young function (see [17]).

Definition 2.3. (1) A function ® : [0, 00] — [0, 00| is called a Young function if @ is convez,
®(0) =0 and tlim O (t) = ®(00) = 0.
— 00

(2) A function ®g : [0,00] — [0,00] is called a quasi-Young function of order p € (0,1] if
there is a Young function ® such that ®o(t) = ® (t?), where t € [0, o0].
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Now, we recall the definition of the continuous and discrete Orlicz spaces (see [17,19]).

Definition 2.4. Let ® be a (quasi-)Young function.
(1) The continuous Orlicz space L*(R™) consists of all measurable functions f : R® — C

such that
Hﬂmmmzm{hwa/¢<vgg¢wn}<m

(2) The discrete Orlicz space £®(Z") consists of all measurable functions F : Z" — C such

that
B | F ()
HF||£<1>(Zn) .:1nf{b>0. E <I><b <1l; <00

keZm

Note that, if ®(t) := t? for some p > 1, then L®(R") = LP(R"), the Lebesgue spaces of p the
integrable functions on R™. Hence, the continuous Orlicz spaces are the generalization of the
Lebesgue spaces. Also, note that, if ®(t) = tP for some p > 1, then we get (*(Z") = (P(Z").
Therefore, the discrete Orlicz spaces are the generalization of (P(Z™) spaces. Next, we will define
Orlicz spaces on Z" x T™ parameterized with two (quasi-)Young functions.

Definition 2.5. Let &1 and Py be two (quasi-) Young functions.
(1) The mized Orlicz space L®1®2(Z" x T™) consists of all measurable functions F : 7™ x
T — C such that
[l o122 (znscrmy = [1F1 g (pmy < 00,
where
Fy (1) = |F ()01 g -
(2) The mized Orlicz space LYV *(Z" x T™) consists of all measurable functions F : Z™ x
T — C such that
HF”Lfl7¢2(ZnXTn) = ||GHL‘1>27‘I’1(T"><Z”) < 00,
where
G(w,m) = F(m,w), meZ", weT"

In this paper, we mainly assume that ®, ®; and ®5 above are Young functions.

3. ORLICZ MODULATION SPACES ON Z"

In this section, we define and study Orlicz modulation spaces on Z". Modulation spaces
were first introduced by Feichtinger in [12,13]. To define discrete Orlicz modulation spaces it is
essential to revisit the concept of modulation spaces defined on Z" (see [8]).

Definition 3.1. Let 1 <p < oo and g € S(Z"). We define the modulation space MP(Z") to be
the space of all tempered distributions f € S'(Z™) for which Vyf € LP(Z™ x T™). The norm on
MP(Z"™) is

1/p
Z /11‘" |Vy f(m,w)|P dw> < 00,

mezLm™

WWWMZWMWWWMI(

with the usual adjustments if p is infinite.
We have the following inclusions
S(Z™) ¢ MY (Z™) ¢ M*(Z"™) = ¢*(Z"™) € M>=(Z") C S'(Z").
In particular, MP(Z"™) — (P(Z"™) for 1 < p < 2, and P(Z") — MP(Z") for 2 < p < oc.

Moreover, for p < oo, (MP(Z™)) = MP'(Z"), where p' is the conjugate exponent of p. We have
similar inclusion relations for modulation spaces on Z" x T", which can be derived by employing
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techniques similar to those used in the study of modulation spaces on locally compact abelian
groups (see [1,12]). For more information on the properties and applications of modulation
spaces, we refer to the book by Gréchenig [16].

Definition 3.2. Fiz a non-zero window g € S(Z"), and 0 < p,q < oco. Let ® and ¥ be
(quasi-) Young functions.

(1) The discrete modulation spaces MPA(Z™) is set of all f € S'(Z") such that
I llaseazny = Vo oz cam < 00 3)
The topology of MP4(Z™) is induced by the norm (3).

(2) The discrete Orlicz modulation spaces M®(Z™), M®¥ (Z") and W®Y(Z") are the sets of
all f € S'(Z™) such that

1 larezny == Vol ll o znsmny < 000 If v (zny = VoSl ow znyrny < 00, (4)
and
1f lwewzny == VoSNl 27 gnsepny < 00, (5)

respectively. The topologies of M®(Z™), M®Y(Z") and WY (Z") are induced by the
respective norms in (4) and (5).

Note that the definitions of the discrete Orlicz modulation spaces are independent of the choice
of the window function g € S(Z"). In addition, the difference between the spaces M*¥(Z")
and W®Y(Z") is in terms of their topological differences. The topology of M ®¥(Z") is induced
by the mixed Orlicz space L®¥(Z" x T™) norm, whereas the topology of W®¥(Z") is induced
by the mixed Orlicz space LYY (Z™ x T™) norm.

Next, we present some basic properties of discrete Orlicz modulation spaces. For some recent
investigations of Orlicz modulation spaces, we refer to [17,27]. We use ¢ as the conjugate expo-
nent of p to define the dual space for a Lebesgue space. Similar to the theory of Lebesgue spaces,
we can define the complementary function as a counterpart to the conjugate exponent. Also,
in the theory of Orlicz spaces, the Young functions are classified using their growth properties.
In particular, the As-condition plays an important role in defining the dual space of an Orlicz
space (see [25]).

Definition 3.3. (1) (Complementary function) Let ¥ : R — RY be defined by ¥(y) =
sup{z|y| — ®(x);z > 0}. Then V¥ is called the complementary function to the Young
function .

(2) (Ay-condition) A Young function ® : R — RT is said to satisfy the Ao-condition, if
there exists a constant C' > 0 and xg € RY, such that ®(2z) < C®(z) for all x > x¢ > 0.
The Young function ® is said to satisfy local Ao-condition, if there are constants r > 0
and C' > 0 such that ®(2x) < C®(x) holds when x € [0,7].

Next, we give a characterisation of the dual space to the Orlicz space on Z" x T™. If (®, V) is a
complementary Young pair and ® satisfies a local As-condition, then (L‘I’(R”))* is isometrically
isomorphic to LY(R™). Similarly, we can show that (¢®(Z"))" is isometrically isomorphic to
(Y (Z™). Let (®;, ;) be complementary Young pairs which satisfy local As-condition and are
strictly convex for ¢ = 1,2. Then (Lcl’l"b2 (Z™ x ']I‘”)) " is isometrically isomorphic to LY1%2(Z" x
T™). The proofs of these properties can be obtained using a similar method as in [24].

Let (®;, ¥;) be complementary Young pairs for i = 1,2. If f € £*1(Z") and g € £Y1(Z"), then
we have the following Hoélder’s inequality for the Orlicz spaces

1fgllerzny < N Fllews znyllgllevs (zn)- (6)

In addition, if we assume that ®, satisfies a local Ag-condition, then for F' € L*1:®2(Z" x T")
and G € LY1¥2(Z" x T"), we have the following Holder’s inequality for the Orlicz spaces

IEGl L1 zr sy < E [ peyee@nrn) |Gl vsve znxrn)- (7)
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The proofs of inequalities (6) and (7) can be obtained using a similar method as in [24]. If ®
is continuous, then the Schwartz class S(Z") is embedded into the Orlicz space ¢®(Z"). Also,
if the complementary function ¥ is continuous then the functions in the Orlicz space define
tempered distributions on Z"™. More precisely, let (®;, ¥;) be complementary Young pairs and
®; be continuous for ¢ = 1,2, then we have the following inclusions
S(z™) c 121 (z™) c S'(Z"),
if ¥4 is continuous. Also,
S(Z™ x T") ¢ L*®2(z" x T") ¢ §'(Z" x T"),

if Uy, ¥y are continuous. If ®; and ®, are (quasi-)Young functions, then L®1:®2(Z" x T") is
translation invariant, which leads to the fact that M®1®2(Z") is translation and modulation
invariant (see [27]). Using the fact that (¢® (Z”))* is isometrically isomorphic to £¥(Z"), we can
extend the convolution relation ¢1(Z") x (P(Z"™) C ¢P(Z") to the Orlicz spaces. Here, we present
the following convolution relations.

Proposition 3.4. (1) If F € LYZ" x ™), G € L®®2(Z" x T"), ®; satisfy local As-
condition and strictly convexr Young functions for i = 1,2, then
[F % Gl o2z znscrny < 1 Fllpiznxrny 1Gllperozznsrn)- (8)
(2) If F € LYZ™ x T"), G € L*(Z" x T") and ® satisfies a local Ag-condition, then
1 5 Gl znsrny < NF Itz Gl ozncen) 9)

Proof. (1) Let (®;,¥;) be complementary Young pairs which satisfy local As-condition and are
strictly convex for i = 1,2. Then (chh<I>2 (Z™ x T")) " is isometrically isomorphic to LY1¥2(Z" x
). If G € L*®2(Z" x T"), then TG € L*VP2(Z" x T") and ||T(;,2)G| o192 (70 xcpn) =
|G| 1,22 (zn xTny- Let H € LY1¥2(7n x T™). Using Holder’s inequality (7), we obtain

(FxG,H)| = / F*Gmw)mdw
mezn
<> / (Z/ m—l,w— ) \F(l,x)\da:> |H (m,w)| dw
mezm™ lezmn "
_Z/ <Z/ (t.2) mw“Hmw|dw>|F(lx)|dx
lezmn czn
< Z/ l xr ‘ Hle GHL‘i’l P2 (7 xT™) ||H||L‘I’1 o (ZnxTn) dx

lezm

= [|Gl[ o1 P2 (ZnxT7) [ H | pes. W (Zn xT™) Z/ F(l,z)| dv
lezn
= HFHLl(anT”) ”GHL%v‘I’z(anTn) ”HHL‘I’L‘I’z(anTn)‘

By duality, we get
[[E" GHL‘PL%(ZﬂxTn) = SUP{KF « G H)| HHHL‘I’1»‘1’2(anTn) < 1}
< Fllzr@nxtny |Gl Ler.e2(zn -
(2) The proof follows similarly as in the first part of the proof by choosing ®; = &3 = ®. U

Now, we study a few properties of the discrete Orlicz modulation spaces. Note that, the
definitions of these spaces are independent of the choice of the window function g. Also, if the
Young function satisfies a local As-condition, these spaces are Banach spaces. Moreover, if the

https://doi.org/10.4153/5S0008439525101458 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439525101458

LOCALIZATION OPERATORS ON DISCRETE ORLICZ MODULATION SPACES 7

Young functions are also strictly convex, then the mixed-norm discrete Orlicz modulation spaces
are Banach spaces (see [25, Theorems 6 and 7]).

Theorem 3.5. If ® satisfies a local Ay-condition and its complementary function ¥ is contin-
uous, then M®(Z"™) is a Banach space. Moreover, if (®;,¥;) are complementary Young pairs
which satisfy local Ag-condition, strictly convex and continuous for i = 1,2, then M®1®2(Z") is
a Banach space.

The proof of this theorem can be obtained using a similar method as discussed in [25]. So, we
skip the proof here. Next, we discuss the duality properties of the discrete Orlicz modulation
spaces. If (®,¥) is a complementary Young pair, and ¢ satisfies a local Ag-condition and
continuous, then (M®(Z"))* = MY (Z") under the duality relation

o) = Vi V) = 3 [ Vi om,0) Vighn, ) d

mezZm™

for f € M®(Z") and h € MY(Z"), go € S(Z"). Note that the duality relation is independent
of the choice of the window function go. If (®;,¥;) are complementary Young pairs which
satisfy local As-condition, strictly convex and continuous for i = 1,2, then (M®1®2(Zn))* =
MY1¥2(Z") under the duality relation

(f,h) = (Vo f, Vaoh) = Z /T" Voo f (m, w) Vgoh(m, w) dw

mezn
for f € M®1®2(Z") and h € MY1Y2(Z"), go € S(Z™).
Theorem 3.6. If ®; and V; are (quasi-)Young functions such that

Vi(z)
20+ P;(x)
exist and are finite for i = 1,2, then
LP22(Z x T") = LYY2(2" x T")  and  M®-%2(2") — MY"2(27). (10)
Proof. The proof of the theorem follows similarly as in [27, Theorem 5.10]. ]

Theorem 3.7. Let ®;, U,;, i = 1,2 be (quasi-)Young functions. Then the following conditions
are equivalent:

(1) Mqi'l,q)g(zn) g M‘Ill,\lfg (Zn)
(2) LP1:®2(Z" x T™) C LY+ ¥2(Z7 x T).
(3) There is a constant xo > 0 such that V;(z) S ®;(x) for all 0 < z < x.

Proof. Conditions (1) and (3), and (2) and (3) are equivalent follows from Theorem 3.6 and [27,
Proposition 5.11]. Now, we prove that conditions (1) and (2) are equivalent. Using the definition
of discrete Orlicz modulation spaces, we have

||f||M‘1>1’<1>2(Zn) = ||‘/ngL‘I>17‘I>2(Zn><’]I‘n) and HfHM‘I'L‘I'z(Zn) = ||ng||L‘I’1,‘I’2(anTn) .

If M®1®2(7m) C MY-Y2(Z"), then

”fHM‘I’lv‘I@(Z”) < Hf”M‘I’l’%(Z”) = ‘|%f”LW17W2(Z7le") < vaf”L‘PL‘?z(znx'ﬂ‘n)

= L2022 x T") € LYV72(Z" x T™).

Similarly, if L®1:®2(Z" x T") C LYv¥2(Z" x T"), then

”ngHL‘PL%(ZnX'Jrn) < ||ngHL<I>17<I>2(Zn><']1‘n) = ||f||M‘I’1v‘I'2(Zn) < HfHM<1>1,<I>2(Z")

= M*®2(z") € MYV (2.

This completes the proof. ]
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Note that the constant of the estimate in condition (3) is uniform in ¢, and the converse
implication holds without additional assumptions. Next, we show that M <I)(Z") is close to
M?(Z") in some sense. In the following proposition, we consider the same Young function ® as
in [17], since this function plays an important role in finding the inclusion relations between the
Orlicz modulation space and modulation spaces (see [17]).

Proposition 3.8. Let @ be a Young function which satisfies
d(z) = —2logz, 0<x< e 3. (11)
Then
MP(Z™) € M®(Z") € M*(Z"), p<2, (12)
with continuous and dense inclusions.
Proof. Using similar arguments as in [17, Lemma 3.2] and Theorem 3.7, we obtain that the

inclusions in (12) hold and are continuous. Since MP(Z"), p < 2 is dense in M?(Z"), it also
follows that M®(Z") is dense in M?(Z"). O

Throughout the following section, we assume that the Young function ® satisfies (11) so that
we can use the inclusion relations in (12) in the proof of the main results.

4. LOCALIZATION OPERATORS ON ORLICZ MODULATION SPACES ON Z"

Here, we study the localization operators on Z" and prove their boundedness. Furthermore,
we demonstrate the compactness of these operators and their inclusion in the Schatten—von
Neumann class.

Definition 4.1. Let 0 € LY(Z" x T") U L®(Z™ x T"). For the symbol ¢ and two window
functions g1, go € S(Z™), the localization operator £3-92 is defined on (*(Z") by

LI192 £(f) = Z /Tn o(m,w) Vg, f(m,w) MyTinga(k) dw, keZ". (13)

mezZm™

For any f,h € (?(Z"), we rewrite the operator £39% in a weak sense as

(L8192 f, h) g2 zmy = Z /T" o(m,w) Vy, f(m,w) Vg,h(m,w) dw. (14)

mezm

For 1 < p < oo, we define B(/P(Z™)) to be the space of all bounded linear operators from
¢P(Z™) into itself. For p = 2, the space B(¢£2(Z")) is the C*-algebra of bounded linear operator
A from ¢2(Z") into itself, equipped with the norm

[Allge2@zry =  sup  [A) e (zny-
||ng2(Zn)§1
To define the Schatten—von Neumann class S, on Z", we need to first recall the definition of
singular values of an operator. For a compact operator A € B(¢?(Z")), the singular values of A
are the eigenvalues of the positive self-adjoint operator |A| = v . A* A and denoted by {s,,(A) }nen.
For 1 < p < oo, we define the Schatten—von Neumann class S, to be the space of all compact
operators whose singular values lie in #P, and equipped with the norm

00 1/p
IAlls, = <Z(Sn(«4))p> :

n=1
For p = 00, Sw is the class of all compact operators with the norm [|A| s, := [|Al|g(2(zn))- For
p = 1, the trace of an operator A € S7 is defined by
o
tr(A) = (Avn, vn)e(zn,
n=1
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where {v,}, is any orthonormal basis of £2(Z"). In addition, if A is positive, then
tr(A) = [|Alls; -

For a compact operator A on the Hilbert space ¢2(Z") if the positive operator A*A € Sy, then
we call the operator A as a Hilbert—Schmidt operator. For any orthonormal basis {vy}, of
2(Z"), we have

AN == (A%, = A" Alls, = tr(A"A) = > | Aval gy
n=1

4.1. Boundedness and compactness of £392. Here, we consider g,g2 € M®(Z"), and
prove the results related to the boundedness and compactness of £3''92.

Proposition 4.2. Let ® be a Young function, o € L>(Z" x T") and g1,g2 € M*®(Z"™). Then,
the operator £5-9* € B((*(Z™)), and

€8 | gezzny) < llollzeo@nxrny 191llarezny [1921lar2 zn)-

Proof. Let f,h € £2(Z™). Applying Holder’s inequality, we get

(o8 f o] < X [ lotmw)] Vafmow)] [Vishm, w)] du

mezZn

< lollpoo@nscrey Vo Fll L2 zn sermy 1Vaa Pl L2z sermy

Applying Plancherel’s formula (2), we obtain
‘(231’92]‘, M egny| < 1ol poo@zn ey | fllez@zny 1191lle2zny 17lle2zny l92llez(zny-
Since M®(Z"™) C (2(Z"), we get

lg1llezzny < llg1llare(zny and  [lg2llz2zny < llg2llarezny-
Therefore,
||£‘Z1’92||3(e2(2n)) < HU||L°<>(an1rn) H91HM<I>(Zn) ||92||M<I>(Zn)-
O

Proposition 4.3. Let ® be a Young function, o € M*(Z" x T") and g1,go € M*®(Z"™). Then,
the operator £3992 € B((2(Z")), and

1€5 sz (zny) < Nlollar@nxrny 191 are zny 11921 are zny-

Proof. Let f,h € £?(Z"™). Using the duality between the modulation spaces M>(Z" x T") and
M*Y(Z" x T™), we obtain

<2g1 92 f‘7 h>82 (Zn)

< 3 [ lotmew)| [V s, w) Vohm w)| du

mez™
Since L2(Z" x T™) C M>(Z" x T") and M®(Z") C ¢*(Z"), applying Plancherel’s formula (2),

we get

HVglf‘mHMw(znxTn)

< WV Vaoh| o g ey

< Vo fllpzznxerny Var Pl 2z o)

= |[[fllee@ny lg1llezzny (Pllezzny l92lle2(zm)

< |flleezny Ihlle2zny 911l arezny 921l are zn)- (16)
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From (15) and (16), we have

||2g1’g2||3(42(zn)) < llollar@znxn) HngM‘P(Z”) ||92||M<I>(Zn)-
O

Proposition 4.4. Let ® be a Young function, o € M?*(Z" x T") and g1, g2 € M®(Z"™). Then,
the operator £5-9 € B((*(Z")), and

1£5 " | se2zny) < llollaz@nxrny 912 zny 192l are zn)-

Proof. Let f,h € £2(Z™). Applying Holder’s inequality, we get

(o8 f o) < X [ lotmw [Viufm,w) Voghmw)] du

mezZm"

< ||J||L2(Z"XT”) HVQLf ’ V92hHL2(Z"><’]I‘")'
Since L2(Z" x T™) = M?(Z™ x T"), using (16), we obtain
‘ (L59 f, 1) g2 (Zn)

< HUHMQ(Z"XT") HfHe?(Zn) HhH€2(Z”) HQIHM‘P(Z”) HQ2HM<I>(Zn)-

Therefore,
||2cgr1’92||3(e2(m)) < HU”MQ(Z"X’JT") H91HM<I>(Zn) ||92||M<I>(Zn)-
g

Theorem 4.5. Let 1 <p <2, 0 € MP(Z" x T"), ® be a Young function, and g1, g2 € M®(Z™).
For fivred 0 € MP(Z™ x T"), the operator £39* can be uniquely extended to a bounded linear
operator on (*(Z™), for which

Hﬁgl’mﬂzs(ﬁ(zn)) < llollae @zn <y ||91||M<I>(Zn) H92HM‘I>(Z")'
Proof. Let 1 < p < 2 and ¢ € MY(Z" x T") N M?(Z"™ x T"). The modulation spaces M?
interpolate similar to the corresponding mixed-norm spaces LP. From Proposition 4.3, for ¢ €
MY (Z™ x T™), we have
1€5 sz (zry) < llollar@nsrny 1911 are zny 11921 are zn)-
Also, from Proposition 4.4, for o € M?(Z" x T™), we have
||£g1’g2||3(z2(zn)) < llollarz@znxn) HngM‘P(Z”) ||92||M<I>(Z")-
Now, for 1 < p < 2, using the Riesz—Thorin interpolation theorem (see [26]), we get
Hﬁgl’gQHB(@(zn)) < llollae@zn <y ||91||M<I>(Zn) H92HM‘I’(Z")'

Let 0 € MP(Z" x T™) and {0, }»>1 be a sequence of functions in M1(Z" x T") N M?(Z™ x T")
such that o, — o in MP(Z" x T™) as n — oco. Therefore, for any n, k € N, we get

Hggi;gz - 551’92”3(42(2@) <|lon — Uk||Mp(an1rn) Hgl||M<1>(Zn) HQQHM‘I’(Z")'

Hence, {£5192},>1 is a Cauchy sequence in B(£*(Z")). Let £59% — £9"9% as n — co. Then,
the limit £5"9? remains unaffected by the selection of the sequence {0, },>1, and we have

1€5" 2 | ga(zmyy = Hm [[£8292]] 52 gy,

n—0o0

IN

nh_{go ||Un||Mr(an1rn) ||91||M<I>(Zn) HQQHM‘I’(Z")

ol e znxtny 911 arezny 19211 01 zn)-

g

Theorem 4.6. Let 1 < p <2, 0 € MP(Z" xT"), ® be a Young function, and g1, g2 € M*(Z").
Then, the operator £329% . (2(Z™) — (2(Z") is compact.
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Proof. Let 0 € M*(Z"xT") and {v,, },, be an orthonormal basis for £2(Z"). Since M*(Z" xT") C
LY(Z™ x T™), applying Parseval’s identity, we get

oo
> ‘(2“31’92%7 Un) g2(zn)
n=1

< Z Z /Tn o (m, w)| |[(vn, MuwTmgr)e2zn)| |(MwTmga, vn)ezn)| dw

n=1mezn

= Z /Tn o (m, w)| (Z |<UnaMme91>£2(Z”)‘ |<Mme92,Un>£2(Z")‘> dw

meEZL™ n=1
1 00
< 9 Z /T” |U(m7w)| <Z |<UnaMmegl>£2(Zn)|2
mezr n=1
00

+ Z (M Tmg2, Un)EQ(Z”)‘Q) dw

n=1

1
= §”U\|L1(znx1rn) (HQIH%(Z“) + \\92”?2(271))

IN

1
§HUHM1(anTn) (HQIH?\p(Zn) + ‘\92”?\/14’@”))-

Hence, the operator £5'2 € S1. Next, let o € MP(Z™ x T™). We consider {0y, },>1 in M(Z™ x
T™) N M?(Z"™ x T") such that o, — o in MP(Z" x T") as n — oo. Then, applying Theorem 4.5,
we obtain

[ £5292 — L899 gp2(zny) < llon — ollare@znxny 1191102 20y 1192l ase 20y — O,

as n — co. Therefore, £59 — £59% in B(¢*(Z")) as n — oo. From the above, we get that
{L2492},,>1 is a sequence of linear operators in S and hence compact, so the operator £5"'9* is
compact. O

Now, we calculate the adjoint (£3'92)* of the operator £5'92 on ¢?(Z"), which determined by
the relation

(59 f, ) g2 gmy = (f, (£5F) ) g2 gmy -
We obtain

(G [, h) g2y

- Z /[[‘n a(m,w) Vg, f(m,w) Vg,h(m,w) dw

mezZm"

= Z /11‘ U(mv w) <f7 Mmegl>€2(Z") ‘/g2h(m7w) dw

mezZm™

= Z /]I‘ U(mvw) <f7 ngh(m7w) Mmegl>£2(Zn) dw

meZL™

= <f, g / o(m,w) Vg,h(m,w) MyTg1 dw>
Tn
2(z)

mezn
— <f, 2%2791 h>£2(Z”) .
Hence, we get
(Lgr92)* = 9291,

92 is a self-adjoint operator if g1 = g2 and o is a real-valued function.

Therefore, the operator £3*
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4.2. Localization operators in S,. Here, we show that the operator £5Y € S, and give an
upper bound of ||£3|s,.

Proposition 4.7. Let 0 € M (Z" x T"), ® be a Young function, and g € M®(Z"). Then, the
operator £59 : (*(Z") — (2(Z") is in S1 and

1229115, < 4llollar @nxrny 191370 (zny-

Proof. Let 0 € M*(Z"xT™). Then, from Theorem 4.6, the operator £57 € S1. Let 0 € M*(Z" x
T") be non-negative real-valued. Then ((£59)*£39)1/2 = £99. Let {v,}, be an orthonormal
basis for £2(Z") consisting of eigenvalues of the operator ((£59)*£39)1/2 : (2(Z") — 2(Z"). If o
is non-negative real-valued function, then by using a similar method as in the proof of Theorem
4.6, we get the following estimate

legslls, = 3 (((£59)" 8% 2vn,0n)

— e(zr)
= 3 (€80 v < llollan e 9150 gny- (17)
n=1

Next, let ¢ € M1 (Z™ x T") be an arbitrary real-valued function. We write 0 = o — o_, where
o4+ = max(0,0) and o = —min(c,0). Then, applying the relation (17), we get

1£590 s, = 11£57 = £571[s,
157151 + 11£52 ]|,

IN A

19180y (1o s zmxmy + ol o)

IN

209112 (2 101111 2 - (18)

Finally, let 0 € M'(Z" x T") be a complex-valued function. Then, we write 0 = o1 +i02, where
01,09 are the real and imaginary parts of o respectively. Applying the relation (18), we get

legols, = llegs +i 22l
< Hg‘g}g s+ Hg‘g;g S1
< 209120 gy (11 g ey + 102l ag1 )
<

4||U||M1(an1rn) HQH?\M(ZW)-
]

Theorem 4.8. Let 0 € M'(Z" x T"), ® be a Young function, and g € M*®(Z"™). Then, for
1 < p < oo, the operator £59 : (2(Z"™) — (2(Z") is in Sp, and
1£591ls, < 2*/Pllollar znxrey 19135 zny-

Proof. Using interpolation theorems (see [30], Theorems 2.10 and 2.11), Proposition 4.4, and
Proposition 4.7, we obtain the proof of the theorem. O

In the following, we obtain a lower bound of ||£57||s,, and improve the constant given in
Proposition 4.7.

Theorem 4.9. Let 0 € MY(Z™ x T") be a non-negative real-valued function, ® be a Young
function, and g € M®(Z™). Then, the operator £39 is in Sy, and
1 .
T 151 L1 znxrny < 18590151 < 19032 (zny o llar @nxrmys
g Mq’(Z")

where & is given by 6(m,w) = (Sg’g(Mmeg),Mmeg>£2(Zn).
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Proof. Let o € M (Z" x T™). Then, from Proposition 4.7, the operator £59 € S1. If {5,(£59)},
are the positive singular values of £5Y, {v,}, is an orthonormal basis for the orthogonal com-
plement of the null space of £ consisting of eigenvectors of |£57| and {uy, }, is an orthonormal
set in ¢2(Z"), then using the canonical form of compact operators (see [30], Theorem 2.2), we

get
E4If =3 5n(E5N){f, vn)erznytin. (19)
Therefore, we obtain "
Y (&8 un) ey = Y sn(£59) = |85,
n=1 n=1

Applying Bessel’s inequality and Cauchy—Schwarz’s inequality, we obtain

[e o]

180905, = Y (L8%0n, un)e2(zm)

n=1

= Z Z /JI‘” o(m, w) Vyun(m, w) Vyu,(m,w) dw

n=1meZ"

. 1/2
m,w Unlm,w 2
2:@wn>(;mmm>o

<
meZn
00 1/2
<Z|Vgun(m,w)|2> dw
n=1
< Nlollprznxr Hgsz(Zn)

< Nl o Iglgon
To prove that & € L'(Z" x T"), applying formula (19), we get
|6(m, w)

- ‘ <£g7g(Mmeg)7 Mmeg>g2(Zn)

o
Z sn(£57) (MyT g, Un>e2(zn) (un, Mmeg>g2(Zn)

n=1

1 & 2
32 sute) ([0 Tg o)
n=1

IN

2
+ ’<Mmeg7un>Z2(Z”) > .
Now, using Plancherel’s formula (2), we obtain

ol ey = 3 [ fotm,w)l du

mezn

1 & 2
< 5 Z Sn(sgg) Z / (‘(Mmega Un>é2(Zn)
n=1 mezZ" "
2
+ ‘(Mmegvun>e2(Zn) ) dw
<

191 g0 2y 3 50(£29)
n=1

= 9030z 1247115,
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O

4.3. M®(Z") Boundedness. Here, we obtain that the operators £5"'92 : M®(Z") — M®(Z")
are bounded. Let us start with the following propositions.

Proposition 4.10. Let 0 € MY(Z" x T"). Let (®,V¥) be a complementary Young pair, and ®
satisfies a local Ao-condition and continuous. Let g1 € MY(Z") and go € M®(Z"). Then, the
operator £349% : M®(Z") — M®(Z"™) is a bounded linear operator, and

155 e znyy < lollar@nxtmy 91 llare zny 921l a2 zny-

Proof. Let f € M®(Z") and g € MY(Z"). Since (M®(Z"))* = MY(Z"), applying Holder’s
inequality, we get

Vo f (m, )| <[ fllarezny Ngllare zn)- (20)
For any f € M®(Z") and h € MY (Z"), applying relations (14) and (20), we have
(e £, )

S [ lotm ] W S, w)] Vb, w)]

mezZm"

IN

< llollarznxrry 1fllarezny 191 lare zny (1Bl are zny 192012 20
Therefore,
1€55 e zny) < lollar@nxmy 91 llare zny 921l e zny-
O

Next, using the Schur technique we get an M®(Z")-boundedness of the operator £3'92. We
obtain a new estimate for [|£5"% 5o (zn))-

Proposition 4.11. Let 0 € MY(Z" x T") and g1, g2 € M(Z™) N €>¥(Z"). Then, there exists a
bounded linear operator £3-9% : M®(Z") — M®(Z™) for which
1£5"% ] (s (zn))
< max(|[g1l[ar@zn)l920le(zn), |91 @) |92 311 20)) Ol 011 (Z0 xT0) -

Proof. We define the function K on Z™ x Z™ by

K=Y /T o (m, w) My T (1) MuTgalk) o (21)

mez™

Then, we have

,le’ng(k‘) — Z /En a(m,w) Vglf(m, w) MmeQQ(k) dw

mezZ"

= Z /Tn o(m,w) (f, MyTng1) MyTmga(k) dw

mezZm

= / o(m,w) Y f(1)MyTmg1 (1) MyTnga(k) dw
mezn /" lezn

=S50S [ otmw) Va0 MuTa(8)
lezn mezn V"

= > K(k1) f(1).
lezn
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For every | € Z, we get

Sk < 3 S [ lotmew)] [VuTen @) 1,720 du

kEZn kEZn mezn
< lgillee(zny llg2ll a1 zny lollar zn xnys (22)
and for every k € Z", we have
D UK E D] < Ngillan@ny llg2llee@ny ol @nxrn). (23)
lezn

The kernel function K(k,1) of the localization operator £5"9 satisfies (22) and (23). Hence,
by Schur’s lemma (see [15]), the operator £5"'%* extends to a bounded linear operator £59* :
M®(Z") — M®(Z") with the operator norm
€592 g(are (zmy)
< max(||g1|lar zm)llg2lle znys |91l oo zry 921 211 (27)) o || art @z xTmy)-
U
Remark 4.12. Based on Proposition 4.11, it is determined that the bounded linear operator

on M?®(Z") identified in Proposition 4.10, is in fact the discrete integral operator on M®(Z")
characterized by the kernel IC as provided in (21).

Theorem 4.13. Let 0 € LY(Z" x T"). Let (®,V) be a complementary Young pair, and ®
satisfies a local Ag-condition and continuous. Let g1 € MY(Z") and go € M®(Z"). Then, the
operator £39% € B(M®(Z"™)), and

1€5- s znyy < lollLr@nxrey l91llarezny 1921l are zn)-

Proof. Let f € M®(Z") and h € M¥(Z"). Using the duality between M®(Z") and MY¥(Z"),

we get
(€592 f, b))
< 3 [ lotmw)l W fm.w)l [Vish(m, w)] du
mezZ”
< HUHLl(Z"XT”) ||f”M‘I>(Z”)H91HM‘I’(Z")||h||M‘I’(Z")||92HM<I>(Z")'
Hence,

1€55 | s(veznyy < lollLr@nxrey l91llarezny 1921l are zrn)-
O

Theorem 4.14. Let (®;,V;) be complementary Young pairs which satisfy local Ag-condition,
strictly convex and continuous fori =1,2. Let o € L*1®2(Z"xT") and g1, g2 € S(Z"). Also, let
there exists a constant xog > 0 such that V;(z) < ®;(x) for all 0 < x < xy. Then the localization
operator £39 is in B(M®1®2(Z")), and we have

€5 | 8arer.#2(zny) < ol L2122 20 )

Proof. Let f € M®®2(Z") and h € MY1¥2(Z"). From the given condition, ®;, ¥; satisfy
condition (3) of Theorem 3.7. Hence, we have M®*1:®2(Z") C MY1¥2(Z"). Now, applying
Holder’s inequality (7), we obtain

(e f ) < Y /T lo(m,w)| [Vg, f(m,w)| [Vg,h(m, w)| dw
mezn "
< ”UHL4’17‘1>2(ZTL><W) HVg1fHL‘I’1v‘I’2(Z"xTn)vazhHL‘I’lv‘I’z(anT")
= ||U||L‘1>1#1>2(Zn><11‘n) ||f”M‘I’1a‘I’2(Z")HhHM‘I’L%(Z”)

< ”UHL‘?L%(Z”xT") Hf”M‘Plv‘Pz(Z")HhHM‘I’1»‘1’2(Zn)-
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Hence, using the duality between M®1:*2(Z") and MY1Y2(Z"), we get

1€ | B(arersez zny) < ol Lo1.2 znsrny-

This completes the proof. O
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