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Abstract. In this paper, we introduce Orlicz spaces on Zn×Tn and Orlicz modulation spaces
on Zn, and study inclusion relations, convolution relations, and duality of these spaces. We
show that the Orlicz modulation space MΦ(Zn) is close to the modulation space M2(Zn) for
some particular Young function Φ. Then, we study localization operators on Zn. In particular,
using appropriate classes for symbols, we prove that these operators are bounded on Orlicz
modulation spaces on Zn, compact and in the Schatten–von Neumann classes.

1. Introduction

Operators that localize in time and frequency serve as an important mathematical instru-
ment for examining functions across different areas on the time-frequency plane. These can be
considered transformations that alter a function’s characteristics in both time and frequency
domains, resulting in a reconstructed filtered signal. Daubechies in [9–11], Ramanathan and
Topiwala in [23] introduced the time-frequency localization operators, and these operators were
extensively investigated in [14, 28, 30]. This category of operators is found across diverse fields
of both applied and pure mathematics and has attracted the attention of numerous researchers.
Recognized as a significant novel mathematical instrument, localization operators have been
widely applied in areas such as differential equations theory, signal processing, time-frequency
analysis, and quantum mechanics (see [6,16,21–23,30]). These operators are also referred to as
Gabor multipliers, anti-Wick operators, Toeplitz operators, or wave packets (see [2, 7, 14, 22]).
For an in-depth exploration of localization operators theory, we direct readers to the series of
papers authored by Wong [3, 18, 29, 31, 32], and the book of Wong [30]. In this paper, our aim
is to explore the localization operators on Orlicz modulation spaces on Zn.

Localization operators have been characterized through the Schrödinger representation and
the short-time Fourier transform, indicating their study as components of time-frequency anal-
ysis. To gain a deeper insight into these operators, modulation spaces serve as suitable function
spaces, given their connection with the short-time Fourier transform. Introduced by Feichtinger
in [12], modulation spaces constitute a family of spaces for functions and distributions. Since
then, the theory of these spaces has been expanded in various ways (see [16]). The concept of
modulation spaces was extended and investigated using Orlicz spaces and mixed-norm Orlicz
spaces in [25]. Orlicz spaces are important types of Banach function spaces that are considered in
mathematical analysis. These spaces naturally generalize Lp-spaces and contain certain Sobolev
spaces as subspaces. Orlicz spaces appear in various computations such as the Zygmund space
L log+ L, which is a Banach space related to Hardy–Littlewood maximal functions. Like many
other function spaces, there has been a recent interest in the case of Orlicz modulation spaces.
Such spaces are obtained by imposing Orlicz norm estimates on the short-time Fourier trans-
forms of the involved functions and distributions. Since the family of Orlicz spaces contains all
Lebesgue spaces, the family of Orlicz modulation spaces contain all classical modulation spaces.
In particular, the Orlicz modulation spaces are a subfamily of broader classes of modulation

Date: August 23, 2025.
2020 Mathematics Subject Classification. Primary 47G30; Secondary 47B10, 42B35.
Key words and phrases. Localization operators; discrete Orlicz modulation spaces; Young functions; compact

operators; Schatten–von Neumann class.

1

This is a ``preproof'' accepted article for Canadian Mathematical Bulletin
This version may be subject to change during the production process.
DOI: 10.4153/S0008439525101458

https://doi.org/10.4153/S0008439525101458 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525101458


2 APARAJITA DASGUPTA AND ANIRUDHA PORIA

spaces. For a detailed study on comparisons of the existing modulation spaces and Orlicz mod-
ulation spaces, we refer to [17]. Some recent investigations on Orlicz modulation spaces can be
found in [25, 27]. In this paper, we introduce Orlicz spaces on Zn × Tn, and Orlicz modulation
spaces on Zn, and study inclusion relations, convolution relations, and duality properties of these
spaces. Moreover, we prove that the Orlicz modulation space MΦ(Zn) is close to the modulation
space M2(Zn) for some particular Young function Φ.

Given that localization operators fall within the category of pseudo-differential operators,
recent research on pseudo-differential operators on Zn (see [4]) and ℏZn (see [5]) has inspired us
to investigate the localization operator on Zn. Also, our recent works on localization operators
on discrete modulation spaces established a strong connection between the theory of pseudo-
differential operators and localization operators on Zn (see [8]). In this paper, our main aim
is to introduce the Orlicz modulation space on Zn using the short-time Fourier transform on
Zn×Tn. Then, using suitable conditions on symbols and windows, we show that the localization
operators are bounded on Orlicz modulation spaces on Zn, compact and in the Schatten–von
Neumann class.

In the exploration of the localization operator on Zn, an important question emerges regarding
the appropriate types of spaces to be used for the symbol. For the localization operator on Rn,
the symbol is represented by a function on Rn × Rn. Recent studies on pseudo-differential

operators on topological groups G indicate that the ideal phase space for operation is G × Ĝ,

with Ĝ being the dual group of G (see [20]). Given that the dual group of Rn is identical to Rn

itself, the phase space for defining symbols is thus Rn × Rn. In the case of the group Zn, its
dual group is Tn, making the phase space Zn × Tn. In our paper, we consider the symbol as a
function defined on Zn × Tn and focus our investigation on the localization operator on Zn.

This paper is organized as follows. In Section 2, we recall some basic facts on the short-time
Fourier transform and Orlicz spaces. Also, we study the mixed Orlicz spaces on Zn×Tn param-
eterized with two (quasi-)Young functions. In Section 3, we introduce the Orlicz modulation
spaces on Zn, and study inclusion relations, convolution relations, and duality properties of these
spaces. Then, we show that the Orlicz modulation space MΦ(Zn) is close to the modulation
space M2(Zn) for some particular Young function Φ. Finally, in Section 4, using suitable mod-
ulation spaces, Lebesgue spaces or mixed Orlicz spaces on Zn × Tn as appropriate classes for
symbols, we study the localization operator on Zn and show that these operators are bounded
on Orlicz modulation spaces on Zn, compact and in the Schatten–von Neumann class.

2. Preliminaries

In this section, we recall some necessary definitions and results related to the short-time
Fourier transform and Orlicz spaces. Let us start with some basic definitions.

Definition 2.1. Let 1 ≤ p < ∞.

(1) We define ℓp(Zn) to be the set of all measurable functions F on Zn such that

∥F∥pℓp(Zn) =
∑
k∈Zn

|F (k)|p < ∞.

(2) We define Lp(Tn) to be the set of all measurable functions f on Tn for which

∥f∥pLp(Tn) =

∫
Tn

|f(w)|p dw < ∞.

(3) The Fourier transform FZnF of F ∈ ℓ1(Zn) is the function on Tn, and defined by

(FZnF ) (w) =
∑
k∈Zn

e−2πik·wF (k), w ∈ Tn.
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(4) Let f be a function on Tn. The Fourier transform FTnf of f is the function on Zn, and
defined by

(FTnf) (k) =

∫
Tn

e2πik·wf(w) dw, k ∈ Zn.

(5) The space of all measurable functions H on Zn × Tn such that

∥H∥pLp(Zn×Tn) =
∑
k∈Zn

∫
Tn

|H(k,w)|p dw < ∞

is denoted by Lp (Zn × Tn).

Notice that, FZn = F−1
Tn = F∗

Tn , and for F ∈ ℓ2(Zn), ∥FZnF∥L2(Tn) = ∥F∥ℓ2(Zn). Moreover,

FZn : ℓ2(Zn) → L2(Tn) is a surjective isomorphism.
Next, we define the Schwartz space S (Zn) on Zn to be the space of rapidly decreasing functions

g : Zn → C. That is, g ∈ S (Zn) if for any M < ∞ there exists a constant Cg,M for which

|g(k)| ≤ Cg,M (1 + |k|)−M , for all k ∈ Zn.

For j ∈ N0 = N∪{0}, we define the seminorms pj(g) := sup
k∈Zn

(1+ |k|)j |g(k)|. Then, the topology

on S (Zn) is given by seminorms pj . Also, we define the space of tempered distributions S ′ (Zn)
to be the space of all continuous linear functionals on S (Zn).

Now, we define the short-time Fourier transform (STFT) on Zn × Tn. Let f ∈ ℓ2(Zn), and
fix k ∈ Zn, w ∈ Tn. For m ∈ Zn, we define the translation operator Tk by Tkf(m) = f(m− k)
and the modulation operator Mw by Mwf(m) = e2πiw·mf(m). For a fixed window function
g ∈ S (Zn), we define the STFT of a function f ∈ S ′ (Zn) with respect to g to be the function
on Zn × Tn given by

Vgf(m,w) = ⟨f,MwTmg⟩ =
∑
k∈Zn

f(k)MwTmg(k) =
∑
k∈Zn

f(k)g(k −m)e−2πiw·k.

Let g̃(k) = g(−k), for k ∈ Zn. Using the convolution on Zn, we write Vgf as

Vgf(m,w) = e−2πiw·m (f ∗Mwg̃
)
(m).

The STFT on Zn × Tn satisfies the following properties (see [8]).

Proposition 2.2. (1) For any f1, f2, g1, g2 ∈ ℓ2(Zn),

⟨Vg1f1, Vg2f2⟩L2(Zn×Tn) = ⟨f1, f2⟩ℓ2(Zn) ⟨g2, g1⟩ℓ2(Zn). (1)

(2) Let g ∈ ℓ2(Zn). For any f ∈ ℓ2(Zn), we have

∥Vgf∥L2(Zn×Tn) = ∥f∥ℓ2(Zn) ∥g∥ℓ2(Zn). (2)

(3) Let g, h ∈ ℓ2(Zn) and ⟨g, h⟩ℓ2(Zn) ̸= 0. For any f ∈ ℓ2(Zn), we have

f =
1

⟨h, g⟩ℓ2(Zn)

∑
m∈Zn

∫
Tn

Vgf(m,w) MwTmh dw.

Next, we define the Orlicz spaces on Zn ×Tn. We first need to define the convex function. A
function Φ : [0,∞] → [0,∞] is called convex if

Φ (x1y1 + x2y2) ≤ x1Φ (y1) + x2Φ (y2) ,

where xj , yj ∈ R satisfy xj , yj ≥ 0 for j = 1, 2 and x1 + x2 = 1.
We recall the definition of the Young function and quasi-Young function (see [17]).

Definition 2.3. (1) A function Φ : [0,∞] → [0,∞] is called a Young function if Φ is convex,
Φ(0) = 0 and lim

t→∞
Φ(t) = Φ(∞) = ∞.

(2) A function Φ0 : [0,∞] → [0,∞] is called a quasi-Young function of order p ∈ (0, 1] if
there is a Young function Φ such that Φ0(t) = Φ (tp), where t ∈ [0,∞].
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Now, we recall the definition of the continuous and discrete Orlicz spaces (see [17,19]).

Definition 2.4. Let Φ be a (quasi-)Young function.

(1) The continuous Orlicz space LΦ(Rn) consists of all measurable functions f : Rn → C
such that

∥f∥LΦ(Rn) := inf

{
b > 0 :

∫
Rn

Φ

(
|f(x)|

b

)
dx ≤ 1

}
< ∞.

(2) The discrete Orlicz space ℓΦ(Zn) consists of all measurable functions F : Zn → C such
that

∥F∥ℓΦ(Zn) := inf

{
b > 0 :

∑
k∈Zn

Φ

(
|F (k)|

b

)
≤ 1

}
< ∞.

Note that, if Φ(t) := tp for some p ≥ 1, then LΦ(Rn) = Lp(Rn), the Lebesgue spaces of p the
integrable functions on Rn. Hence, the continuous Orlicz spaces are the generalization of the
Lebesgue spaces. Also, note that, if Φ(t) = tp for some p ≥ 1, then we get ℓΦ(Zn) = ℓp(Zn).
Therefore, the discrete Orlicz spaces are the generalization of ℓp(Zn) spaces. Next, we will define
Orlicz spaces on Zn × Tn parameterized with two (quasi-)Young functions.

Definition 2.5. Let Φ1 and Φ2 be two (quasi-)Young functions.

(1) The mixed Orlicz space LΦ1,Φ2(Zn × Tn) consists of all measurable functions F : Zn ×
Tn → C such that

∥F∥LΦ1,Φ2 (Zn×Tn) := ∥F1∥LΦ2 (Tn) < ∞,

where
F1 (w) = ∥F (·, w)∥ℓΦ1 (Zn) .

(2) The mixed Orlicz space LΦ1,Φ2
∗ (Zn × Tn) consists of all measurable functions F : Zn ×

Tn → C such that

∥F∥
L
Φ1,Φ2
∗ (Zn×Tn)

:= ∥G∥LΦ2,Φ1 (Tn×Zn) < ∞,

where
G(w,m) = F (m,w), m ∈ Zn, w ∈ Tn.

In this paper, we mainly assume that Φ, Φ1 and Φ2 above are Young functions.

3. Orlicz modulation spaces on Zn

In this section, we define and study Orlicz modulation spaces on Zn. Modulation spaces
were first introduced by Feichtinger in [12,13]. To define discrete Orlicz modulation spaces it is
essential to revisit the concept of modulation spaces defined on Zn (see [8]).

Definition 3.1. Let 1 ≤ p ≤ ∞ and g ∈ S(Zn). We define the modulation space Mp(Zn) to be
the space of all tempered distributions f ∈ S ′(Zn) for which Vgf ∈ Lp(Zn × Tn). The norm on
Mp(Zn) is

∥f∥Mp(Zn) = ∥Vgf∥Lp(Zn×Tn) =

( ∑
m∈Zn

∫
Tn

|Vgf(m,w)|p dw
)1/p

< ∞,

with the usual adjustments if p is infinite.

We have the following inclusions

S(Zn) ⊂ M1(Zn) ⊂ M2(Zn) = ℓ2(Zn) ⊂ M∞(Zn) ⊂ S ′(Zn).

In particular, Mp(Zn) ↪→ ℓp(Zn) for 1 ≤ p ≤ 2, and ℓp(Zn) ↪→ Mp(Zn) for 2 ≤ p ≤ ∞.

Moreover, for p < ∞, (Mp(Zn))
′
= Mp′(Zn), where p′ is the conjugate exponent of p. We have

similar inclusion relations for modulation spaces on Zn×Tn, which can be derived by employing
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techniques similar to those used in the study of modulation spaces on locally compact abelian
groups (see [1, 12]). For more information on the properties and applications of modulation
spaces, we refer to the book by Gröchenig [16].

Definition 3.2. Fix a non-zero window g ∈ S(Zn), and 0 < p, q ≤ ∞. Let Φ and Ψ be
(quasi-)Young functions.

(1) The discrete modulation spaces Mp,q(Zn) is set of all f ∈ S ′(Zn) such that

∥f∥Mp,q(Zn) := ∥Vgf∥Lp,q(Zn×Tn) < ∞. (3)

The topology of Mp,q(Zn) is induced by the norm (3).
(2) The discrete Orlicz modulation spaces MΦ(Zn),MΦ,Ψ(Zn) and WΦ,Ψ(Zn) are the sets of

all f ∈ S ′(Zn) such that

∥f∥MΦ(Zn) := ∥Vgf∥LΦ(Zn×Tn) < ∞, ∥f∥MΦ,Ψ(Zn) := ∥Vgf∥LΦ,Ψ(Zn×Tn) < ∞, (4)

and
∥f∥WΦ,Ψ(Zn) := ∥Vgf∥LΦ,Ψ

∗ (Zn×Tn)
< ∞, (5)

respectively. The topologies of MΦ(Zn),MΦ,Ψ(Zn) and WΦ,Ψ(Zn) are induced by the
respective norms in (4) and (5).

Note that the definitions of the discrete Orlicz modulation spaces are independent of the choice
of the window function g ∈ S(Zn). In addition, the difference between the spaces MΦ,Ψ(Zn)
and WΦ,Ψ(Zn) is in terms of their topological differences. The topology of MΦ,Ψ(Zn) is induced
by the mixed Orlicz space LΦ,Ψ(Zn × Tn) norm, whereas the topology of WΦ,Ψ(Zn) is induced

by the mixed Orlicz space LΦ,Ψ
∗ (Zn × Tn) norm.

Next, we present some basic properties of discrete Orlicz modulation spaces. For some recent
investigations of Orlicz modulation spaces, we refer to [17,27]. We use q as the conjugate expo-
nent of p to define the dual space for a Lebesgue space. Similar to the theory of Lebesgue spaces,
we can define the complementary function as a counterpart to the conjugate exponent. Also,
in the theory of Orlicz spaces, the Young functions are classified using their growth properties.
In particular, the ∆2-condition plays an important role in defining the dual space of an Orlicz
space (see [25]).

Definition 3.3. (1) (Complementary function) Let Ψ : R → R+ be defined by Ψ(y) =
sup{x|y| − Φ(x);x ≥ 0}. Then Ψ is called the complementary function to the Young
function Φ.

(2) (∆2-condition) A Young function Φ : R → R+ is said to satisfy the ∆2-condition, if
there exists a constant C > 0 and x0 ∈ R+

0 , such that Φ(2x) ≤ CΦ(x) for all x ≥ x0 ≥ 0.
The Young function Φ is said to satisfy local ∆2-condition, if there are constants r > 0
and C > 0 such that Φ(2x) ≤ CΦ(x) holds when x ∈ [0, r].

Next, we give a characterisation of the dual space to the Orlicz space on Zn×Tn. If (Φ,Ψ) is a

complementary Young pair and Φ satisfies a local ∆2-condition, then
(
LΦ(Rn)

)∗
is isometrically

isomorphic to LΨ(Rn). Similarly, we can show that
(
ℓΦ(Zn)

)∗
is isometrically isomorphic to

ℓΨ(Zn). Let (Φi,Ψi) be complementary Young pairs which satisfy local ∆2-condition and are

strictly convex for i = 1, 2. Then
(
LΦ1,Φ2(Zn × Tn)

)∗
is isometrically isomorphic to LΨ1,Ψ2(Zn×

Tn). The proofs of these properties can be obtained using a similar method as in [24].
Let (Φi,Ψi) be complementary Young pairs for i = 1, 2. If f ∈ ℓΦ1(Zn) and g ∈ ℓΨ1(Zn), then

we have the following Hölder’s inequality for the Orlicz spaces

∥fg∥ℓ1(Zn) ≤ ∥f∥ℓΦ1 (Zn)∥g∥ℓΨ1 (Zn). (6)

In addition, if we assume that Φ2 satisfies a local ∆2-condition, then for F ∈ LΦ1,Φ2(Zn × Tn)
and G ∈ LΨ1,Ψ2(Zn × Tn), we have the following Hölder’s inequality for the Orlicz spaces

∥FG∥L1(Zn×Tn) ≤ ∥F∥LΦ1,Φ2 (Zn×Tn)∥G∥LΨ1,Ψ2 (Zn×Tn). (7)
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The proofs of inequalities (6) and (7) can be obtained using a similar method as in [24]. If Φ
is continuous, then the Schwartz class S(Zn) is embedded into the Orlicz space ℓΦ(Zn). Also,
if the complementary function Ψ is continuous then the functions in the Orlicz space define
tempered distributions on Zn. More precisely, let (Φi,Ψi) be complementary Young pairs and
Φi be continuous for i = 1, 2, then we have the following inclusions

S(Zn) ⊂ ℓΦ1(Zn) ⊂ S ′(Zn),

if Ψ1 is continuous. Also,

S(Zn × Tn) ⊂ LΦ1,Φ2(Zn × Tn) ⊂ S ′(Zn × Tn),

if Ψ1,Ψ2 are continuous. If Φ1 and Φ2 are (quasi-)Young functions, then LΦ1,Φ2(Zn × Tn) is
translation invariant, which leads to the fact that MΦ1,Φ2(Zn) is translation and modulation

invariant (see [27]). Using the fact that
(
ℓΦ(Zn)

)∗
is isometrically isomorphic to ℓΨ(Zn), we can

extend the convolution relation ℓ1(Zn) ∗ ℓp(Zn) ⊂ ℓp(Zn) to the Orlicz spaces. Here, we present
the following convolution relations.

Proposition 3.4. (1) If F ∈ L1(Zn × Tn), G ∈ LΦ1,Φ2(Zn × Tn), Φi satisfy local ∆2-
condition and strictly convex Young functions for i = 1, 2, then

∥F ∗G∥LΦ1,Φ2 (Zn×Tn) ≤ ∥F∥L1(Zn×Tn) ∥G∥LΦ1,Φ2 (Zn×Tn). (8)

(2) If F ∈ L1(Zn × Tn), G ∈ LΦ(Zn × Tn) and Φ satisfies a local ∆2-condition, then

∥F ∗G∥LΦ(Zn×Tn) ≤ ∥F∥L1(Zn×Tn) ∥G∥LΦ(Zn×Tn). (9)

Proof. (1) Let (Φi,Ψi) be complementary Young pairs which satisfy local ∆2-condition and are

strictly convex for i = 1, 2. Then
(
LΦ1,Φ2(Zn × Tn)

)∗
is isometrically isomorphic to LΨ1,Ψ2(Zn×

Tn). If G ∈ LΦ1,Φ2(Zn × Tn), then T(l,x)G ∈ LΦ1,Φ2(Zn × Tn) and ∥T(l,x)G∥LΦ1,Φ2 (Zn×Tn) =

∥G∥LΦ1,Φ2 (Zn×Tn). Let H ∈ LΨ1,Ψ2(Zn × Tn). Using Hölder’s inequality (7), we obtain

|⟨F ∗G,H⟩| =

∣∣∣∣∣ ∑
m∈Zn

∫
Tn

F ∗G(m,w) H(m,w) dw

∣∣∣∣∣
≤
∑
m∈Zn

∫
Tn

(∑
l∈Zn

∫
Tn

|G(m− l, w − x)| |F (l, x)| dx

)
|H(m,w)| dw

=
∑
l∈Zn

∫
Tn

( ∑
m∈Zn

∫
Tn

∣∣T(l,x)G(m,w)
∣∣ |H(m,w)| dw

)
|F (l, x)| dx

≤
∑
l∈Zn

∫
Tn

|F (l, x)| ∥T(l,x)G∥LΦ1,Φ2 (Zn×Tn) ∥H∥LΨ1,Ψ2 (Zn×Tn) dx

= ∥G∥LΦ1,Φ2 (Zn×Tn) ∥H∥LΨ1,Ψ2 (Zn×Tn)

∑
l∈Zn

∫
Tn

|F (l, x)| dx

= ∥F∥L1(Zn×Tn) ∥G∥LΦ1,Φ2 (Zn×Tn) ∥H∥LΨ1,Ψ2 (Zn×Tn).

By duality, we get

∥F ∗G∥LΦ1,Φ2 (Zn×Tn) = sup
{
|⟨F ∗G,H⟩| : ∥H∥LΨ1,Ψ2 (Zn×Tn) ≤ 1

}
≤ ∥F∥L1(Zn×Tn) ∥G∥LΦ1,Φ2 (Zn×Tn).

(2) The proof follows similarly as in the first part of the proof by choosing Φ1 = Φ2 = Φ. □

Now, we study a few properties of the discrete Orlicz modulation spaces. Note that, the
definitions of these spaces are independent of the choice of the window function g. Also, if the
Young function satisfies a local ∆2-condition, these spaces are Banach spaces. Moreover, if the
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Young functions are also strictly convex, then the mixed-norm discrete Orlicz modulation spaces
are Banach spaces (see [25, Theorems 6 and 7]).

Theorem 3.5. If Φ satisfies a local ∆2-condition and its complementary function Ψ is contin-
uous, then MΦ(Zn) is a Banach space. Moreover, if (Φi,Ψi) are complementary Young pairs
which satisfy local ∆2-condition, strictly convex and continuous for i = 1, 2, then MΦ1,Φ2(Zn) is
a Banach space.

The proof of this theorem can be obtained using a similar method as discussed in [25]. So, we
skip the proof here. Next, we discuss the duality properties of the discrete Orlicz modulation
spaces. If (Φ,Ψ) is a complementary Young pair, and Φ satisfies a local ∆2-condition and
continuous, then (MΦ(Zn))∗ ∼= MΨ(Zn) under the duality relation

⟨f, h⟩ = ⟨Vg0f, Vg0h⟩ =
∑
m∈Zn

∫
Tn

Vg0f(m,w) Vg0h(m,w) dw

for f ∈ MΦ(Zn) and h ∈ MΨ(Zn), g0 ∈ S(Zn). Note that the duality relation is independent
of the choice of the window function g0. If (Φi,Ψi) are complementary Young pairs which
satisfy local ∆2-condition, strictly convex and continuous for i = 1, 2, then (MΦ1,Φ2(Zn))∗ ∼=
MΨ1,Ψ2(Zn) under the duality relation

⟨f, h⟩ = ⟨Vg0f, Vg0h⟩ =
∑
m∈Zn

∫
Tn

Vg0f(m,w) Vg0h(m,w) dw

for f ∈ MΦ1,Φ2(Zn) and h ∈ MΨ1,Ψ2(Zn), g0 ∈ S(Zn).

Theorem 3.6. If Φi and Ψi are (quasi-)Young functions such that

lim
x→0+

Ψi(x)

Φi(x)

exist and are finite for i = 1, 2, then

LΦ1,Φ2(Zn × Tn) ↪→ LΨ1,Ψ2(Zn × Tn) and MΦ1,Φ2(Zn) ↪→ MΨ1,Ψ2(Zn). (10)

Proof. The proof of the theorem follows similarly as in [27, Theorem 5.10]. □

Theorem 3.7. Let Φi, Ψi, i = 1, 2 be (quasi-)Young functions. Then the following conditions
are equivalent:

(1) MΦ1,Φ2(Zn) ⊆ MΨ1,Ψ2(Zn).
(2) LΦ1,Φ2(Zn × Tn) ⊆ LΨ1,Ψ2(Zn × Tn).
(3) There is a constant x0 > 0 such that Ψi(x) ≲ Φi(x) for all 0 ≤ x ≤ x0.

Proof. Conditions (1) and (3), and (2) and (3) are equivalent follows from Theorem 3.6 and [27,
Proposition 5.11]. Now, we prove that conditions (1) and (2) are equivalent. Using the definition
of discrete Orlicz modulation spaces, we have

∥f∥MΦ1,Φ2 (Zn) = ∥Vgf∥LΦ1,Φ2 (Zn×Tn) and ∥f∥MΨ1,Ψ2 (Zn) = ∥Vgf∥LΨ1,Ψ2 (Zn×Tn) .

If MΦ1,Φ2(Zn) ⊆ MΨ1,Ψ2(Zn), then

∥f∥MΨ1,Ψ2 (Zn) ≤ ∥f∥MΦ1,Φ2 (Zn) ⇒ ∥Vgf∥LΨ1,Ψ2 (Zn×Tn) ≤ ∥Vgf∥LΦ1,Φ2 (Zn×Tn)

⇒ LΦ1,Φ2(Zn × Tn) ⊆ LΨ1,Ψ2(Zn × Tn).

Similarly, if LΦ1,Φ2(Zn × Tn) ⊆ LΨ1,Ψ2(Zn × Tn), then

∥Vgf∥LΨ1,Ψ2 (Zn×Tn) ≤ ∥Vgf∥LΦ1,Φ2 (Zn×Tn) ⇒ ∥f∥MΨ1,Ψ2 (Zn) ≤ ∥f∥MΦ1,Φ2 (Zn)

⇒ MΦ1,Φ2(Zn) ⊆ MΨ1,Ψ2(Zn).

This completes the proof. □
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Note that the constant of the estimate in condition (3) is uniform in i, and the converse
implication holds without additional assumptions. Next, we show that MΦ(Zn) is close to
M2(Zn) in some sense. In the following proposition, we consider the same Young function Φ as
in [17], since this function plays an important role in finding the inclusion relations between the
Orlicz modulation space and modulation spaces (see [17]).

Proposition 3.8. Let Φ be a Young function which satisfies

Φ(x) = −x2 log x, 0 ≤ x ≤ e−
2
3 . (11)

Then

Mp(Zn) ⊆ MΦ(Zn) ⊆ M2(Zn), p < 2, (12)

with continuous and dense inclusions.

Proof. Using similar arguments as in [17, Lemma 3.2] and Theorem 3.7, we obtain that the
inclusions in (12) hold and are continuous. Since Mp(Zn), p < 2 is dense in M2(Zn), it also
follows that MΦ(Zn) is dense in M2(Zn). □

Throughout the following section, we assume that the Young function Φ satisfies (11) so that
we can use the inclusion relations in (12) in the proof of the main results.

4. Localization operators on Orlicz modulation spaces on Zn

Here, we study the localization operators on Zn and prove their boundedness. Furthermore,
we demonstrate the compactness of these operators and their inclusion in the Schatten–von
Neumann class.

Definition 4.1. Let σ ∈ L1(Zn × Tn) ∪ L∞(Zn × Tn). For the symbol σ and two window
functions g1, g2 ∈ S(Zn), the localization operator Lg1,g2

σ is defined on ℓ2(Zn) by

Lg1,g2
σ f(k) =

∑
m∈Zn

∫
Tn

σ(m,w) Vg1f(m,w) MwTmg2(k) dw, k ∈ Zn. (13)

For any f, h ∈ ℓ2(Zn), we rewrite the operator Lg1,g2
σ in a weak sense as

⟨Lg1,g2
σ f, h⟩ℓ2(Zn) =

∑
m∈Zn

∫
Tn

σ(m,w) Vg1f(m,w) Vg2h(m,w) dw. (14)

For 1 ≤ p ≤ ∞, we define B(ℓp(Zn)) to be the space of all bounded linear operators from
ℓp(Zn) into itself. For p = 2, the space B(ℓ2(Zn)) is the C∗-algebra of bounded linear operator
A from ℓ2(Zn) into itself, equipped with the norm

∥A∥B(ℓ2(Zn)) = sup
∥f∥ℓ2(Zn)≤1

∥A(f)∥ℓ2(Zn).

To define the Schatten–von Neumann class Sp on Zn, we need to first recall the definition of
singular values of an operator. For a compact operator A ∈ B(ℓ2(Zn)), the singular values of A
are the eigenvalues of the positive self-adjoint operator |A| =

√
A∗A and denoted by {sn(A)}n∈N.

For 1 ≤ p < ∞, we define the Schatten–von Neumann class Sp to be the space of all compact
operators whose singular values lie in ℓp, and equipped with the norm

∥A∥Sp =

( ∞∑
n=1

(sn(A))p

)1/p

.

For p = ∞, S∞ is the class of all compact operators with the norm ∥A∥S∞ := ∥A∥B(ℓ2(Zn)). For
p = 1, the trace of an operator A ∈ S1 is defined by

tr(A) =
∞∑
n=1

⟨Avn, vn⟩ℓ2(Zn),
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where {vn}n is any orthonormal basis of ℓ2(Zn). In addition, if A is positive, then

tr(A) = ∥A∥S1 .

For a compact operator A on the Hilbert space ℓ2(Zn) if the positive operator A∗A ∈ S1, then
we call the operator A as a Hilbert–Schmidt operator. For any orthonormal basis {vn}n of
ℓ2(Zn), we have

∥A∥2HS := ∥A∥2S2
= ∥A∗A∥S1 = tr(A∗A) =

∞∑
n=1

∥Avn∥2ℓ2(Zn).

4.1. Boundedness and compactness of Lg1,g2
σ . Here, we consider g1, g2 ∈ MΦ(Zn), and

prove the results related to the boundedness and compactness of Lg1,g2
σ .

Proposition 4.2. Let Φ be a Young function, σ ∈ L∞(Zn × Tn) and g1, g2 ∈ MΦ(Zn). Then,
the operator Lg1,g2

σ ∈ B(ℓ2(Zn)), and

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥L∞(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Proof. Let f, h ∈ ℓ2(Zn). Applying Hölder’s inequality, we get∣∣∣⟨Lg1,g2
σ f, h⟩ℓ2(Zn)

∣∣∣ ≤
∑
m∈Zn

∫
Tn

|σ(m,w)| |Vg1f(m,w)| |Vg2h(m,w)| dw

≤ ∥σ∥L∞(Zn×Tn) ∥Vg1f∥L2(Zn×Tn) ∥Vg2h∥L2(Zn×Tn) .

Applying Plancherel’s formula (2), we obtain∣∣∣⟨Lg1,g2
σ f, h⟩ℓ2(Zn)

∣∣∣ ≤ ∥σ∥L∞(Zn×Tn) ∥f∥ℓ2(Zn) ∥g1∥ℓ2(Zn) ∥h∥ℓ2(Zn) ∥g2∥ℓ2(Zn).

Since MΦ(Zn) ⊂ ℓ2(Zn), we get

∥g1∥ℓ2(Zn) ≤ ∥g1∥MΦ(Zn) and ∥g2∥ℓ2(Zn) ≤ ∥g2∥MΦ(Zn).

Therefore,

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥L∞(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

□

Proposition 4.3. Let Φ be a Young function, σ ∈ M1(Zn × Tn) and g1, g2 ∈ MΦ(Zn). Then,
the operator Lg1,g2

σ ∈ B(ℓ2(Zn)), and

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M1(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Proof. Let f, h ∈ ℓ2(Zn). Using the duality between the modulation spaces M∞(Zn × Tn) and
M1(Zn × Tn), we obtain∣∣∣⟨Lg1,g2

σ f, h⟩ℓ2(Zn)

∣∣∣ ≤
∑
m∈Zn

∫
Tn

|σ(m,w)|
∣∣∣Vg1f(m,w) Vg2h(m,w)

∣∣∣ dw
≤ ∥σ∥M1(Zn×Tn)

∥∥Vg1f · Vg2h
∥∥
M∞(Zn×Tn)

. (15)

Since L2(Zn × Tn) ⊂ M∞(Zn × Tn) and MΦ(Zn) ⊂ ℓ2(Zn), applying Plancherel’s formula (2),
we get ∥∥Vg1f · Vg2h

∥∥
M∞(Zn×Tn)

≤
∥∥Vg1f · Vg2h

∥∥
L2(Zn×Tn)

≤ ∥Vg1f∥L2(Zn×Tn) ∥Vg2h∥L2(Zn×Tn)

= ∥f∥ℓ2(Zn) ∥g1∥ℓ2(Zn) ∥h∥ℓ2(Zn) ∥g2∥ℓ2(Zn)

≤ ∥f∥ℓ2(Zn) ∥h∥ℓ2(Zn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn). (16)
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From (15) and (16), we have

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M1(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

□

Proposition 4.4. Let Φ be a Young function, σ ∈ M2(Zn × Tn) and g1, g2 ∈ MΦ(Zn). Then,
the operator Lg1,g2

σ ∈ B(ℓ2(Zn)), and

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M2(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Proof. Let f, h ∈ ℓ2(Zn). Applying Hölder’s inequality, we get∣∣∣⟨Lg1,g2
σ f, h⟩ℓ2(Zn)

∣∣∣ ≤
∑
m∈Zn

∫
Tn

|σ(m,w)|
∣∣∣Vg1f(m,w) Vg2h(m,w)

∣∣∣ dw
≤ ∥σ∥L2(Zn×Tn)

∥∥Vg1f · Vg2h
∥∥
L2(Zn×Tn)

.

Since L2(Zn × Tn) = M2(Zn × Tn), using (16), we obtain∣∣∣⟨Lg1,g2
σ f, h⟩ℓ2(Zn)

∣∣∣
≤ ∥σ∥M2(Zn×Tn) ∥f∥ℓ2(Zn) ∥h∥ℓ2(Zn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Therefore,
∥Lg1,g2

σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M2(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

□

Theorem 4.5. Let 1 < p < 2, σ ∈ Mp(Zn×Tn), Φ be a Young function, and g1, g2 ∈ MΦ(Zn).
For fixed σ ∈ Mp(Zn × Tn), the operator Lg1,g2

σ can be uniquely extended to a bounded linear
operator on ℓ2(Zn), for which

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Proof. Let 1 < p < 2 and σ ∈ M1(Zn × Tn) ∩ M2(Zn × Tn). The modulation spaces Mp

interpolate similar to the corresponding mixed-norm spaces Lp. From Proposition 4.3, for σ ∈
M1(Zn × Tn), we have

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M1(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Also, from Proposition 4.4, for σ ∈ M2(Zn × Tn), we have

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥M2(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Now, for 1 < p < 2, using the Riesz–Thorin interpolation theorem (see [26]), we get

∥Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σ∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Let σ ∈ Mp(Zn × Tn) and {σn}n≥1 be a sequence of functions in M1(Zn × Tn) ∩M2(Zn × Tn)
such that σn → σ in Mp(Zn × Tn) as n → ∞. Therefore, for any n, k ∈ N, we get∥∥Lg1,g2

σn
− Lg1,g2

σk

∥∥
B(ℓ2(Zn))

≤ ∥σn − σk∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

Hence, {Lg1,g2
σn }n≥1 is a Cauchy sequence in B(ℓ2(Zn)). Let Lg1,g2

σn → Lg1,g2
σ as n → ∞. Then,

the limit Lg1,g2
σ remains unaffected by the selection of the sequence {σn}n≥1, and we have

∥Lg1,g2
σ ∥B(ℓ2(Zn)) = lim

n→∞

∥∥Lg1,g2
σn

∥∥
B(ℓ2(Zn))

≤ lim
n→∞

∥σn∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn)

= ∥σ∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn).

□

Theorem 4.6. Let 1 ≤ p ≤ 2, σ ∈ Mp(Zn×Tn), Φ be a Young function, and g1, g2 ∈ MΦ(Zn).
Then, the operator Lg1,g2

σ : ℓ2(Zn) → ℓ2(Zn) is compact.
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Proof. Let σ ∈ M1(Zn×Tn) and {vn}n be an orthonormal basis for ℓ2(Zn). SinceM1(Zn×Tn) ⊂
L1(Zn × Tn), applying Parseval’s identity, we get

∞∑
n=1

∣∣∣⟨Lg1,g2
σ vn, vn⟩ℓ2(Zn)

∣∣∣
≤

∞∑
n=1

∑
m∈Zn

∫
Tn

|σ(m,w)|
∣∣⟨vn,MwTmg1⟩ℓ2(Zn)

∣∣ ∣∣⟨MwTmg2, vn⟩ℓ2(Zn)

∣∣ dw
=
∑
m∈Zn

∫
Tn

|σ(m,w)|

( ∞∑
n=1

∣∣⟨vn,MwTmg1⟩ℓ2(Zn)

∣∣ ∣∣⟨MwTmg2, vn⟩ℓ2(Zn)

∣∣) dw

≤ 1

2

∑
m∈Zn

∫
Tn

|σ(m,w)|

( ∞∑
n=1

|⟨vn,MwTmg1⟩ℓ2(Zn)|2

+

∞∑
n=1

|⟨MwTmg2, vn⟩ℓ2(Zn)|2
)

dw

=
1

2
∥σ∥L1(Zn×Tn) (∥g1∥2ℓ2(Zn) + ∥g2∥2ℓ2(Zn))

≤ 1

2
∥σ∥M1(Zn×Tn) (∥g1∥2MΦ(Zn) + ∥g2∥2MΦ(Zn)).

Hence, the operator Lg1,g2
σ ∈ S1. Next, let σ ∈ Mp(Zn ×Tn). We consider {σn}n≥1 in M1(Zn ×

Tn)∩M2(Zn ×Tn) such that σn → σ in Mp(Zn ×Tn) as n → ∞. Then, applying Theorem 4.5,
we obtain

∥Lg1,g2
σn

− Lg1,g2
σ ∥B(ℓ2(Zn)) ≤ ∥σn − σ∥Mp(Zn×Tn) ∥g1∥MΦ(Zn) ∥g2∥MΦ(Zn) → 0,

as n → ∞. Therefore, Lg1,g2
σn → Lg1,g2

σ in B(ℓ2(Zn)) as n → ∞. From the above, we get that
{Lg1,g2

σn }n≥1 is a sequence of linear operators in S1 and hence compact, so the operator Lg1,g2
σ is

compact. □

Now, we calculate the adjoint (Lg1,g2
σ )∗ of the operator Lg1,g2

σ on ℓ2(Zn), which determined by
the relation

⟨Lg1,g2
σ f, h⟩ℓ2(Zn) = ⟨f, (Lg1,g2

σ )∗h⟩ℓ2(Zn) .

We obtain

⟨Lg1,g2
σ f, h⟩ℓ2(Zn)

=
∑
m∈Zn

∫
Tn

σ(m,w) Vg1f(m,w) Vg2h(m,w) dw

=
∑
m∈Zn

∫
Tn

σ(m,w) ⟨f,MwTmg1⟩ℓ2(Zn) Vg2h(m,w) dw

=
∑
m∈Zn

∫
Tn

σ(m,w) ⟨f, Vg2h(m,w) MwTmg1⟩ℓ2(Zn) dw

=

〈
f,
∑
m∈Zn

∫
Tn

σ(m,w) Vg2h(m,w) MwTmg1 dw

〉
ℓ2(Zn)

= ⟨f,Lg2,g1
σ h⟩ℓ2(Zn) .

Hence, we get

(Lg1,g2
σ )∗ = Lg2,g1

σ .

Therefore, the operator Lg1,g2
σ is a self-adjoint operator if g1 = g2 and σ is a real-valued function.
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4.2. Localization operators in Sp. Here, we show that the operator Lg,g
σ ∈ Sp and give an

upper bound of ∥Lg,g
σ ∥Sp .

Proposition 4.7. Let σ ∈ M1(Zn × Tn), Φ be a Young function, and g ∈ MΦ(Zn). Then, the
operator Lg,g

σ : ℓ2(Zn) → ℓ2(Zn) is in S1 and

∥Lg,g
σ ∥S1 ≤ 4∥σ∥M1(Zn×Tn) ∥g∥2MΦ(Zn).

Proof. Let σ ∈ M1(Zn×Tn). Then, from Theorem 4.6, the operator Lg,g
σ ∈ S1. Let σ ∈ M1(Zn×

Tn) be non-negative real-valued. Then ((Lg,g
σ )∗Lg,g

σ )1/2 = Lg,g
σ . Let {vn}n be an orthonormal

basis for ℓ2(Zn) consisting of eigenvalues of the operator ((Lg,g
σ )∗Lg,g

σ )1/2 : ℓ2(Zn) → ℓ2(Zn). If σ
is non-negative real-valued function, then by using a similar method as in the proof of Theorem
4.6, we get the following estimate

∥Lg,g
σ ∥S1 =

∞∑
n=1

〈
((Lg,g

σ )∗Lg,g
σ )1/2vn, vn

〉
ℓ2(Zn)

=

∞∑
n=1

⟨Lg,g
σ vn, vn⟩ℓ2(Zn) ≤ ∥σ∥M1(Zn×Tn) ∥g∥2MΦ(Zn). (17)

Next, let σ ∈ M1(Zn × Tn) be an arbitrary real-valued function. We write σ = σ+ − σ−, where
σ+ = max(σ, 0) and σ− = −min(σ, 0). Then, applying the relation (17), we get

∥Lg,g
σ ∥S1 = ∥Lg,g

σ+
− Lg,g

σ−∥S1

≤ ∥Lg,g
σ+

∥S1 + ∥Lg,g
σ−∥S1

≤ ∥g∥2MΦ(Zn)(∥σ+∥M1(Zn×Tn) + ∥σ−∥M1(Zn×Tn))

≤ 2∥g∥2MΦ(Zn)∥σ∥M1(Zn×Tn). (18)

Finally, let σ ∈ M1(Zn×Tn) be a complex-valued function. Then, we write σ = σ1+ iσ2, where
σ1, σ2 are the real and imaginary parts of σ respectively. Applying the relation (18), we get

∥Lg,g
σ ∥S1 = ∥Lg,g

σ1
+ i Lg,g

σ2
∥S1

≤ ∥Lg,g
σ1

∥S1 + ∥Lg,g
σ2

∥S1

≤ 2∥g∥2MΦ(Zn)(∥σ1∥M1(Zn×Tn) + ∥σ2∥M1(Zn×Tn))

≤ 4∥σ∥M1(Zn×Tn)∥g∥2MΦ(Zn).

□

Theorem 4.8. Let σ ∈ M1(Zn × Tn), Φ be a Young function, and g ∈ MΦ(Zn). Then, for
1 ≤ p ≤ ∞, the operator Lg,g

σ : ℓ2(Zn) → ℓ2(Zn) is in Sp, and

∥Lg,g
σ ∥Sp ≤ 22/p∥σ∥M1(Zn×Tn) ∥g∥2MΦ(Zn).

Proof. Using interpolation theorems (see [30], Theorems 2.10 and 2.11), Proposition 4.4, and
Proposition 4.7, we obtain the proof of the theorem. □

In the following, we obtain a lower bound of ∥Lg,g
σ ∥S1 , and improve the constant given in

Proposition 4.7.

Theorem 4.9. Let σ ∈ M1(Zn × Tn) be a non-negative real-valued function, Φ be a Young
function, and g ∈ MΦ(Zn). Then, the operator Lg,g

σ is in S1, and

1

∥g∥2
MΦ(Zn)

∥σ̃∥L1(Zn×Tn) ≤ ∥Lg,g
σ ∥S1 ≤ ∥g∥2MΦ(Zn) ∥σ∥M1(Zn×Tn),

where σ̃ is given by σ̃(m,w) = ⟨Lg,g
σ (MwTmg),MwTmg⟩ℓ2(Zn).
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Proof. Let σ ∈ M1(Zn×Tn). Then, from Proposition 4.7, the operator Lg,g
σ ∈ S1. If {sn(Lg,g

σ )}n
are the positive singular values of Lg,g

σ , {vn}n is an orthonormal basis for the orthogonal com-
plement of the null space of Lg,g

σ consisting of eigenvectors of |Lg,g
σ | and {un}n is an orthonormal

set in ℓ2(Zn), then using the canonical form of compact operators (see [30], Theorem 2.2), we
get

Lg,g
σ f =

∞∑
n=1

sn(L
g,g
σ )⟨f, vn⟩ℓ2(Zn)un. (19)

Therefore, we obtain
∞∑
n=1

⟨Lg,g
σ vn, un⟩ℓ2(Zn) =

∞∑
n=1

sn(L
g,g
σ ) = ∥Lg,g

σ ∥S1 .

Applying Bessel’s inequality and Cauchy–Schwarz’s inequality, we obtain

∥Lg,g
σ ∥S1 =

∞∑
n=1

⟨Lg,g
σ vn, un⟩ℓ2(Zn)

=

∞∑
n=1

∑
m∈Zn

∫
Tn

σ(m,w) Vgvn(m,w) Vgun(m,w) dw

≤
∑
m∈Zn

∫
Tn

|σ(m,w)|

( ∞∑
n=1

|Vgvn(m,w)|2
)1/2

( ∞∑
n=1

|Vgun(m,w)|2
)1/2

dw

≤ ∥σ∥L1(Zn×Tn) ∥g∥2ℓ2(Zn)

≤ ∥σ∥M1(Zn×Tn) ∥g∥2MΦ(Zn).

To prove that σ̃ ∈ L1(Zn × Tn), applying formula (19), we get

|σ̃(m,w)|

=
∣∣∣⟨Lg,g

σ (MwTmg),MwTmg⟩ℓ2(Zn)

∣∣∣
=

∣∣∣∣∣
∞∑
n=1

sn(L
g,g
σ ) ⟨MwTmg, vn⟩ℓ2(Zn) ⟨un,MwTmg⟩ℓ2(Zn)

∣∣∣∣∣
≤ 1

2

∞∑
n=1

sn(L
g,g
σ )

(∣∣∣⟨MwTmg, vn⟩ℓ2(Zn)

∣∣∣2 + ∣∣∣⟨MwTmg, un⟩ℓ2(Zn)

∣∣∣2) .

Now, using Plancherel’s formula (2), we obtain

∥σ̃∥L1(Zn×Tn) =
∑
m∈Zn

∫
Tn

|σ̃(m,w)| dw

≤ 1

2

∞∑
n=1

sn(L
g,g
σ )

∑
m∈Zn

∫
Tn

(∣∣∣⟨MwTmg, vn⟩ℓ2(Zn)

∣∣∣2
+
∣∣∣⟨MwTmg, un⟩ℓ2(Zn)

∣∣∣2) dw

≤ ∥g∥2MΦ(Zn)

∞∑
n=1

sn(L
g,g
σ )

= ∥g∥2MΦ(Zn) ∥L
g,g
σ ∥S1 .
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□

4.3. MΦ(Zn) Boundedness. Here, we obtain that the operators Lg1,g2
σ : MΦ(Zn) → MΦ(Zn)

are bounded. Let us start with the following propositions.

Proposition 4.10. Let σ ∈ M1(Zn × Tn). Let (Φ,Ψ) be a complementary Young pair, and Φ
satisfies a local ∆2-condition and continuous. Let g1 ∈ MΨ(Zn) and g2 ∈ MΦ(Zn). Then, the
operator Lg1,g2

σ : MΦ(Zn) → MΦ(Zn) is a bounded linear operator, and

∥Lg1,g2
σ ∥B(MΦ(Zn)) ≤ ∥σ∥M1(Zn×Tn) ∥g1∥MΨ(Zn) ∥g2∥MΦ(Zn).

Proof. Let f ∈ MΦ(Zn) and g ∈ MΨ(Zn). Since (MΦ(Zn))∗ ∼= MΨ(Zn), applying Hölder’s
inequality, we get

|Vgf(m,w)| ≤ ∥f∥MΦ(Zn) ∥g∥MΨ(Zn). (20)

For any f ∈ MΦ(Zn) and h ∈ MΨ(Zn), applying relations (14) and (20), we have

|⟨Lg1,g2
σ f, h⟩|

≤
∑
m∈Zn

∫
Tn

|σ(m,w)| |Vg1f(m,w)| |Vg2h(m,w)| dw

≤ ∥σ∥M1(Zn×Tn) ∥f∥MΦ(Zn) ∥g1∥MΨ(Zn) ∥h∥MΨ(Zn) ∥g2∥MΦ(Zn).

Therefore,

∥Lg1,g2
σ ∥B(MΦ(Zn)) ≤ ∥σ∥M1(Zn×Tn) ∥g1∥MΨ(Zn) ∥g2∥MΦ(Zn).

□

Next, using the Schur technique we get an MΦ(Zn)-boundedness of the operator Lg1,g2
σ . We

obtain a new estimate for ∥Lg1,g2
σ ∥B(MΦ(Zn)).

Proposition 4.11. Let σ ∈ M1(Zn × Tn) and g1, g2 ∈ M1(Zn) ∩ ℓ∞(Zn). Then, there exists a
bounded linear operator Lg1,g2

σ : MΦ(Zn) → MΦ(Zn) for which

∥Lg1,g2
σ ∥B(MΦ(Zn))

≤ max(∥g1∥M1(Zn)∥g2∥ℓ∞(Zn), ∥g1∥ℓ∞(Zn)∥g2∥M1(Zn)) ∥σ∥M1(Zn×Tn).

Proof. We define the function K on Zn × Zn by

K(k, l) =
∑
m∈Zn

∫
Tn

σ(m,w) MwTmg1(l) MwTmg2(k) dw. (21)

Then, we have

Lg1,g2
σ f(k) =

∑
m∈Zn

∫
Tn

σ(m,w) Vg1f(m,w) MwTmg2(k) dw

=
∑
m∈Zn

∫
Tn

σ(m,w) ⟨f,MwTmg1⟩ MwTmg2(k) dw

=
∑
m∈Zn

∫
Tn

σ(m,w)
∑
l∈Zn

f(l)MwTmg1(l) MwTmg2(k) dw

=
∑
l∈Zn

f(l)
∑
m∈Zn

∫
Tn

σ(m,w) MwTmg1(l) MwTmg2(k) dw

=
∑
l∈Zn

K(k, l) f(l).
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For every l ∈ Zn, we get∑
k∈Zn

|K(k, l)| ≤
∑
k∈Zn

∑
m∈Zn

∫
Tn

|σ(m,w)|
∣∣∣MwTmg1(l)

∣∣∣ |MwTmg2(k)| dw

≤ ∥g1∥ℓ∞(Zn) ∥g2∥M1(Zn) ∥σ∥M1(Zn×Tn), (22)

and for every k ∈ Zn, we have∑
l∈Zn

|K(k, l)| ≤ ∥g1∥M1(Zn) ∥g2∥ℓ∞(Zn) ∥σ∥M1(Zn×Tn). (23)

The kernel function K(k, l) of the localization operator Lg1,g2
σ satisfies (22) and (23). Hence,

by Schur’s lemma (see [15]), the operator Lg1,g2
σ extends to a bounded linear operator Lg1,g2

σ :
MΦ(Zn) → MΦ(Zn) with the operator norm

∥Lg1,g2
σ ∥B(MΦ(Zn))

≤ max(∥g1∥M1(Zn)∥g2∥ℓ∞(Zn), ∥g1∥ℓ∞(Zn)∥g2∥M1(Zn)) ∥σ∥M1(Zn×Tn).

□

Remark 4.12. Based on Proposition 4.11, it is determined that the bounded linear operator
on MΦ(Zn) identified in Proposition 4.10, is in fact the discrete integral operator on MΦ(Zn)
characterized by the kernel K as provided in (21).

Theorem 4.13. Let σ ∈ L1(Zn × Tn). Let (Φ,Ψ) be a complementary Young pair, and Φ
satisfies a local ∆2-condition and continuous. Let g1 ∈ MΨ(Zn) and g2 ∈ MΦ(Zn). Then, the
operator Lg1,g2

σ ∈ B(MΦ(Zn)), and

∥Lg1,g2
σ ∥B(MΦ(Zn)) ≤ ∥σ∥L1(Zn×Tn) ∥g1∥MΨ(Zn) ∥g2∥MΦ(Zn).

Proof. Let f ∈ MΦ(Zn) and h ∈ MΨ(Zn). Using the duality between MΦ(Zn) and MΨ(Zn),
we get

|⟨Lg1,g2
σ f, h⟩|

≤
∑
m∈Zn

∫
Tn

|σ(m,w)| |Vg1f(m,w)| |Vg2h(m,w)| dw

≤ ∥σ∥L1(Zn×Tn) ∥f∥MΦ(Zn)∥g1∥MΨ(Zn)∥h∥MΨ(Zn)∥g2∥MΦ(Zn).

Hence,
∥Lg1,g2

σ ∥B(MΦ(Zn)) ≤ ∥σ∥L1(Zn×Tn) ∥g1∥MΨ(Zn) ∥g2∥MΦ(Zn).

□

Theorem 4.14. Let (Φi,Ψi) be complementary Young pairs which satisfy local ∆2-condition,
strictly convex and continuous for i = 1, 2. Let σ ∈ LΦ1,Φ2(Zn×Tn) and g1, g2 ∈ S(Zn). Also, let
there exists a constant x0 > 0 such that Ψi(x) ≲ Φi(x) for all 0 ≤ x ≤ x0. Then the localization
operator Lg1,g2

σ is in B(MΦ1,Φ2(Zn)), and we have

∥Lg1,g2
σ ∥B(MΦ1,Φ2 (Zn)) ≤ ∥σ∥LΦ1,Φ2 (Zn×Tn).

Proof. Let f ∈ MΦ1,Φ2(Zn) and h ∈ MΨ1,Ψ2(Zn). From the given condition, Φi,Ψi satisfy
condition (3) of Theorem 3.7. Hence, we have MΦ1,Φ2(Zn) ⊆ MΨ1,Ψ2(Zn). Now, applying
Hölder’s inequality (7), we obtain

|⟨Lg1,g2
σ f, h⟩| ≤

∑
m∈Zn

∫
Tn

|σ(m,w)| |Vg1f(m,w)| |Vg2h(m,w)| dw

≤ ∥σ∥LΦ1,Φ2 (Zn×Tn) ∥Vg1f∥LΨ1,Ψ2 (Zn×Tn)∥Vg2h∥LΨ1,Ψ2 (Zn×Tn)

= ∥σ∥LΦ1,Φ2 (Zn×Tn) ∥f∥MΨ1,Ψ2 (Zn)∥h∥MΨ1,Ψ2 (Zn)

≤ ∥σ∥LΦ1,Φ2 (Zn×Tn) ∥f∥MΦ1,Φ2 (Zn)∥h∥MΨ1,Ψ2 (Zn).
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Hence, using the duality between MΦ1,Φ2(Zn) and MΨ1,Ψ2(Zn), we get

∥Lg1,g2
σ ∥B(MΦ1,Φ2 (Zn)) ≤ ∥σ∥LΦ1,Φ2 (Zn×Tn).

This completes the proof. □

Acknowledgments

The authors wish to thank the referees for their valuable comments and suggestions that
helped to improve the quality of the paper. The second author is partially supported by the
XJTLU Research Development Fund (RDF-23-01-027).

Conflict of interest

The authors declare that there is no potential conflict of interest regarding the publication of
this article.

Data Availability

The authors confirm that the data supporting the findings of this study are available within
the article and its supplementary materials.

ORCID

Aparajita Dasgupta https://orcid.org/0000-0001-7093-8158
Anirudha Poria https://orcid.org/0000-0002-0224-3642

References

[1] F. Bastianoni and E. Cordero, Quasi-Banach modulation spaces and localization operators on locally compact
abelian groups. Banach J. Math. Anal. 16(4) (2022), Paper No. 52, 71 pp. [5]

[2] F.A. Berezin, Wick and anti-Wick operator symbols. Math. USSR Sb. 15(4) (1971), 577–606. [1]
[3] P. Boggiatto and M.W. Wong, Two-wavelet localization operators on Lp(Rd) for the Weyl-Heisenberg group.

Integr. Equ. Oper. Theory 49 (2004), 1–10. [1]
[4] L.N.A. Botchway, P.G. Kabiti and M. Ruzhansky, Difference equations and pseudo-differential operators on

Zn. J. Funct. Anal. 278(11) (2020), 108473. [2]
[5] L.N.A. Botchway, M. Chatzakou and M. Ruzhansky, Semi-classical Pseudo-differential Operators on ℏZn and

Applications. J. Fourier Anal. Appl. 30 (2024), Article No. 41, 46 pp. [2]
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