
Can. J. Math., Vol. XXVI, No. 2, 1974, pp. 473-491 

SOME SUBFIELDS OF 0, AND THEIR 
NON-STANDARD ANALOGUES 

DIANA L. DUBROVSKY 

1. I n t r o d u c t i o n . The desire to s tudy constructive properties of given 
mathemat ica l s t ructures goes back many years; we can perhaps mention 
L. Kronecker and B. L. van der Waerden, two pioneers in this field. With the 
development of recursion theory it was possible to make precise the notion of 
"effectively carrying o u t " the operations in a given algebraic s t ructure . Thus , 
A. Frôlich and J . C. Shepherdson [7] and M. 0 . Rabin [13] studied computable 
algebraic structures, i.e. s tructures whose operations can be viewed as recursive 
number theoretic relations. A. Robinson [18] and E. W. Madison [11] used 
the concepts of computable and ari thmetically definable s tructures in order 
to establish the existence of what can be called non-standard analogues (in a 
sense t ha t will be specified later) of certain subfields of R and C, the s tandard 
models for the theories of real closed and algebraically closed fields respectively. 

In this paper we are interested in Qp, the completion of the rationals with 
respect to the £-adic valuation. We define recursive ^-adic numbers and show 
t h a t they form a ^-valued subfield of QP1 call i t QP

(R), which satisfies Hensel 's 
Lemma and is therefore a ^-adically closed field. Every computable valued 
subfield of Qp is a proper subfield of QP

{R), in fact QP
(R) cannot even be a com

putable field. In contrast to this, we show tha t there exist computable sub-
fields of 0P which are not computable ^-valued fields. QP

(R) is, however, an 
ari thmetical ly definable field and, a fortiori an ari thmetically definable valued 
field. 

We use the concept of computable and ari thmetically definable s t ructures 
in order to establish the existence of a non-standard analogue for QHl the 
henselization of 0 inside QP1 in the following sense: Let K0 be the set of axioms 
for a Radica l ly closed field, let^Kfx) be a new unary predicate, let Ki be the 
set of all t rue s ta tements of ar i thmetic relativized to JV (x) and let K = 
K0 \J Ki \J A, where A = (x)[^V(x) =$'F(x)] and F(x) means x is a field 
element. 

A model for K consists of a ^>-adically closed field F in which we have 
distinguished a set N C F which satisfies exactly the same first order s ta te
ments as the natural numbers. We will denote these models by pairs (F,JV ). 

I t is easy to see tha t K is not a complete theory. One " n a t u r a l " (or s tandard) 
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model for K is (QH,^ ) , where^V stands for the standard natural numbers. 
lijV * is an arbitrary strong non-standard model of arithmetic, we show that 
there exists a Radically closed field Q#* such that 

Moreover, this QH* is essentially unique in the sense that if H* is another 
p-adically closed field con ta in ing^ * and such that (H*,^V *) and (QH*,^ *) 
are elementarily equivalent with respect to the field of quotients of JV * (a 
non-standard version of 0 which is contained in both H* and Q#*), then they 
are in fact isomorphic. Furthermore, this isomorphism reduces to the identity 
if we assume that (Qtf*»^*) is an elementary substructure of (H*,^V*). 

In the last section, we generalize the uniqueness result to all arithmetically 
definable ^-valued subfields of Qp. 

We will work within a convenient formulation of the Lower Predicate 
Calculus in which the concept of a valued field can be formalized, say as 
in [15], in terms of the relations F(x), G(x), E(x, y), S(x, y, z), P(x, y, z), 
2(x, yj z), L(x, y), V(x, y). These denote, in turn, the property of belonging to 
the field, the property of belonging to the group, The relation of equality, the 
relations of addition and multiplication in the field, the relations of addition 
and order in the group and the relation of valuation respectively. 

It will simplify our arguments to assume that all models considered are 
normal, i.e. that the relation of equality coincides with the identity. 

2. Recursive p-adic numbers. Let F be a field valued in an abelian group 
G. The set I = {x £ F:v(x) ^ 0} is called the valuation ring; the set M = 
\x G F\v(x) > 0} is a maximal ideal in / . The field F = I/M is called the 
residue class field. ïf x £ I, we denote by x the image of x under the canonical 
map I -> I/M = F. 

A valuation v of a field F of characteristic zero is a ^-valuation if v(p) is the 
smallest positive element of the valuation group, and the residue class field 
F = Fp, the field with p elements. A field F is called formally £-adic if it 
admits a ^-valuation ; it is ^>-adically closed if it is formally ^>-adic and has no 
proper algebraic extensions which are formally £>-adic. 

A commutative group G is called a Z-group if it is totally ordered, has a 
minimum positive element, and G/nG has n elements for each integer n. 

Next we list two ways of stating that property of some valued fields known 
as Hensel's Lemma. For a ^-valued field they are equivalent (see [14]). 

HENSEL'S LEMMA. Let f(x) = a0x
n + cLiXn~l + . . . + an, ax G / . Assume 

that there is an a. G I such that j (a) = 0 (mod M),f '(a) ^ 0 (mod M), where M 
is the maximal ideal of I and f ' (x) is the formal derivative of fix). Then there 
exists a unique a* (z I such that f (a*) = 0 and a = a* (mod M). 

HENSEL-RYCHLIK PROPERTY. Let fix) 6 I[x] be monic and let Q)f denote the 
discriminant of f. If there exists an a £ I such that v(f(a)) > v(2ff ), then there 
exists an a* £ I such that f (a*) = 0. 
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The following theorem can now be interpreted as a set of first order axioms 
for the concept of a ^-adically closed field (see [2; 3]). 

THEOREM 2.1. A p-valued field F is p-adically closed if 
(i) F satisfies HenseVs Lemma, and 

(ii) the valuation group v(F°) is a Z-group, where F° = F — {0}. 

THEOREM 2.2. The elementary theory of p-adically closed fields is complete and 
axiomatizable, hence decidable (see [2; 3; 4; 6]). 

Notice that the £-adic valuation on Q is a ^-valuation and that the com
pletion, Qp, is a ^-adically closed field. We will denote the ^?-adic valuation on 
Qp as well as its restriction to different subfields of Op by the letter v. Clearly, 
given a rational number r 7^ 0, we can effectively find v(r) G Z. 

The results that follow parallel in quite a remarkable way those obtained by 
Madison and Lachlan for the case of the real numbers. (See [10].) 

Let cp'.Q - ^ N be an effective enumeration of the rationals; i.e., <p is a 1-1 
function from the rational numbers onto the natural numbers with the property 
that there exist two algorithms, one for finding <p(r) £ N for each r £ Q and 
the other for finding <ç~x in) £ 0 for each n £ N. 

Thus, we can regard a rational number as "given," if the corresponding 
natural number is given. We say that a sequence of rational numbers is re
cursively enumerable (r.e.) if the corresponding sequence of natural numbers 
is the sequence of va lues / (0) , / ( l ) , / (2 ) , . . . of a recursive function/. 

Definition 2.3. A recursively enumerable sequence of rational numbers \rn) 
is said to be Radically recursively convergent if there exists a recursive 
function g(x) such that, for each N > 0, v(rn+i — rn) > N for n > g(N). 
g(x) is called a convergence function for the sequence. 

A ^>-adic number is recursive if it is the limit of an r.e., Radically recursively 
convergent sequence of rationals. 

Note. From now on, whenever we speak of convergence we will always mean 
convergence in the p-adic valuation. 

I t is easy to see that if \rn] is an r.e., recursively convergent sequence of 
rationals with convergence function g(x) and with a as its limit, then 
v(a — rn) > N if n > g(N). Conversely, if [rn] is an r.e. sequence of rationals 
and a is a £-adic number such that v(rn — a) > N if n > g(N) for some re
cursive g, then {rn} is recursively convergent since 

v(rn+i - rn) ^ min {v(rn+1 - a), v(a — rn)} > N if n > g(N), 

and hence a is a recursive £-adic number. 
Thus, this notion of a recursive ^>-adic number coincides with our * 'intuitive" 

idea of a * 'computable number", as one for which we can effectively produce 
as close a rational approximation as we want. 
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Recall t ha t a p-aàic number a has a unique canonical expansion in powers 

oîp, 
oo 

where, for each i, 0 g at < p. Thus , the next definition is also na tura l . 

Definition 2.4. A p-adic number a = Y^=-na%P\ 0 = a% < Pi is called recur
sive if there exists a recursive f u n c t i o n / ( x ) such t h a t / ( 0 ) = a0, f(2i) = au 

f(2i — 1) = a-i. / ( # ) is called an expanding function for a. 

I t is easy to show t h a t the two definitions given for a recursive £-adic 
number are equivalent . 

Our next aim is to show t h a t the recursive £-adic numbers form a field and 
to invest igate some of its properties. 

L E M M A 2.5. Let {rn} be an r.e. sequence of rationals recursively converging to 
a 9^ 0, with recursive convergence function g{x). Then there exists k such that 
v(rn) = k for all n > g (max {k, 0}). k = v(a) can be effectively found. 

Proof. Since a ^ 0, it has finite valuat ion. Let k = v(a). We know t h a t 
v(rn — a) > k for all n > g (max {k, 0}). If for some n > g (max {ky 0}), 
v(rn) 9^ k, then v(rn — a) ^ v(a) = k, a contradict ion. Hence, for all 
n > g (max {k, 0}) w7e mus t have v(rn) = k = v(a). 

All we have to do now is to effectively determine v(a). Bu t we can effectively 
determine the valuat ion of any rat ional in the sequence \rn}. We also know, 
since a ^ 0, t h a t for some i, the coefficient of p\ in the canonical expansion 
of a, is non-zero. Hence, for t h a t same i, the coefficient of pi in the canonical 
expansion of the rn's mus t be non-zero from some n on. 

Now, v(rff(n)+i — r0(n)+2) > n for all n, i.e., the coefficients in the canonical 
expansions of these two terms of the sequence coincide up to and including 
the coefficient of pn, and are the same as in the expansion of a since 
v(rg(n)+i — a) > n for all n. Therefore, in order to compute the valuat ion of a, 
all we have to do is to compute the coefficients of the canonical expansion of 
rg(?i)+i up to and including the coefficient of pn, for each n, unti l we find one 
which is 9^ 0. ( I t will exist since a ^ 0 . ) Notice t h a t if v{a) < 0, then v(a) = 
*K?Vo)+i). 

T H E O R E M 2.6. The recursive p-adic numbers form a field. 

Proof. Le t a, b, c ^ 0 be recursive ^>-adic numbers , given by r.e. recursively 
convergent sequences of rat ionals {at}, {bt}, {ct} with recursive convergence 
functions gi, g2, g3 respectively. Then obviously {at + bt}, {at • bt), { —at\ and 
{I/*;*} are r.e. sequences of rat ionals converging to a + b, a - b, —a and 1/c 
respectively and it is easy, using the previous lemma, to give recursive con
vergence functions for each of them. 

https://doi.org/10.4153/CJM-1974-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-046-0


SUBFIELDS OF Qj> 477 

The field of recursive p-adic numbers will be denoted by QP
(R). It is a sub-

field of QP, so we can consider it as a valued field by restricting the £>-adic 
valuation of Qp to Qp

iR). This restriction of the p-adic valuation is again a 
^-valuation and thus Qp

iR) is a formally £-adic field with valuation group Z 
and residue class field Fp. The analogues of the next two definitions as well as 
of the proposition that follows were first considered by Rice [15] for the real 
numbers. 

Definition 2.7 A sequence of recursive £-adic numbers \an) is an r.e. sequence 
if there exist recursive functions/(x, y) and g(x, y) such that f(i, y) enumer
ates a recursively convergent sequence of rationals az>0, aiti, . . . . with at as 
limit and g(i, y) as convergence function. 

Definition 2.8. An r.e. sequence of recursive ^>-adic numbers is recursively 
convergent if there exists a recursive function h(x) such that, for each N, 
v(an+1 - an) > Nii n > h(N). 

PROPOSITION 2.9. If {an} C 0P
(R) is an r.e. sequence recursively converging to a, 

then a Ç QP
(R). Thus, we may say that QP

{R) is recursively complete. 

THEOREM 2.10. QP
(R) satisfies H ens el's Lemma. 

Proof. We will show that the following form of Hensel's Lemma holds in 
QP(RK Let 

f{x) = a0x
n + alX

n~l + ... +an, at £ I, I = {x £ Qp<*>:v(x) è 0}. 

Assume that a £ I and f(a) = 0 mod p2r+1,f'(a) 7* 0 mod pT+l where r ^ 0 
a n d / ' ( x ) is the formal derivative of f(x). Then there exists a unique a* Ç I 
such that f(a*) = 0 and a = a* mod pr+l. 

We will use the classical proof for Qp (see [4]), and then show that the 
sequence constructed therein is an r.e., recursively convergent sequence of 
p-adic numbers. 

Recall that the sequence, say an, is defined by 

« i = a, an+1 = an — f (otn)/f ' {an). 

It is then shown by induction thata n + i = an mod pr+n andf(an) = 0 mod p2r+n. 
The sequence {an} converges to an element of Qp, call it a*, with the proper

ties required in the conclusion of Hensel's Lemma. In order to show that 
a* 6 QP

iR) all we must show is that {an} is an r.e. sequence in QP^R). The 
convergence function given by v(an+i — an) ^ r + n is clearly recursive. 

To show that {an} is an r.e. sequence, we must show that there exist two 
recursive functions <p(x, y) and \p(xy y) such that <p(i, y) enumerates a sequence 
of rationals converging to at with convergence function \p(i, y). 
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Since the coefficients of/ are in QP
{R), let {a>ij} j=i,2,... be the r.e. sequence of 

rationals converging to at, with recursive convergence function gt: 
Let 

fj(x) = a0tjx
n + aijx"-1 + . . . + anJ 

f/(x) = naojx71'1 + (n — l)ajtix
n~2 + . . . + aij. 

Let x(%) enumerate the r.e. sequence of rationals converging to a\ = a 
with recursive convergence function g. 

Now define <p(i, y) as follows: 

<p(i,y) = x(y), <p(i + hy) = v(i,y) -fv(<p(i,y))/fy'(<p(i,y)). 

Since the {atj} j=i,2,... 0 ^ i S n, are r.e. sequences of rationals, it is clear 
that <p(i, y) is recursive and that the sequence it enumerates converges to at. 
We must find a recursive function \//(i, y) such that 

v(<p(i, y + 1) - <p(i, y)) > N, if y > ^(i, N). 

$ will be defined by induction on i. Clearly ^ ( 1 , y) = giy)- To define \p(i, y) 
we notice that, for each i, 

Hi,y) = <P(hy) + Z i-iyff¥fj^. 
3-i h\'PKj,y)) 

Thus 

v[<e{i,y + l)-<p{i,y)]> min \v(<p(l, y + 1) - <p(l,y)), 
Ki<i-1 { 

„ ( /*-i(*>q.y + i)) _ MvU.y)) ) 1 
\fv+i(<p(j,y + D) f,X<p(j,y))n 

Now, »(<?(!> y + 1) - <p(l, y)) = »(x(y + 1) - x(y)) > N ii y> g(N) 

We must now examine 

v ( fv+i(<p(J> y + i)) A(?0\y)) 
y + i ) ) fy'(<p(j,y))! ' 

Clearly the denominator fv+i(<p(j> y + l))/i/(^(j» 30) n a s a finite fixed valua
tion from some point on since it converges to [ / '(c^)]2 which is not congruent 
to zero mod p. This finite valuation can be effectively found. 

It can be shown by induction on the degree of the polynomial / that the 
numerator fy+i(<p(j, y + l))fv'(<p(j> 30) ~ A(*>(/. 30 )/IM-I'(*>(/» y + 1)) will 
factor and regroup appropriately so that ^(i , y) is seen to be recursive. 
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Let us consider the special case in which the polynomial / i s of degree 3. Then 

fy+i(<p(j,y + Wy'(<p(j,y)) -fv(<p(j,y))fv+i'(<p(j,y + i ) ) = 

(a>o.v+i<p(j> y + ! ) 3 + ai.v+i<p(j> y + ! ) 2 + a<2,v+i<p{j, y + 1) + a>i,y+i) 
X ( 3 a 0 , ^ ( j , y)2 + 2a1>y<p(j, y) + a2,y) 

~ (ao.y<p(j> yY + a>i,v<p(j, y)2 + a2,y<p(j, y) + az,v) 

X (3a0,y+i<p(j, y + l ) 2 + 2alty+Kp(j, y + 1) + a2,v+i) 

= 3a0ty+1ao,y<p(j,y + i )VO\ yYWij, y + l ) - <P(J> y)] 
+ 2a1>y+1alty<p(j, y + l)<p(j, y)[<p(j, y + 1) - *>0\ ?)] 

+ a2,y+ia2fy[^C7» y + i) - <p(j, y)] 

+ 2a0fy+1aity<p(j, y + 1 )V0\ 30 [<£>(/, ^ + 1) - ^ ( j , y)] 

+ 2alfï,+iao,„tf>0\ y + l)tf>C/\ 302l>O\ ^ + 1) - <?0\ ?)] 
+ <p(j>y + 1)V0"» y)2[ul,lH-1^0,y - ÛO.y+lOl.J 

+ ao,y+ia2,y<p(j, y + 1)2[<P(J, y + 1) - tf>0\ ?)] 
+ a2,y+iaQiy(p(j1 y)2[<p(j, y + 1) - <?(j, 3O] 

+ 2^(7,3/ + l M j , :y)[02fiH-iao,itf>(7\ 30 ~ «0,^+1^2,^0 '^ + 1)] 

"T" L«3,2/+1^2,55/ — a1,V+laZ,v\ 

+ 3[a3flH-iao,^(7»3')2 ~ as.^o^+i^O', 3> + I)2] 
+ 2[aZty+1a1,y<p(j,y) - az>yalty+l<p(j,y + 1)]. 

T h e valuat ion of the bracketed factor in each term can be made bigger than 
M provided y is greater than a * 'recursive combinat ion" of \p(j, M) with j < i 
and the gk(M), k = 0, 1, 2, 3. 

Therefore, \p(i, y) will be defined in terms of a recursive combination of 
\p(j, y), j < i, and gk(y) and individual valuat ions which can be effectively 
found. Hence \p(i, y) is recursive. 

T h e computat ions for the general inductive step are straightforward bu t 
messy. 

T h u s we have shown tha t QP
(R) is a ^-adically closed field. 

Notice t h a t if we define an arithmetical £-adic number as the limit of an 
ari thmetical sequence of rationals for which there exists an ari thmetical con
vergence function, or as one which is given by an ari thmetical expanding 
function, we can show tha t these two definitions are equivalent and then 
proceed as in the case of recursive ^>-adic numbers and show t h a t they too 
form a field, call i t QP

(A), which is ' 'ar i thmetical ly complete" in the sense of 
proposition 2.9, and, finally t ha t QP

(A) is also a Radica l ly closed field. 

3. Computable and arithmetically definable valued fields. 

Definition 3.1. A field F valued in an ordered group G is said to be a com
putable valued field if there exists a 1-1 map <p from the disjoint union of F and 
G (denoted F V G) into N such t ha t 
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(i) cp[F] and ç[G\ are recursive subsets of N , 
(ii) <p[F\ r\ <p[G] = 0, and 

(iii) cp takes the relations S(x, y, z) and P(x, y, z) of the field F, S(x , y, z) 
and L(x, y) of the group G and the valuat ion V(x, y) onto recursive number 
theoretic relations. 

T h e m a p <p is called an admissible indexing for the valued field F. 

Notice t h a t if <p is an admissible indexing for an algebraic s t ruc ture 5 , then 
^ : 5 — > N defined by \p(x) = q^^ for each x £ 5 , where g is a fixed prime, is 
also an admissible indexing for S. 

Several examples of computable valued fields have been known for some 
t ime, e.g., the field of rat ional numbers 0 considered as a valued field with 
the £-adic valuat ion is a computable valued field. Another far more interest ing 
example of a computable valued field is the henselization of 0 i n Qp, which 
we will denote by QH. 

Our next aim is to investigate the relationship between computable valued 
subfields of Op and the field of recursive £-adic numbers , QP

(R). 

L E M M A 3.2. Let F be a computable p-valued subfield of Qp and let <p be an 
admissible indexing for F. Then <p is effective on Q (i.e., given any r Ç Q we can 
effectively find its image under <p) and also on the value group Z . 

T H E O R E M 3.3. Every computable p-valued subfield of Qp is a subfield of QP
(R). 

Proof. Le t F be a computable ^-valued subfield of QPJ and let <pl F \J Z —> N 
be an admissible indexing. Le t 0' be the image under <p of 0 G F. 

Let n G <p[F], n ^ 0'. We will show t h a t the expanding function of <p~1(n) 
is recursive. 

Since n ^ 0 r , 3yV(n, y). Let y0 = ixyV(n, y), yo is the image under cp of 
the valuat ion of y~l(n). 

Let j = piV'ivip*), yo). Since ^iV(^(p1), y0), we can effectively find j . 
T h e first non-zero coefficient in the canonical expansion of <p~l{n) will be the 
coefficient of p3. T o find ou t wha t this coefficient is, notice first t h a t 
D'(x, y, z) = S'(y, z, x) is a recursive number theoretic relation which holds 
if and only if <p~l(x) — <p~1(y) = <p~l(z). 

T h e first non-zero coefficient in the canonical expansion of <p~l(n) is x if and 
only if 

0 ^ x ^ p — 1 &m0 = nmD(n, <p(xpj), m) & 

&yi = fjLyV'(m0ly) & L' (y0, yi) 

where L' (x, y) is the recursive number theoretic relation corresponding to the 
order relation L(x, y)[or x < y] in Z. 

T o find the next non-zero coefficient in the canonical expansion of <p~l(n), 
we consider <p~l(mo) and proceed in the same way as before. 

Clearly this procedure is effective, and it gives us all the coefficients in the 
canonical expansion of ip~l(n) for each n 6 <p[F]. Hence F C Q p W -
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THEOREM 3.4. QP
(R) is not a computable valued field. 

Proof. Suppose it were and let <p be an admissible indexing. Consider the 
enumeration of QP

{R) given by {<p~l (n):n G <p[Qp
iB)]}. Since <p[Qp

(R)] is assumed 
to be a recursive subset of N, we can effectively decide, for each n G N whether 
n G <f[Qp(R)] or not. 

Let a be the p-adic integer whose canonical expansion is given by the 
following rule: coefficient of pn, if n G <£>[Qp(jR)], = coefficient of pn in the 
canonical expansion of <p~l(n), plus 1, if this latter coefficient is less than 
p — 1. Coefficient of pn = 0 otherwise. 

Since we can effectively find any coefficient in the canonical expansion of 
<P~l{n) for n G <p[QP

(R)] this procedure is effective and hence a G QP
(R). But by 

construction a ^ <p~l(n) for all n G <p[Qp
(R)]. Therefore, QP

(R) is not a com
putable valued field. 

Kochen [9] showed that if K is a ^-adically closed field, there exists a unique 
^-valuation on K and that the ring of integers consists of the elements of the 
form y(w) for some w G K, where 

y(w) = wz [(V — w + i)~ + (wp — w — i)~ ]. 
Zp 

Since the p-adic valuation on QP
(R) is a ^-valuation, its ring of integers is 

characterized as above and thus we have 

THEOREM 3.5. QP
(R) is not a computable field. 

Proof. Assume QP
(R) is a computable field, and let <p:QP

(R) —>N be an 
admissible indexing. We know that, for each x G 0P

(R\ v(x) ^ 0 if and only if 
there exists w such that [x = (l/2p)((wp — w + 1)_ 1 + (wp — w — l )" 1 ) ] . 
Hence, the image under <p of the ring of integers I of QP

(R), call it A, is an r.e. 
subset of N. Letg(x) be a recursive function enumerating it. We shall describe 
an effective procedure, for deciding, for each x G QP

(R), whether v(x) ^ 0 or not. 
This will show that A is a recursive subset of N. 

Let n G <p[QP
(R)] be fixed. We know that either v(<p~l(n)) ^ 0 or 

v(l/ip~l(n)) ^ 0. Hence either n or <p(l/(p~l(n)) will appear first in the range 
of g. In case <£>(1/V_1(#)) appears first, it is still possible for ip~l(n) to be an 
integer in QP

(R) since it can have valuation 0. So we check whether <p(p • v~l(n)) 
or (p{l/pip~l(n)) appears first in the range of g. If <p(\/pç~l(n)) appears first 
in the range of g, since 

v(l/p<p-l(n)) è 0=» - 1 -v(<p-l(n)) è O^vicp-^n)) ^ - 1 , 

we know that n (£ A, i.e., v{<p~l{n)) < 0. 
If vipv^in)) appears first in the range of g, since 

v(p<p-l(n)) ^ 0=>1 +v(<p~1(n)) ^ 0=$v(<p-l(n)) ^ - 1 , 
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we know that v((p~l(n)) = 0 or — 1 . In this last case, to decide whether n £ A 
or not, repeat the preceding procedure with <p(l + <p~l(n)2) in place of n. 
There are 3 possibilities once again. 

Notice that v(l + ç~l(n)2) ^ min {0, 2v (<p-1 (n))}. If v(x) ^ 0, then 
v{<p~l{n)) ^ 0 and n e A. If v(x) < 0, then v(qrl(n)) < 0 and n g A. If 
v(x) = 0 or — 1 , then v(x) must be 0 and hence v((p~l(n)) = 0 and n Ç A. 

Thus we have shown that A is a recursive subset of N. 
To compute the valuation of <p~l(n) for n £ <p[Qp(i2)] we first check whether 

n is in A or not. 

If w £ A, v{<p-l(n)) = ixiivip-1 • ̂ M ) g -4] -*- 1 
Un & A, viip-^n)) = /x^>(£* • <?_1M) € A]. 

Thus if 0P ( / 2 ) were a computable field it would be a computable valued field 
since we can clearly construct an admissible indexing yf/:Qp

(R) ^J Z —> N 
which takes the valuation onto a recursive number theoretic relation. This 
contradicts Theorem 3.4. 

Actually, this proof works for any p-radically closed field F so we can state 
the following more general 

THEOREM 3.6. Let F be a p-adically closed field, G its value group and let 
<p\ F —> N be an admissible indexing for the computability of F. Assume G is a 
computable group. Then there exists \p:F \J G —>N which is an admissible in-
dexing for the computability of F as a valued field. 

In contrast to this, let us note that, for a Ç Qp — QP
{R), Q (a) is a computable 

field [7] but not a computable valued field. In fact, if K Q Qp is not contained 
in QP

{R\ no formally p-adic extension of K whose valuation extends that of K 
is a computable valued field. 

Remark. If in Definition 3.1 we substitute arithmetical for recursive through
out, we obtain the definition of an arithmetically definable (A.D.) valued 
field. Recall that QP

(A), the field of arithmetical p-adic numbers, is a Radically 
closed subfield of Op- It is easy to see that the previous proofs carry over to 
the case of A.D. valued fields; thus we obtain that every A.D. ^-valued sub-
field of OP is a proper subfield of QP

(A\ furthermore QP
(A) is not even an A.D. 

field. 

THEOREM 3.7. QP
{R) is an arithmetically definable field. 

Proof. Recall that for each a Ç Qp
(i2) there exists a unique canonical expan

sion 

CO 

i=—n 

Hence, to each a £ QP
{R) there corresponds a unique recursive function, 

namely its expanding function. 
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Let {fi} be Kleene's effective enumeration of all unary partial recursive 
functions. Let 

A = {i'.fi is the expanding function for some £-adic number and 

0')L7 <*=>/> */<]}• 
Notice that / is the expanding function for some p-adic number if and only if 

Vn[f(n) e {0, 1 , . . . , £ - l}]&Qs)(yt)[t> s&Qu)t = 
2u + 1 =»/(*) = 0]. 

Also, (V») [/,(») = U (nyTx&n.y)]. 
Hence, 

i 6 A s (W)[U O ^ i f e », 30) G {0, 1, . . . , p - 1}] 
& (3s)(t)[Qw)[t> s&t = 2w+l]^V (nyT^i, t, y)) = 0] 

& (j)U < i=> (m)i\J(vyTi(j,m,,y)) j* U (vyTxii, m, y))]] 

and thus, A is an arithmetical set. 
Let <p:Qp(

R) - > N be defined as follows: for a £ QP
(R\ <p(a) = i ** i G A &/< 

is the expanding function for a. Since for each a Ç Q/>(iE) there exists exactly 
one i 6 A such that /* is the expanding function for a, <p is well defined and 
*>[Q,(R)] = ^ -

It is now easy to show that y takes the relations S(x, y, z) and P(x, y, z) 
(sum and product of QP

(R)) onto arithmetical number theoretical relations. 

COROLLARY 3.8. QP
(R) is an A.D. valued field. 

Proof. We use the same method as in Theorem 3.5 to show that the image 
under <p of the ring of integers of QP

(R) is recursive in S' and P', and hence 
arithmetical. 

4. Existence and uniqueness of Off*- In this section we will primarily 
discuss Off» the Henselization of 0 inside Qp. Off consists of all the elements of 
Qp which are algebraic over 0- It has been proved by Nerode [12] that Off is 
a computable field and hence, since it satisfies Hensel's Lemma, we can use 
Theorem 3.6 to conclude that it is a computable valued field. (See also [5].) 

Let K0 be a set of first order axioms for the concept of a ^-adically closed 
field, e.g., as given by Theorem 2.1. As was mentioned earlier, K0 is complete 
and axiomatizable and Off is a model of K0. 

Let^K(x) be a new unary predicate; denote by Ki the set of all true state
ments of arithmetic relativized to JV(X), and let A denote the sentence 
(x)[^V(x) =» F(x)]. 

Let K = K0 U Ki \J A. A model for K consists of a Radically closed field F 
in which we have distinguished a subset J/ C F which satisfies exactly the 
same first order sentences as the natural numbers, i.e.t^V C F constitutes a 
strong model of arithmetic. We will denote these models by pairs {F,JV ) . \iJ/ 
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is a strong model of arithmetic, and v is a ^-valuation on Q, the field of quotients 
of̂ yK, then for F any Radically closed field containing Q, (F,jV ) is a model of 
K. K is not complete, e.g. look at the sentence 

(x)[F(x) => 1y(J/{y) & v(y) > v(x))]. 

Thus, the existence of non-standard analogues of QH (in the sense of Theorem 
4.1) is not a consequence of completeness. 

THEOREM 4.1. LetjV * be any strong non-standard model of arithmetic. There 
exists a p-adically closed field QH* containing ^V * such that 

(QH*,JY*) = {QH,JV). 

Proof. The method used here is essentially the same used by A. Robinson 
and by E. W. Madison to obtain similar results for the case of algebraic and 
real algebraic numbers respectively. 

Since QH is a computable valued field, there exists an admissible indexing 
<P'QH ^ Z -^JV such that (p[QH] =

 QH and <p[Z] = Z' are recursive subsets 
oî^V ; say they are defined by the recursive predicates A (x) and B(x) respec
tively. Recall that <p takes the relations S(x, y, z), P(x, y, z), S(x, y, z), L(x, y) 
and V(x, y) onto recursive number-theoretic relations S', P', 2 ' , L' and V. 

The copy of the natural numbers contained in QH is carried by <p onto a 
subset oiJV, call \tJV '.JV ' is recursively enumerable since it is the range of 
the recursive function \g(0) = 0'; g(l) = V; g(n + 1) = cr(g(n), 1')} where 
a(x, y) is the function defined by the recursive predicate S'(x, y, z), 0' = ^(0), 

y = <p(i) for o , i e QH. 
Let B(x, y) be the arithmetical predicate representing y — g(x). It is clear 

that B(x, y) satisfies the following properties: 
(i) (x) 3y(z)[B(x,y)&B(x,z)=>y = z] 

(ii) (x)(y)(z)[B(x,y) & B(z, y) => x = z] 
(iii) B(xu yi) & B(x2, y 2) & B(xz, yz) => [S(xu x2, x3) <̂> S' (yu y2, y a)] 

& [P(xu x2, xs) <=> P'(yi, yi* %)]• 
The predicate JV ' (x) = A(x) & 3yB(y, x) defines the natural numbers 
arithmetically and 

J/' = \n ^JV\JV'(n) holds}. 

The pair (Qj/,«vK') together with the number theoretic predicates Sf, P', 
2' , Z/, V constitutes a model of K which is isomorphic to (QH,^ )• 

Consider the subsets oî^V * which are defined as follows: 

QH* = {n £jf*:A(n) holds}, 

Z'* = \n £j/*:B(n) holds}, 
J/x* = {w e ^ * : ^ ^ » ) holds}. 

Since the predicates S', P ' , 2 ' , Z/, F ' are all arithmetical, they define 
relations in JV * which, considered together with the sets Q^*, Z'*, «yfV 
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determine a s t ructure (QH*,^I*)- I t is not hard to see t ha t (QH*,<^I*) is 

a model of K which is elementarily equivalent to (Q#, ^ K ) . Fur thermore , 
yKi* is isomorphic toJi^ * since the function v'.JV * -^^V^ defined by: a(x) = y 
if and only if J/ * satisfies B (x, y), is an isomorphism by properties (i), (ii) and 
(iii) above. 

From now on we will use the notat ion (QH*,^ *) for this particular model of 
K which is elementarily equivalent to (QH,^ ) where QH* C ^ * . 

As pointed out by Madison, the proof of this theorem works for any A.D. 
s t ructure , so in part icular we have 

T H E O R E M 4.2. Given any strong non-standard model of arithmetic JV *, there 
exists a p-adically closed field HZ)<^* such that (H, ^V *) = (QP

(R), ^V ). 

Our next question is: In what sense can we say tha t QH* is unique? T o 
answer it we will need the following 

L E M M A 4.3. Let a £ OH- Then there exists a ploynomial f(x) £ Q[x], r G Q 
and n £ Z such that r is a simple root of f mod pn, a is of the form r + pn+lu for 
some u with v(u) ^ 0, f(a) = 0 and f(/3) ^ 0 for all ft T± a, (3 of the form 
r + pn+1u with v(u) ^ 0. 

Proof. T h e lemma clearly follows from the case of a an integer in QH. 
hetf(x) £ Q[x] ( m this case a c t u a l l y / 6 Z[x]) be the minimal polynomial 

for a over Q, s o / ( a ) = 0. Let on = a, a2, . . . , ar be the distinct roots o f / in 
QH. There clearly exists an n such tha t v(at — af) < n\ii ^ j . A computat ion 
shows tha t it suffices to take n = v(0f ) + 1 where Siïf is the discriminant of 
the polynomial / . Let 

n oo 

r = ^ atp
l where a = ^Z aiP%-

Then r G Q, r is a simple root of / mod pn, a is of the form r + pn+lu for some 
u with v{u) ^ 0 and f(fi) ^ 0 for all 0 j£ a, 0 of the form r + pv+lu with 
v(u) è 0. 

Notice tha t , conversely, if f(x) G Q M is monic, with integral coefficients 
and if there exists r G 0 such t ha t v(f(r)) > n where n = &f, then by the 
Hensel-Rychlik Proper ty there exists a G OH such t h a t / ( a ) = 0. 

T H E O R E M 4.4. Let ( Q u * , ^ * ) be as before and let H* be another p-adically 
closed field containing N*. The field of quotients ofjV*, say Q*, (a non-s tandard 
version of 0 ) is contained in both QH* and H*. Assume (OH*,*^ *) and (H*,^V *) 
are elementarily equivalent with respect to Q*, thought of as a valued field, i.e. with 
constant symbols added for each q G 0 * and each z G Z*. Then these two models 
are isomorphic. 

Proof. Wi th the aid of the previous lemma, we will construct a predicate 
T(w, r, n, a) expressible in the language of (QH,^ ) which will separate the 
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roots in QH of a polynomial with rational coefficients. Recall t h a t ^ ' f x ) = 
A (x) & 3 yB (x, y) defines the natural numbers arithmetically. The predicates 

I(x) ^yVf(x) V 3y(^'(y)8tS'(x,y,0')) 

and 

R(x) = 3aJb[I(a) &I(b) &b * 0' & P'(x, b, a)] 

define arithmetically the integers and the rationals respectively. 
If f(x) = Y^ni=^aixi £ QM> define the Gôdel number of / , say w, by w — 

2n3a°' . . . pn+2 where a / = (p(at), <p an admissible indexing for the computability 
of 0-

Let 

^ W = w = 0 V (3»)[((w)o = n) & 3y[lh(w) = y&y^n + 2] 
& (i)Qx)[x = (w)t&Q Si S n + 2 => R(x)]]. 

It is clear that we can choose the map <p and the Gôdel numbering in such a 
way that the set of Gôdel numbers of polynomials over 0 is disjoint from the 
s e t <p[Zé], 

Let <r(x, y) and w(x, y) be the recursive functions determined by the predi
cates S'(x, yy z), P'(x, y, z) respectively. Define 

/p (o ,y ) = i ' x ( w i ) /o ' , i fx*(«0 = i 
\p(n + l,y) = ir(y,p(n,y)) ' \ (w)t, if x<s(w) = 0 . 

where x&(w) is the characteristic function of & (w), 

iKw, y, i) = T(\(W, i ) , p(i, y)) 

and 

s(w,y,l) = (w)i 
s(w, y, k + 1) = orOO, y, fe), ^(w, 3/, fe + 1)). 

With the aid of these arithmetical functions we can now construct a predi
cate V(w, y y z) expressing the fact that "z is the result of substituting y for x 
in the polynomial with Gôdel number vf\ 

First, let R(w, 0, n) be the predicate representing (w)0 = n and let 

M(w, yj n, z) = s(w, yy n) = z. 

Now 

V(w, y,z) = ^ (w) & (»)[i?(w, 0, w) & Af (w, », y, z)] 

is the desired arithmetical predicate, developed by E. Madison [11]. 
Consider now the following predicate: 

B(x,y) = 3a3b3a'3b'[N(a) &N(b) &N(a') &N(b') 

& R(y, af, V) 8c B(a, a') &B(b, V) & P(6, x, a)] 

where R(y, a', b') is formed from R{y) by deleting the two existential quanti-
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fiers. Then B (x, y) expresses the fact that the natural number y represents the 
rational number x under the map <p which establishes the computability of 0-

Let 

T(w,r,n,a) = (Jp)(a = r + p &v(p) è n + 1) & 

(X) (u)[\ = r + u& v(u) ^ w + l & X ^ a ^ Q X O G ^ G W) 

[B (X, X') & B (u, u') & V(w, X', v)&V9± 0']] & (3 r') (3 r") (3 s) 

[B(r,r') & V(w,r',r") &B(s,r") &v(s) è »]. 

Let 

T(a) = 3 ̂ 3 ^3 nT(w, r, n, a). 

The sentence (x)T(x) holds in (QH,*^ ) and hence in (Off* ,^*) since they 
are elementarily equivalent. Also, if a G Q#, then there exis ts , r Ç Q . K Z = 
fl(Q°) such that T(w, r, n, a) holds in (QH,^ )• Furthermore, 

T(w, r, n, x) => [T(w, r, n, y) => x = 3>] 

holds in ( Q * , ^ ) . 
If a G Off*» there exist w, r G 0*» w G z>(Q*°) such that r(ze/, r, n, a) holds 

in (Qf f* ,^* ) . Hence 3#^(^> f, w, x) holds in (Qj?* ,^*) and therefore it 
must hold in (H*t^*) because of elementary equivalence with respect to Q*. 
Let P G H* be such that r (w, r, », /3) holds in (H*,J/ *). Define A:Q** -> iï* 
by A (a) = /3. 

We claim that A is the desired isomorphism. 
It is easy to check that h is well defined, 1-1 and onto. 

To show that h is a homomorphism, suppose «i, a2 G Off* and let a = a± + a2. 
Let /3i == A(ai), P2 = A(a2), j8 = Pi + /32. There exist Wi, n , w2, r2, w, r in Q*, 
Wi, »2, w G fl(Q*°) such that 7\wi, n , wi, «i), J 1 ^ , r2, n2, a2), 2"(w, r, n, a) 
all hold in ( Q H * , ^ *)• Because of the definition of h, both r ( ^ i , n, Wi, 0i) and 
T(w2, r2, W2, £2) hold in (H*,Jff*). We must now show that T(w, r, n, P) 
holds in (H*,^V*). 

Since 5(«i, a2, a) holds in Off*, (s)[iS(ai, a2, 2) D T(w, r, n, z)] holds in 
(Off*,-^*)- Therefore 

3 IxJ ly[[T(wu rl9 nu x) & T(w2, r2, n2, y)] & (z)[S(x, y, z) => 

T(w, r, n, z)]] 

holds in (Off*,^*) and hence in (H*,^V*). 
Since h(ai) = Pu h(a2) = p2, we have that 

T(wu ru nu ^) & T(w2, r2y n2, p2) 

& (z)[S(Pup2,z)=*T(w,r,n,z)] 

holds in (H*,JT*). Hence (z)S(pu p2, z) => T(w, r, », z) holds in (H*,^V*); 
since S(pu P2, P) holds in H*, we have that T(w, r, n, p) holds in (H*,^V*). 
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Clearly this proof works if we substitute P for S throughout. Therefore h is 
an isomorphism. 

Note that, for a fixed^K*, if we assume (QH*,^*) < (H*,^*), then in 
particular ( Q ^ * , ^ * ) = Q*(H*,*A'*) since 0* is contained in both H* and 
QH*- Hence by the previous theorem, there exists an isomorphism h:QH* —>H*. 
That this isomorphism is the identity onJV * (and hence on 0*) is clear from 
the definition of h and the fact that the polynomial p(x) = x — a has a unique 
solution, namely a, for each a Ç ^V *. 

For each a £ QH* C H*, we have 

(QH*,*^*) satisfies T(w,r,n,a) if and only if {H*,^Y*) satisfies 

T(w, r, n> a) 

since ( Q * * , ^ * ) < ( # * , ^ * ) . 
Hence h (a) = a for all a £ Q#*, so in this case the isomorphism h is actually 

the identity. 

As a corollary to the previous proof we get 

THEOREM 4.5. (Q#, ^V ) has no proper elementary extensions in which JV 
is fixed. 

Proof. The sentence (x)T(x) holds in (QHl^V ) but it could not possibly hold 
in any extension of the form (QH'\J/ ) with QH £ QH' since QH' must con
tain transcendental elements. 

5. Generalization. As we remarked earlier, the existence result holds for 
every arithmetically definable valued subfield of Qp, namely, if H is an A.D. 
^-valued subfield of Qp and^yK* is an arbitrary strong non-standard model of 
arithmetic, there exists a ^-valued field H* such that the pairs (H, jV ) and 
(H*,^V*) are elementarily equivalent. 

Our next aim is to extend the uniqueness result to all A.D. ^-valued subfields 
of Op- I n order to do this we will make use of the following 

LEMMA 5.1. Letai,a2 £ Qp. Assume that for all r Ç Q, v(r + «i) = v(r + a2). 
Then a\ = a2. 

Proof. Notice that, taking r = 0, we getv(ai) = v(a2). Suppose «i ^ a2; say 

OO CO 

Oil = fi + X) anpn, OL2 = ri + X) &n£* 

where i is the first exponent such that at 9e bt. Let r = — ri — a^?\ Then 
r + «i = XX=z+i af/>* and thus v(r + «i) = i + 1. Now 

r + a 2 = (bi-ai)p
i+ £ 6n/>". 

n==i- | - l 

Since è* — a* 5̂  0 we have v(r + «2) = i ^ i + 1, contradiction. Thus 
ai = a2. 
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This lemma will play a similar role to Lemma 4.3 in our uniqueness proof. 

LEMMA 5.2. Let H be an A.D. p-valued subfield of Qp; let <p:H —> ^¥ be an 
admissible indexing and let Q be the field of quotients ofjV. Then (p\Q and <p\Z 
are expressible in the language of (H, ^¥ ), i.e. a formulation of the LPC containing 
all necessary extralogical constants. 

Proof. Recall that the predicates N'(x), I(x) and R(x) define (respectively) 
the natural numbers, the integers and the rationals arithmetically. Notice 
that y\J/ is expressible in the language of (H,JV ) since <p(a) = b if and only 
ii^Y(a) &N'(b) &B(a, b) holds in (H,J/). Similarly, we get that <p\Q is 
expressible in the language of (H,JV ), using the predicate B(x, y). As for the 
value group Z = v(Q°), <p(a) = b if and only if 

G (a) &3zJz'[Q(z) & V(z,a)&<p(z) = z' & V'(z',b)] 

holds in (H,JV). 

THEOREM 5.3. Let H be an A.D. p-valued subfield of Qp. Then there exists a 
1-1 function \(/:H VJ Z -^>JV such that the predicate \l/(x) — y is expressible in 
the language of (if, ^V ). 

Proof. Let y'.H \J Z, ~^^Y be an admissible indexing for the valued field 
H. Define $:H W Z ->JV as follows: 

if x G Z = v(Q°),f(x) = <p(x) 

if x £ if, f(x) = y if and only if [x = 0 & y = 0'] V [x 9* 0 & F(x) & 

y G <p[H] & (r)[r £ 0 =* 3 m (G (m) &v(r + x) = m & 

v'(<p(r) +fy) = *>(ro))] 

holds in (H,JV ), where z;', + ' are the arithmetical functions induced by the 
predicates V'(x, y) and S'(x, y, z). The fact that <p is an admissible indexing for 
the arithmetical definability of if, together with Lemma 5.2 ensure that 
\f/(x) = y is expressible in the language of (H,^V ), To show that \// is 1-1, use 
Lemma 5.1 together with the fact that \[/ is 1-1 on 0 and on Z = v(Q°). 

Let if/: H \J Z —^^¥ be as in the previous theorem. Define x°«^ —> if W Z by 

( \ _ /x> ̂  ^M — n 
x W " (0, otherwise. 

Then clearly x(x) = y is expressible in the language of (H,^V)y say by the 
predicate A (x, y). 

It is easy to see that the following hold in (H,^V ): 
(i) (x) (y) (z)[A (x, y) &A(x,z) =>y = z] 

(ii) (X)[JV(X) => 3 ty-4 (x, 3/)] 

(hi) (y)(3x)[jY(x)&A(x,y)] 
(iv) (y)[y 5̂  0 => 3 b^4 (x, y)]. 
We can now prove the uniqueness result 
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THEOREM 5.4. Let H be an A.D. p-valued subfield of Qp, letJV * be any strong 
non-standard model of arithmetic, Assume H*, H** are two p-valued fields con
taining JV * such that 

{H,JV) S ( H V K * ) = ( H * V K * ) . 

Then H* and H** are isomorphic. 

Proof. Notice that elementary equivalence with respect to J/ * implies 
elementary equivalence with respect to 0 * and Z* = v(Q*°). Since H is an 
A.D. ^-valued subfield of Qp, there exists a map \\^Y —>H \J Z such that 
x(x) = y is expressible in the language of (H,JV), say by the predicate 
A (x, y) and, furthermore, A (x, y) satisfies (i) to (iv) above. The proof now 
proceeds in essentially the same way as the proof of Theorem 4.4. 

We can also show that the analogue of Theorem 4.5 holds for any A.D. 
^-valued subfield of Qp, namely 

THEOREM 5.5. Let H be any A.D. p-valued subfield of Qp. Then (H,JV ) has 
no proper elementary extensions in which JV is fixed. 

Proof. Assume (H'' ,JV) is a proper elementary extension of (H,JV ). Let 
a G H' — H. Since (iii) holds in (H,JV ), it must hold in {H' ,J/ ) by elemen
tary equivalence. Let n Ç JV be such that A {n, a) holds in {Hf ,JV ). 

Since (ii) holds in (H,JV ), there exists /3 G H such that A (n, @) holds in 
(H,JV). But by assumption {R,JV ) < (H',^V), thus A(n,a) & A(n, 13) 
holds in (Hf,^V ). Hence, by (ii), a = f3 holds in (H' ,JV ) which is impossible 
since a G H'-H, 0 G H. Thus no such elementary extension exists. 

To use the terminology of E.W. Madison we have shown that all A.D. 
^-valued subfields of QP are elementarily closed relative to JV. He has obtained 
similar results for the real numbers in his paper ''Structures elementarily 
closed relative to the natural numbers", to appear soon. 
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