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Abstract. Neo-Fregean logicists claim that Hume’s Principle (HP) may be taken as an implicit
definition of cardinal number, true simply by fiat. A long-standing problem for neo-Fregean
logicism is that HP is not deductively conservative over pure axiomatic second-order logic.
This seems to preclude HP from being true by fiat. In this paper, we study Richard Kimberly
Heck’s Two-Sorted Frege Arithmetic (2FA), a variation on HP which has been thought to
be deductively conservative over second-order logic. We show that it isn’t. In fact, 2FA is not
conservative over n-th order logic, for all n ≥ 2. It follows that in the usual one-sorted setting,
HP is not deductively Field-conservative over second- or higher-order logic.

§1. Introduction. Frege [10–12] sought to derive the theorems of arithmetic from
nothing but basic logical laws and definitions. Such a derivation, called a logicist
derivation of arithmetic, would provide the ultimate foundation for our arithmetical
knowledge. It would justify the theorems of arithmetic once and for all by deriving them
from principles that needed no justification—principles that were either self-evident
(‘basic logical laws’) or true simply by stipulation (‘definitions’).

By his own lights, Frege did not manage to give a logicist derivation of arithmetic. But
he did show how to derive a very powerful system of arithmetic from a single, natural
principle, known as Hume’s Principle (HP).1 Informally, HP says, ‘The number of Fs
is equal to the number of Gs iff there is a one–one correspondence between the Fs and
the Gs.’ In second-order logic, HP is expressible as the universal closure of

#F = #G ↔ ∃R(F ≈R G),

where # is an operator that combines with monadic second-order variables F,G to
form terms of object type, and F ≈R G abbreviates the statement that R is a one–one
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correspondence between the Fs and the Gs.2 Then we have the following beautiful
result:

Theorem 1.1 (Frege’s Theorem). The theorems of second-order arithmetic are derivable
in second-order logic from HP together with eliminative definitions of natural number,
zero, and successor.3

Neo-Fregean logicists, preeminently Hale and Wright [14], argue that Frege’s
Theorem already yields a logicist derivation of arithmetic. They claim that HP may
be taken as an implicit definition of the operator # (‘the number of’) in purely logical
terms.4 Hale and Wright’s notion of implicit definition is deeply controversial. For our
purposes, the main point is that Hale and Wright conceive of implicit definitions as
true simply by stipulation [14, p. 117]. Such definitions need no justification. They are
true by fiat. So, if Hale and Wright are correct, Frege’s Theorem does indeed yield a
logicist derivation of arithmetic.

Not just anything can be stipulated to be true. We cannot establish any new
‘substantive’ truths by fiat. No one could have established by fiat that the Morning Star
is the Evening Star. Accordingly, it is natural to think that any legitimate stipulative
definition must meet the following requirement, known as conservativeness:

Definition 1.2. Let T be a theory in a formal language L. Let Δ be a definition of one
new sign, and let L+ be the language obtained by adding that new sign to L. Assume that
deductive systems for L and L+ have been specified. Then Δ is conservative over T iff
any L-formula that is derivableL+ from T + Δ is already derivableL from T.

Intuitively, a definition is conservative over our theory T just in case adding it to
our theory does not yield any new theorems expressible entirely in old vocabulary. The
definition does not settle any open questions that we already knew how to ask.

But HP is not conservative. More precisely, HP is not conservative over pure
axiomatic second-order logic—which presumably ought to be the starting theory for
aspiring logicists.5 For HP proves a sentence DI in the language of pure second-order
logic which says that the universe is Dedekind-infinite (‘there is a one–one mapping
from the universe into itself that is not onto’). But DI is not a theorem of pure second-
order logic. So, it seems that HP cannot be a legitimate stipulative definition. Call this
the conservativeness problem for neo-Fregean logicism.

The conservativeness problem is robust. Definitions that are conservative over pure
second-order logic seem to be mathematically very weak, and hence unable to provide
a foundation for arithmetic. Furthermore, adding more basic logical laws won’t help

2 That is, F ≈R G abbreviates ∀x∀y(Rxy → (Fx ∧ Gy)) ∧ ∀x(Fx → ∃! yRxy) ∧ ∀y(Gy →
∃!xRxy).

3 Second-order arithmetic (Z2) is a powerful theory that seems capable of proving almost
any ordinary mathematical theorem expressible in terms of countable mathematical objects
and structures. By derivable in second-order logic, we mean derivable in Shapiro’s deductive
system D2 minus the axiom schema of choice [26, pp. 66–67]. Note that D2 includes full
second-order comprehension.

4 Hale and Wright make various other claims about the epistemological status of HP. For
example, they claim that HP is analytic. But note that they explicitly base the analyticity
claim on the claim that HP is a legitimate implicit definition [14, pp. 4, 12–14].

5 By pure (axiomatic) second-order logic, we mean the deductive system described
in footnote 3.
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unless those laws suffice to prove DI. But it seems like a tall order to prove the existence
of infinitely many objects from basic logical laws alone.

Hale and Wright respond to the conservativeness problem by denying that stipulative
definitions must be conservative in the sense of Definition 1.2. Roughly speaking,
they hold that stipulative definitions need only satisfy a modified conservativeness
requirement, known as Field-conservativeness.6 We set out to explore a different
approach. Is it possible to find a variant of HP that is conservative in the standard
deductive sense—the sense of Definition 1.2?

A promising direction is suggested by Heck’s work on the Julius Caesar problem [15,
16]. Heck reconstrues Hume’s Principle as introducing a new sort of singular term into
the language. Call the reconstrued principle two-sorted Hume’s Principle (2HP), and
the theory that results from supplementing 2HP with logical axioms for the expanded
language, two-sorted Frege Arithmetic (2FA). The theory 2FA interprets second-order
arithmetic in the numerical sort. In particular, 2FA proves that the numerical universe
is Dedekind-infinite. But there is no obvious witness to non-conservativeness, because
the numerical sort is not part of the base language. Indeed, it has been claimed that
2FA is conservative over pure second-order logic [3, p. 237, n. 7].

In this paper we prove that 2FA is not conservative over pure second-order logic. In
fact, we prove something stronger. Our strategy is based on the following little fact:

Lemma 1.3. Let T be a theory in a formal language L, and let A be any L-sentence.
Suppose that a sentence Δ is not conservative over T +A. Then Δ is not conservative
over T.

Proof. Let ϕ be an L-sentence such that T +A+ Δ � ϕ, but T +A �� ϕ. By the
Deduction Theorem, we have T + Δ � A→ ϕ, but T �� A→ ϕ.

In Section 7, we consider a theory w2FA that is much weaker than 2FA. We show
that w2FA is non-conservative over pure second-order logic together with an axiom
saying that the base universe is infinite.7 In other words, even if we already know
that there are infinitely many objects, w2FA tells us something new about them! Then
from Lemma 1.3, it follows that w2FA, and hence 2FA, is non-conservative over pure
second-order logic.

In Section 8, we show that for the weaker theory w2FA, the non-conservativeness
vanishes if we strengthen the base theory in either of two natural ways. First, w2FA
is conservative over third- or higher-order logic. Second, w2FA is conservative over
second-order logic plus ‘the base universe is finite’.

In Section 9, we present a different proof that 2FA is not conservative over pure
second-order logic. This proof shows that 2FA remains non-conservative over the
stronger base theories discussed in the previous section. Specifically, we show that 2FA
is not conservative over second-order logic plus ‘the base universe is finite’, and the
proof of this fact generalizes to third- and higher-order logic.

6 See [14, pp. 133, 296–297, 319–320, 324–330]. Actually, Hale and Wright allow that some
legitimate stipulative definitions may fail to be Field-conservative. However, in such cases,
our entitlement to accept the definition ‘cannot be purely stipulative’ (p. 133). Also, on
Hale and Wright’s view, legitimate stipulative definitions must meet some other requirements
besides Field-conservativeness; see [24, p. 450] for a nice summary.

7 The axiom says: ‘There is no well-ordering of the universe whose converse is also a well-
ordering.’ See the discussion of Stäckel-finiteness in Section 5.
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In order to state and prove these results, we will need some preliminaries. In Section
2, we explain the logical setting for the paper: many-sorted axiomatic second-order
logic. In Section 3, we explain how to construe Hume’s Principle in a many-sorted
setting, and we define the theories w2FA and 2FA. In Section 4, we present some
background material on first- and second-order arithmetic. In Section 5, we show how
to formalize some facts about well-orderings and finiteness in second-order logic. In
Section 6, we discuss the Fraenkel model, which is the minimal infinite model of pure
second-order logic.

In Sections 7–9, we prove the main results. Lastly, in Section 10, we connect
our work to the literature on Field-conservativeness and related notions. Our main
result implies that in a one-sorted setting, HP is neither deductively Field-conservative
nor deductively Caesar-neutral conservative over second- or higher-order logic. This
answers some open problems raised by Shapiro and Weir [27, p. 298], Fine [9, p. 192, n.
1], and Studd [30, p. 597]. We conclude by mentioning some open problems of our own.

§2. Many-sorted second-order logic. We work in axiomatic second-order logic with
many sorts of singular terms and first-order variables. In this section we explain the
logical framework in considerable generality.

In Section 2.1, we define ‘sort’. In Sections 2.2 and 2.3, we define second-order
languages LJ [K ] for any nonempty set of object sorts J and any set of constant
symbols K. We present deductive systems and general semantics for these languages.
In Section 2.4, we define the two many-sorted second-order languages that will be
central to the rest of the paper, called the base language L := L{0}[∅] and the expanded
language L+ := L{0,n}[{#0,#n}].

2.1. Sorts. Let J be any nonempty set of symbols. These symbols are called first-
order sorts or object sorts.

Let Sorts2(J ) be the set of all tuples 〈j1, ... , jn〉 with n ≥ 1 and j1, ... , jn ∈ J . These
tuples are second-order relation sorts formed from J.

Let Sorts3(J ) be the set of all tuples 〈�1, ... , �n〉 with n ≥ 1 and �1, ... , �n ∈ J ∪
Sorts2(J ), and with at least one of �1, ... , �n belonging to Sorts2(J ). These tuples are
third-order relation sorts formed from J.

Let FnSorts(J ) be the set of all tuples 〈�1, ... , �n; �n+1〉 with n ≥ 1 and
�1, ... , �n, �n+1 ∈ J ∪ Sorts2(J ). These tuples are function sorts formed from J.

Let Sorts(J ) = J ∪ Sorts2(J ) ∪ Sorts3(J ) ∪ FnSorts(J ).
Intuitively, 〈�1, ... , �n〉 is the sort of n-ary relations with arguments of sorts �1, ... , �n,

while 〈�1, ... , �n; �n+1〉 is the sort of n-ary functions with arguments of sorts �1, ... , �n
and values of sort �n+1.

Example 2.4. Suppose J = {0, 1}. Then 〈1, 1, 0〉 ∈ Sorts2(J ), 〈0, 1, 〈0, 1〉〉 ∈
Sorts3(J ), and 〈〈0〉; 1〉 ∈ FnSorts(J ).

In the languages LJ [K ], there will be no function variables and no third-order
variables. We only allow variables of sorts � ∈ J ∪ Sorts2(J ). However, there may be
constant symbols of any sort � ∈ Sorts(J ).

2.2. Languages without constant symbols. For any set of object sorts J, we define
the second-order language LJ as follows:

(i) The alphabet of LJ contains variables xj, yj, zj , ... for each object sort j ∈ J ,
and relation variablesX�,Y �, Z�, ... for each second-order sort � ∈ Sorts2(J ).
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Table 1. Deductive system for LJ .

Propositional logic all tautologies
1o quantification ∀xϕ(x) → ϕ(t) t is sub. for x

∀x(ϕ → �) → (∀xϕ → ∀x�)
ϕ → ∀xϕ x not free in ϕ

Identity x = x
x = y → (α → α′) (∗)

2o quantification ∀Xϕ(X ) → ϕ(T ) T is sub. for X
∀X (ϕ → �) → (∀Xϕ → ∀X�)
ϕ → ∀Xϕ X not free in ϕ

Comprehension ∃X∀x̄(Xx̄ ↔ ϕ(x̄)) X not free in ϕ
Rule of inference from ϕ and ϕ → �, infer �

Let ϕ,� be any formulas of LJ . Let x, y,X be variables, and t, T be terms. (Note that
x, y, t must all be of the same sort. Likewise, X and T must be of the same sort.) Let
ϕ(t) be the result of substituting t for all free occurrences of x in ϕ. In (∗), let α be
any atomic formula of LJ , and let α′ be any formula obtained from α by replacing
zero or more occurrences of x with y. In Comprehension, we write Xx̄ to abbreviate
X 〈j1,...,jn〉x

j1
1 ···xjnn .

There are no nonlogical constant symbols. The logical constants are ¬, →,
∀,=.

(ii) The terms of sort � are the variables of sort �, for each � ∈ J ∪ Sorts2(J ).
(iii) In atomic formulas, we require that the sorts match. More precisely, the atomic

formulas are strings of the form tj1 = tj2 and T 〈j1,...,jn〉t
j1
1 , ... , t

jn
n , where each

tj is a term of sort j ∈ J , and T 〈j1,...,jn〉 is a term of sort 〈j1, ... , jn〉.
(iv) If ϕ,� are formulas and xj, X � are variables, then ¬ϕ, ϕ → �, ∀xjϕ, ∀X�ϕ

are also formulas.

The deductive system for LJ is essentially equivalent to Shapiro’s D2 minus the
axiom schema of choice [26, pp. 66–67]. Compare [8, pp. 112–113]. Its axioms are all
closed universal generalizations of the formulas depicted in Table 1. For legibility, we
suppress sorts. But note that x, y, and t must all be of the same sort, and X and T
must be of the same sort. This requirement is induced by the formation rules of the
language.

An LJ -prestructure M is a collection of nonempty sets {M� : � ∈ J ∪ Sorts2(J )}
such thatM〈j1,...,jn〉 ⊆ P(Mj1 × ··· ×Mjn ) for all j1, ... , jn ∈ J . Satisfaction and truth
in M are defined inductively, taking variables of sort � to range over domainM� .

A general LJ -structure is an LJ -prestructure in which the second-order comprehen-
sion axioms are satisfied. Our deductive system is sound and complete with respect to
general LJ -structures.

A standard LJ -structure M is a general LJ -structure in whichM〈j1,...,jn〉 = P(Mj1 ×
··· ×Mjn ) for all j1, ... , jn ∈ J . So, a standard LJ -structure is fully specified by its
object domains {Mj : j ∈ J}. Our deductive system is sound but not complete with
respect to standard structures.
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2.3. Languages with constant symbols. We will now sketch how to add constant
symbols to the languages LJ .

For each � ∈ Sorts(J ), letK� be a set of new symbols, called constant symbols. Each
constant symbol is assigned to a particular sort �, and is classified as an object, relation,
or function constant accordingly. Assume that the K� ’s are pairwise disjoint, or use
superscripts to keep track of sorts. Let K =

⋃
�∈Sorts(J )K� .

Define the language LJ [K ] as follows:

(i) The alphabet of LJ [K ] is the alphabet of LJ expanded by K.
(ii) If � ∈ J ∪ Sorts2(J ), the atomic terms of sort � are the variables x� and the

constants in K� .
If � ∈ Sorts3(J ), the atomic terms of sort � are the constants in K� .
If � = 〈�1, ... , �n; �n+1〉 ∈ FnSorts(J ), andf� ∈ K� , and t�11 , ... , t

�n
n are terms

of the indicated sorts, then f�t�11 ··· t�nn is a term of sort �n+1.
(iii) The atomic formulas are defined as in LJ , except that we also allow atomic

formulas of the form T�t�11 ··· t�nn with � = 〈�1, ... , �n〉 ∈ Sorts3(J ).
(iv) The inductive clauses generating the set of all formulas are unchanged.

The deductive system for LJ [K ] is obtained from the deductive system for LJ by
allowing ϕ,� to range over LJ [K ]-formulas, α to range over atomic LJ [K ]-formulas,
and adding axioms of Extensionality analogous to the axioms of Identity.8

An LJ [K ]-prestructure M = (S, I ) consists of an LJ -prestructure S together with
an interpretation I of the constant symbols that meets the following three conditions:

(i) If cj is an object constant of sort j ∈ J , then I (cj) ∈Mj .
(ii) If R� is a relation constant of sort � = 〈�1, ... , �n〉 ∈ Sorts2(J ) ∪ Sorts3(J ),

then I (R�) ∈ P(M�1 × ··· ×M�n ).
(iii) If f� is a function constant of sort � = 〈�1, ... , �n; �n+1〉 ∈ FnSorts(J ), then

I (f�) is a function fromM�1 × ··· ×M�n intoM�n+1 .

General and standard LJ [K ]-structures are defined analogously to LJ -structures.

2.4. The languages L and L+. We now define the two languages that will be at the
center of the rest of the paper.

Definition 2.5. The base language is L := L{0}.

Definition 2.6. The expanded language is L+ := L{0,n}[{#0,#n}], where #0 and #n
are function constants of sorts 〈〈0〉; n〉 and 〈〈n〉; n〉, respectively.

The logical axioms for L and L+ will be denoted by AxL and AxL+, respectively.
Some notational conventions:

(i) We generally drop the superscripts 0, 〈0〉, 〈0, 0〉, ....
(ii) We generally write variables of sorts � ∈ {n} ∪ Sorts2({n}) in boldface, and

drop the superscripts n, 〈n〉, 〈n, n〉, ··· .
(iii) When we write second-order relation superscripts, we drop the angle brackets

and commas. For example, we write Xn0 instead of X 〈n,0〉.
(iv) We drop the subscripts from #0 and #n, writing # for both.
(v) Following Frege, we refer to monadic relations as concepts.

8 LetX,Y be variables of sort � ∈ Sorts2(J ). Let α be any atomic formula of LJ [K ], and let α′

be any formula obtained fromα by replacing zero or more occurrences of X with Y. Then any
closed universal generalization of ∀x̄(Xx̄ ↔ Yx̄) → (α → α′) is an Extensionality axiom.

https://doi.org/10.1017/S1755020322000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000156


TWO-SORTED FREGE ARITHMETIC IS NOT CONSERVATIVE 1205

§3. Heck’s theory 2FA. Think of the base language L as our starting language, and
AxL as our starting theory. Heck [15], [16, pp. 150–151] reconstrues Hume’s Principle
as introducing a new, numerical sort of object (sort n), together with a host of new
second-order relation sorts. The operator # (‘the number of’) may be applied to a
concept variable of either sort, yielding a singular term of the numerical sort.

Definition 3.7. Weak two-sorted Hume’s Principle (w2HP) is the universal closure of:

#F 0 = #G0 ↔ ∃R00(F 0 ≈R00 G0).

Here, F 0 ≈R00 G0 abbreviates the statement that R00 is a one–one correspondence
between F 0 and G0.

Intuitively, w2HP gives the criterion of identity for numbers belonging to base-sort
concepts. It tells us how to count base-sort objects. But w2HP does not tell us how
to count numbers. Since we do in fact count numbers, we are motivated to consider a
stronger principle.

Definition 3.8. Two-sorted Hume’s Principle (2HP) is the conjunction of the universal
closures of the following three L+-formulas:

#F 0 = #G0 ↔ ∃R00(F 0 ≈R00 G0),

#F n = #Gn ↔ ∃Rnn(F n ≈Rnn Gn),
#F n = #G0 ↔ ∃Rn0(F n ≈Rn0 G0).

The first line is w2HP. The second line gives the criterion of identity for numbers
belonging to numerical concepts. The third line gives the mixed criterion of identity,
which tells us (e.g.) whether the number of Julio-Claudian emperors equals the number
of prime numbers less than 12.

Using our superscript-dropping conventions, we may write 2HP as follows:

#F = #G ↔ ∃R(F ≈R G),

#F = #G ↔ ∃R(F ≈R G),

#F = #G ↔ ∃Rn0(F ≈Rn0 G).

Definition 3.9. Weak two-sorted Frege Arithmetic (w2FA) is the theory whose logical
axioms are AxL+ and whose sole nonlogical axiom is w2HP.9 In other words,

w2FA = AxL+ + w2HP.

Definition 3.10. Two-sorted Frege Arithmetic (2FA) is the theory whose logical axioms
are AxL+ and whose sole nonlogical axiom is 2HP. In other words,

2FA = AxL+ + 2HP.

Notice that the logical axioms of 2FA include full second-order comprehension
for the expanded language. So, by Frege’s Theorem, 2FA interprets second-order
arithmetic in the numerical sort. It follows that 2FA proves a sentence which
says that the numerical universe is Dedekind-infinite. But this is not a witness to
non-conservativeness, because the numerical sort is not part of the base language.

9 Beware: Linnebo [22] calls this theory ‘Two-Sorted Frege Arithmetic’. We follow Heck’s
usage.
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Prima facie, it seems quite plausible that 2FA should be a conservative extension of
AxL.

§4. Arithmetic. We will study 2FA by comparing it with other, better-known
systems of arithmetic. In Section 4.1, we describe the usual systems of first- and
second-order arithmetic. In Section 4.2, we describe systems of arithmetic with no
function symbols.

4.1. First- and second-order arithmetic. We begin with first-order arithmetic. For
reference, see [13, pp. 12–13, 28–29].

Definition 4.11. The language of Peano arithmetic, LPA, is a classical first-order
language with identity whose nonlogical vocabulary is (0, S,≤,+, ·). Here, 0 is a constant
symbol, S is a unary function symbol, ≤ is a binary relation symbol, and +, · are binary
function symbols.

Definition 4.12. Robinson arithmetic, Q, is the theory in LPA with the following eight
axioms:

0 �= Sx,
Sx = Sy → x = y,

x �= 0 → ∃y(x = Sy),

x + 0 = x,

x + Sy = S(x + y),

x · 0 = 0,

x · Sy = (x · y) + x,

x ≤ y ↔ ∃z(z + x = y).

Definition 4.13. Peano arithmetic, PA, is the result of adding to Q the following axiom
schema of induction:

ϕ(0) ∧ ∀x(ϕ(x) → ϕ(Sx)) → ∀xϕ(x),

where ϕ(x) is any formula of LPA.

We write (∀x ≤ t)(··· ) to abbreviate ∀x(x ≤ t → ··· ), and similarly we write
(∃x ≤ t)(··· ). The quantifiers occurring in these expressions are said to be bounded.

AnLPA-formula is called bounded, or Σ0, if all quantifiers occurring in it are bounded.
An LPA-formula is called Σn (n ≥ 0) if it consists of a string of n alternating

unbounded quantifiers, the first of which is existential, followed by a bounded formula.
That is, a Σn formula has the form ∃x∀y∃z∀w ··· �, where � is bounded.

Definition 4.14. The theory IΣn (n ≥ 0) is the result of adding to Q the axiom schema
of induction above, restricted to Σn formulas.

We now turn our attention to second-order arithmetic. For reference, see [28, pp.
2–5].

Definition 4.15. The language of second-order arithmetic,L2, is a two-sorted language
consisting of all the vocabulary ofLPA, together with denumerably many monadic second-
order variables X,Y,Z, ... and a second-order quantifier ∀X . The atomic formulas of L2
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include all strings of the form Xt, where t is a first-order term and X is a second-order
variable.

The second-order variables of L2 are usually called set variables, and the atomic
formulas Xt are sometimes written t ∈ X . For our purposes, there is no difference
between set variables and concept variables, and the predication relation ∈ may be left
implicit. Hence, L2 may be regarded as an expansion of the monadic fragment of L.

Definition 4.16. Second-order arithmetic, Z2, is the theory in L2 whose axioms are
those of Q, together with the second-order induction axiom

X0 ∧ ∀x(Xx → X (Sx)) → ∀xXx
and the second-order comprehension scheme

∃X∀x(Xx ↔ ϕ(x))

for each formula ϕ of L2 not containing X free. As usual, ϕ may contain parameters, i.e.,
free first- or second-order variables other than x.

4.2. First- and second-order arithmetic with no function symbols. In this section, we
introduce an arithmetical language L′ in which successor, addition, and multiplication
are rendered as relations (which may be only partially defined) instead of functions.
This allows us to define BA′, a weak system of arithmetic that does not assume the
existence of infinitely many natural numbers. The main point of the section is to state
Lemma 4.23 and prove Lemmas 4.25 and 4.28. We will use these lemmas in Section 9
only, so feel free to skip this section and return to it later.

For reference, see [13, pp. 86–89, 233].

Definition 4.17. Let L′ be the classical first-order language with identity whose
nonlogical vocabulary is (0, S,≤, A,M ). Here, 0 is a constant symbol, S and ≤ are
binary relation symbols, and A and M are ternary relation symbols.

An L′-formula is called bounded′, or Σ′
0, if it contains only bounded quantifiers.

Definition 4.18. BA′ is the theory in L′ with the following axioms:

1. ≤ is a discrete linear order with least element 0,
2. Sxy iff y is the upper neighbor of x with respect to ≤,
3. Definitions of A and M:

Ax0z ↔ z = x,

Syy′ ∧ Szz ′ → (Axyz ↔ Axy′z ′),
Mx0z ↔ z = 0,

Syy′ ∧ Azxz ′ → (Mxyz ↔Mxy′z ′),
4. Commutativity and associativity of A and M, distributivity, monotonicity of

addition, monotonicity of multiplication by a positive number, and x ≤ y ↔
(∃u ≤ y)Axuy,

5. Induction scheme for Σ′
0 formulas:

ϕ(0) ∧ ∀x∀y(ϕ(x) ∧ Sxy → ϕ(y)) → ∀xϕ(x).

Definition 4.19. IΣ′
0 is the result of adding to BA′ axioms saying that S,A,M define

total functions, namely ∀x∃ySxy, etc.
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AnL′-formula is called Σ′
n (n ≥ 0) if it consists of a string of n alternating unbounded

quantifiers, the first of which is existential, followed by a bounded′ formula.

Definition 4.20. The theory IΣ′
n (n ≥ 0) is the result of adding to IΣ′

0 the axiom schema
of induction above, extended to Σ′

n formulas.

We now state some useful facts about BA′ and its relatives.

Definition 4.21. Let D be the conjunction of the following three (LPA ∪ L′)-formulas:

Sx = y ↔ Sxy,

x + y = z ↔ Axyz,

x · y = z ↔ Mxyz.

For each n ∈ N, let x .= n abbreviate the L′-formula

(∃u1, ... , un–1 ≤ x)(S0u1 ∧ Su1u2 ∧ ··· ∧ Sun–1x).

Lemmas 4.22 and 4.23 tell us that the theories IΣn and IΣ′
n are in a strong sense

equivalent.

Lemma 4.22. Let n ≥ 0. Then IΣ′
n + D � IΣn, and conversely IΣn + D � IΣ′

n.

Lemma 4.23. Let ϕ be a Σn formula with n ≥ 1. Then there is a Σ′
n formula ϕ′ with

the same free variables as ϕ such that IΣ′
n + D � ϕ ↔ ϕ′.

For proof, see [13, pp. 88–89].10

Lemma 4.24. IΣ′
0 and BA′ prove the same bounded′ formulas.

For proof, see [13, p. 233].

Lemma 4.25. Let ϕ(x1, ... , xk) be a bounded′ formula, and let a1, ... , ak ∈ N be such
that N � ϕ(a1, ... , ak). Then

BA′ � x1
.= a1 ∧ ··· ∧ xk

.= ak → ϕ(x1, ... , xk).

Proof. Let � be the LPA-formula obtained from ϕ by replacing Sxy, Axyz,Mxyz
with Sx = y, x + y = z, x · y = z respectively. Observe that �(Sa1 0, ... , Sak0) is a
true bounded sentence of LPA.

Now we argue as follows:

IΣ0 � �(Sa1 0, ... , Sak0),

IΣ′
0 + D � �(Sa1 0, ... , Sak0),

IΣ′
0 + D � x1

.= a1 ∧ ··· ∧ xk
.= ak → �(x1, ... , xk),

IΣ′
0 + D � x1

.= a1 ∧ ··· ∧ xk
.= ak → ϕ(x1, ... , xk),

IΣ′
0 � x1

.= a1 ∧ ··· ∧ xk
.= ak → ϕ(x1, ... , xk),

BA′ � x1
.= a1 ∧ ··· ∧ xk

.= ak → ϕ(x1, ... , xk).

10 In Hájek and Pudlák’s proof of I.2.88 (p. 88), the lower bound for y is incorrect. The proof
can easily be fixed by replacing max x with max x + 2. Compare V.5.1(1) (p. 362), where the
correct bound is given.
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The first line holds because IΣ0 proves all true bounded sentences.11 The second line
follows by Lemma 4.22. Regarding the third line, it is easy to check that for each n ∈ N,

IΣ′
0 + D � x = Sn0 ↔ x .= n.

The fourth line follows by propositional logic, because ϕ and � differ only by
applications of the equivalences in D. The fifth line follows because IΣ′

0 + D is
conservative over IΣ′

0 for L′-formulas. The sixth line follows by Lemma 4.24.

Lastly, we describe a system of second-order arithmetic without function symbols.

Definition 4.26. The languageL′
2 is just likeL2, but with the vocabulary ofL′ replacing

the vocabulary of LPA.

Definition 4.27. Let Z ′
2 be the theory in L′

2 whose axioms are those of IΣ′
0, plus the

second-order induction axiom

X0 ∧ ∀x∀y(Xx ∧ Sxy → Xy) → ∀xXx
and the second-order comprehension scheme for L′

2.

Lemma 4.28. Z2 and Z ′
2 are mutually interpretable. Indeed, Z ′

2 + D � Z2, and
conversely Z2 + D � Z ′

2.

Proof. We argue that Z ′
2 + D � Z2. The other direction is easy.

Observe that (Z ′
2 + D) � (IΣ′

0 + D) � IΣ0 � Q. Furthermore, the two ways of
formulating the second-order induction axiom are equivalent in the presence of
Sx = y ↔ Sxy.

It remains to show that Z ′
2 + D proves the second-order comprehension scheme

for L2. Take any L2-formula ϕ. Let � be the formula obtained from ϕ by replacing
each atomic predicationXt with ∃z(Xz ∧ z = t), where z is a new variable. Then every
non-atomic term in� occurs in an equation t1 = t2. These equations areLPA-formulas.
By Lemma 4.23, Z ′

2 + D proves each LPA-formula to be equivalent to an L′-formula.
So, there is an L′

2-formula ϕ′ such that Z ′
2 + D � ϕ ↔ ϕ′. Now apply second-order

comprehension to ϕ′, and we are done.

§5. Well-orderings and finiteness. In this section, we define ‘well-ordering’ in L,
and we note that AxL proves that all well-orderings are comparable (Lemma 5.29).
Then we define the notion of Stäckel-finiteness and prove the important lemma of
induction on finite concepts (Lemma 5.32). We will use these lemmas throughout the
paper.

For simplicity, we work in L. However, these notions can easily be extended to L+.
Let ∅ denote the empty concept. Let V denote the universal concept.
Let Y ⊆ X abbreviate ∀x(Yx → Xx).
Let ‘(X,R) is a linear order’ abbreviate the formula

∀x∀y(Rxy ∧Ryx → x = y) ∧ ∀x∀y∀z(Rxy ∧Ryz → Rxz)
∧ ∀x∀y(Xx ∧ Xy ↔ (Rxy ∨Ryx)).

In other words, (X,R) is a linear order just in case R is an antisymmetric, transitive,
total relation on X.

11 This is because IΣ0 
 Q, and Q is Σ1-complete [13, pp. 30–31, I.1.8–9].

https://doi.org/10.1017/S1755020322000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000156


1210 STEPHEN MACKERETH AND JEREMY AVIGAD

Let ‘(X,R) is well-founded’ abbreviate

∀Y (Y �= ∅ ∧ Y ⊆ X → ∃x(Yx ∧ ∀y(Yy → Rxy))).

Say that (X,R) is a well-ordering if (X,R) is a well-founded linear order.
We say that two well-orderings (X,≤X ) and (Y,≤Y ) are order-isomorphic, denoted

(X,≤X ) �o (Y,≤Y ), just in case there is a bijection f : X → Y such that

∀x∀y(x ≤X y ↔ f(x) ≤Y f(y)).

Strictly speaking, we should represent f as a relation, but we will go on using functional
notation informally.

If (X,R) is a well-ordering, letX � a be the initial segment of (X,R) up to a, defined
by

(X � a)x ↔ Xx ∧Rxa.

We also regard ∅ as an initial segment of (X,R). An initial segment of (X,R) is proper
if it is not equal to X.

Let (X,≤X ) <o (Y,≤Y ) abbreviate the statement that (X,≤X ) is order-isomorphic
with a proper initial segment of (Y,≤Y ).

We borrow the next lemma from [7, p. 611].

Lemma 5.29 (Comparability of well-orderings). It is provable from AxL that any two
well-orderings (X,≤X ) and (Y,≤Y ) are comparable, in the sense that exactly one of the
following holds:

(X,≤X ) <o (Y,≤Y ), (X,≤X ) �o (Y,≤Y ), (X,≤X ) >o (Y,≤Y ).

Proof. Copy the usual set-theoretic proof [18, pp. 18–19].

We now define the notion of Stäckel-finiteness.
If R is a binary relation, let R–1 be the converse of R, defined by R–1xy ↔ Ryx.

Definition 5.30. Say that (X,R) is a double well-ordering if (X,R) and (X,R–1) are
both well-orderings.

Say that X is Stäckel-finite, abbreviated Fin(X ), if X admits a double well-ordering.
That is,

Fin(X ) ⇐⇒ df ∃R((X,R) is a double well-ordering).

Remark 5.31. The double well-ordering criterion is proposed as a definition of
finiteness in [29]. The criterion is also discussed in [34, 35]. For historical remarks,
see [25].

Stäckel-finiteness is strictly stronger than Dedekind-finiteness, in the sense that

AxL � Fin(X ) → DFin(X ),

AxL �� DFin(X ) → Fin(X ),

where of course DFin(X ) abbreviates that X is Dedekind-finite. Indeed, Fin(X ) →
DFin(X ) is a version of the pigeonhole principle. It is provable from AxL by induction on
finite concepts (Lemma 5.32). On the other hand, the Fraenkel model (defined in Section
6) is a model of DFin(V ) + ¬Fin(V ), witnessing that AxL �� DFin(X ) → Fin(X ).

Lastly, we show that AxL proves a principle of induction on Stäckel-finite concepts.
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Let X ∪ {a} be the concept defined by

(X ∪ {a})x ↔ (Xx ∨ x = a).

Lemma 5.32 (Induction on finite concepts). Let ϕ(X ) be any formula of L. Then
AxL proves the universal closure of

ϕ(∅) ∧ ∀X∀a(Fin(X ) ∧ ϕ(X ) → ϕ(X ∪ {a})) → ∀X (Fin(X ) → ϕ(X )).

Proof. Assume the antecedent. Take any X such that Fin(X ). Fix a double well-
ordering (X,R), and let Y be defined by Yx ↔ (Xx ∧ ϕ(X � x)). It suffices to show
that Y = X .

Suppose not. Since (X,R) is a well-ordering, there is an R-least y such that Xy ∧
¬Yy. It is easy to see that y cannot be the R-least element of X. Since (X,R–1) is a
well-ordering, y has a unique (X,R)-predecessor, call it z. By the minimality of y, we
have Yz, and hence ϕ(X � z). Also, it is easy to see that Fin(X � z). It follows that
ϕ((X � z) ∪ {y}), which is to say ϕ(X � y). But this contradicts our choice of y.

§6. The Fraenkel model. In this section, we define the Fraenkel model and show
that it is a model of AxL + ¬Fin(V ) (Lemmas 6.38 and 6.39). Then we show that the
relations occurring in the Fraenkel model are exactly the sets definable by Boolean
combinations of equalities with object parameters (Lemma 6.40). We will make good
use of these facts in Section 7.

We remark that Lemma 6.40 implies that the Fraenkel model is the minimal infinite
model of AxL—i.e., it is a submodel of any infinite model of AxL.

Definition 6.33. Let A ⊆ N
n and E ⊆ N. We say that E is a support of A if every

permutation � : N → N that fixes E pointwise fixes A setwise:

(∀e ∈ E)(�(e) = e) =⇒ ∀x1, ... , xn((x1, ... , xn) ∈ A↔ (�(x1), ... , �(xn)) ∈ A).

Using the notation �(A) = {(�(x1), ... , �(xn)) ∈ N
n : (x1, ... , xn) ∈ A}, we can

restate this property as follows: for every permutation � : N → N,

(∀e ∈ E)(�(e) = e) =⇒ �(A) = A.

Definition 6.34. A set A ⊆ N
n is symmetric if it has a finite support E ⊆ N.

Definition 6.35. The Fraenkel model is the L-prestructure M whose object universe is
N, and whose n-ary relations are the symmetric subsets of Nn. That is, writing Mn for
M〈0,...,0〉 (n zeroes),

M0 = N,

Mn = {A ⊆ N
n : A is symmetric}.

It is well known that M is a model of AxL (i.e., it is a general L-structure) [32].
However, we are not aware of any English-language source that gives the proof. For
the reader’s convenience, we present the proof from [1] in the next two lemmas.

Lemma 6.36. IfA ⊆ N
n is symmetric, and � : N → N is any permutation, then �(A) ⊆

N
n is also symmetric.
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Proof. Let E be a support for A. We show that �–1(E) is a support for �(A). Indeed,
take any permutation � : N → N that fixes �–1(E) pointwise. Then the permutation
�–1�� : N → Nfixes E pointwise. So, (�–1��)(A) = A, and hence�(�(A)) = �(A).

Corollary 6.37. Each relation domainMn of the Fraenkel model is closed under the
action (on N

n) of permutations of N.

Lemma 6.38. The Fraenkel model is a model of AxL.

Proof. Let M be the prestructure defined above. We show that M satisfies
Comprehension. Take any formula ϕ(x̄, b̄, B̄) of L, with free variables x̄ = (x1, ... , xn)
and parameters b̄ = (b1, ... , bj) and B̄ = (B1, ... , Bk) drawn from M. Say that
A = {ā ∈ N

n : M � ϕ(ā, b̄, B̄)}. We show that A ∈Mn.
Since the relation parameters B̄ are drawn from M, each set Bi has a finite support

Ei (i = 1, ... , k). LetE = {b1, ... , bj} ∪ E1 ∪ ··· ∪ Ek . Clearly, E is finite. We show that
E is a support for A.

Take any permutation � : N → N that fixes E pointwise, and take any ā =
(a1, ... , an) ∈ N

n. We check that ā ∈ A ⇐⇒ �(ā) = (�(a1), ... , �(an)) ∈ A. Indeed,

ā ∈ A ⇐⇒ M � ϕ(ā, b̄, B̄)

⇐⇒ M � ϕ(�(ā), �(b̄), �(B̄))

⇐⇒ M � ϕ(�(ā), b̄, B̄)

⇐⇒ �(ā) ∈ A.

(Notation: �(b̄) = (�(b1), ... , �(bj)) and �(B̄) = (�(B1), ... , �(Bk)). By Lemma 6.36,
each �(Bi) is a parameter from M.) The second step works because permuting
everything uniformly doesn’t change any truth-values relative to any variable-
assignment. This is easily proved by induction on formulas. The third step works
because � fixes E pointwise, hence fixes all the parameters.

Lemma 6.39. The Fraenkel model is a model of ¬Fin(V ).

Proof. In fact, we will prove something stronger: the Fraenkel model does not
contain any linear ordering of the universe.

Consider any relation R ⊆ N
2 with finite support E ⊆ N. Suppose for sake of

contradiction that R is a linear ordering of the universe. Since R is total, we may
choose distinct a, b ∈ N \ E such that Rab. Let � be any permutation fixing E such
that �(a) = b and �(b) = a. Since E is a support of R, it follows that Rba. But this
contradicts the assumption that R is antisymmetric.

So, M contains no linear ordering of the universe. It follows that M contains no
double well-ordering of the universe, i.e., M � ¬Fin(V ).

We close this section by giving a simple characterization of symmetric sets.

Lemma 6.40. Let E ⊆ N be a finite set. A set A ⊆ N is symmetric with support E iff
A is definable by Boolean combinations of equalities with parameters from E.

Proof. Define an equivalence relation ∼E on N
n, as follows:

(a1, ... , an) ∼E (b1, ... , bn) ⇐⇒ [(∀i, j ≤ n)(ai = aj ↔ bi = bj) ∧
(∀e ∈ E)(∀i ≤ n)(ai = e ↔ bi = e)].
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In words: ā ∼E b̄ iff ā and b̄ are n-tuples with the same pattern of identity and
distinctness which agree on members of E. It is easy to see that ∼E really is an
equivalence relation.

(=⇒). Suppose A ⊆ N
n is symmetric with support E. Observe that A is a union of

equivalence classes of ∼E . Indeed, if ā ∼E b̄, then there is a permutation � : N → N

fixing E such that �(ā) = b̄.
Now, each equivalence class of ∼E is definable by a Boolean combination of

equalities with parameters from E, of the following form:∧
i,j≤n
i �=j

(¬) xi = xj ∧
∧
i≤n
e∈E

(¬) xi = e.

(The parenthesized negations may or may not be present in each conjunct.)
Furthermore, ∼E has only finitely many equivalence classes, because there are only
finitely many possible patterns of identity and distinctness among x1, ... , xn and the
members of E. Hence, A is definable by a disjunction of formulas like the one above.

(⇐=). Suppose A is definable by a Boolean combination of equalities with
parameters from E. We show that A is symmetric with support E.

Take any permutation � : N → N fixing E pointwise. That is, for all xi , xj ∈ N and
e ∈ E,

xi = xj ↔ �(xi) = �(xj),

xi = e ↔ �(xi) = e.

By induction on formulas, it is easy to see that N � ϕ(x̄, ē) ↔ ϕ(�(x̄), ē) for any
Boolean combination of equalities ϕ(x̄, ē). Since A is defined by some such Boolean
combination, it follows that �(A) = A.

Since � was arbitrary, we conclude that A is symmetric with support E.

§7. The non-conservativeness of w2FA. In this section, we prove Theorem 7.47,
which says that w2FA is not conservative over AxL + ¬Fin(V ).

Here is the main idea of the proof. We have seen that AxL + ¬Fin(V ) has a
model whose relations are easy to describe in finitary terms (Section 6). Hence,
AxL + ¬Fin(V ) is a fairly weak theory; in fact it is mutually interpretable with first-
order Peano arithmetic. (To show that AxL + ¬Fin(V ) interprets PA, the trick is
to code arithmetical statements as statements about finite concepts.) On the other
hand, adding w2FA to AxL + ¬Fin(V ) results in a much stronger theory, one which
proves that the numerical sort is Dedekind-infinite and hence interprets second-
order arithmetic. Second-order arithmetic is not conservative over Peano arithmetic.
By means of a carefully chosen interpretation, this non-conservativeness can be
transferred to the theories of interest to us. For example, w2FA + ¬Fin(V ) proves the
interpretation of a consistency statement for Peano arithmetic, while AxL + ¬Fin(V )
does not.

Let X ≈ Y abbreviate that there is a bijection between X and Y, in which case we
say that X and Y are equinumerous concepts.

If Ryz is a binary relation, let Ry be the concept defined by Ryz ↔ Ryz. (This is
terrible notation, but we only use it in the following definition.)
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Definition 7.41. Define Succ,Leq,Add,Mult as follows:

Succ(X,Y ) ⇐⇒ ∃a(¬Xa ∧ Y ≈ X ∪ {a}),

Leq(X,Y ) ⇐⇒ ∃X ′(X ≈ X ′ ∧ X ′ ⊆ Y ),

Add(X,Y,Z) ⇐⇒ ∃Y ′(Y ≈ Y ′ ∧ X ∩ Y ′ = ∅ ∧ X ∪ Y ′ ≈ Z),

Mult(X,Y,Z) ⇐⇒ ∃R[∀y∀z(Ryz → (Yy ∧ Zz)) ∧ ∀y(Yy → Ry ≈ X )

∧ ∀z(Zz → ∃! yRyz)].

In other words, Mult(X,Y,Z) says that Z is equinumerous with the union of |Y |
disjoint copies of X.

Definition 7.42. Define the translation α : L2 → L+ as follows.
Identify first-order variables of L2 with base-sort concept variables of L+. Identify

second-order variables of L2 with numerical-sort concept variables of L+.
Relativize ∀x to the formula Fin(X ).
Relativize ∀X to the formula FinNums(X) := ∀y(Xy → ∃Y [y = #Y ∧ Fin(Y )]).
Translate predication and equality as follows:

(Xy)α := X(#Y ),

(x = y)α := X ≈ Y.

Translate 0, S,≤,+, · as follows:

(x = 0)α := X = ∅,

(Sx = y)α := Succ(X,Y ),

(x ≤ y)α := Leq(X,Y ),

(x + y = z)α := Add(X,Y,Z),

(x · y = z)α := Mult(X,Y,Z).

We may extend this translation to allL2-formulas via the usual techniques for eliminating
definite descriptions. For example, write SSx = y as ∃z(Sx = z ∧ Sz = y), and so on.

Lemma 7.43. Restricted to LPA-formulas, the translation α : L2 → L+ is an interpre-
tation of PA in AxL + ¬Fin(V ).

Proof. Note that if ϕ is an LPA-formula, then ϕα is an L-formula. We will show that
AxL + ¬Fin(V ) proves the α-translation of each axiom of PA, and also proves that
Succ, Add, Mult define total functions (up to ≈).

First we prove that Succ defines a total function (up to ≈). In other words, we show
that for any Stäckel-finite concepts X,Y,Z,

∃W (Fin(W ) ∧ Succ(X,W )),

Succ(X,Y ) ∧ Succ(X,Z) → Y ≈ Z.

We reason in AxL + ¬Fin(V ). For the first claim, take any concept X such that Fin(X ).
Then X is not V. So, there exists a such that ¬Xa. Then Succ(X,X ∪ {a}), and it is
easy to check that Fin(X ∪ {a}). This gives us the first claim. The second claim is
obtained simply by unpacking the definition of Succ.

We postpone the proofs that Add and Mult define total functions (up to ≈).
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The α-translations of the axioms of Q can be expressed as follows (after
eliminating definite descriptions in a convenient way). For any Stäckel-finite concepts
X,Y,Z,Y ′, Z ′,

¬Succ(X,∅),

Succ(X,Z) ∧ Succ(Y,Z) → X ≈ Y,
Add(X,∅, Z) ↔ Z ≈ X,
Succ(Y,Y ′) → (Add(X,Y ′, Z ′) ↔ ∃Z[Fin(Z) ∧ Add(X,Y,Z) ∧ Succ(Z,Z ′)]),

Mult(X,∅, Z) ↔ Z = ∅,

Succ(Y,Y ′) → (Mult(X,Y ′, Z ′) ↔ ∃Z[Fin(Z) ∧ Mult(X,Y,Z) ∧ Add(Z,X,Z ′)]),

Leq(X,Y ) ↔ ∃Z(Fin(Z) ∧ Add(Z,X,Y )).

(We drop the third axiom of Q, since it is redundant in PA.) It is tedious but
straightforward to check that all of these claims are provable from AxL + ¬Fin(V ).

The previous step essentially provides us with recursive definitions of Add and Mult.
Using these recursive definitions, it is then easy to prove that Add and Mult define
total functions (up to ≈). For Add, we must show that for any Stäckel-finite concepts
X,Y,Z,W ,

∃U (Fin(U ) ∧ Add(X,Y,U )),

Add(X,Y,Z) ∧ Add(X,Y,W ) → Z ≈W.

Both of these claims are provable by induction on the finite concept Y (Lemma 5.32),
using the recursive definition of Add. The proof for Mult is similar.

Lastly, the α-translation of the induction scheme of PA follows from induction on
finite concepts (Lemma 5.32 again).

Lemma 7.44. The translation α : L2 → L+ is an interpretation of Z2 in w2FA +
¬Fin(V ).

Proof. By Lemma 7.43, we already know that the α-translation is an interpretation
of PA in AxL + ¬Fin(V ), and hence in w2FA + ¬Fin(V ). It remains to check
that w2FA + ¬Fin(V ) proves the α-translations of the second-order induction and
comprehension axioms.

The translation of the second-order induction axiom is equivalent to

X(#∅) ∧ ∀X
(
Fin(X ) ∧ X(#X ) ∧ Succ(X,Y ) → X(#Y )) → ∀X

(
Fin(X ) → X(#X )) .

This is easily proved by induction on finite concepts, generalized to L+-formulas. The
generalization is proved in the same way as Lemma 5.32.

The comprehension scheme translates as follows:

∃X
(
FinNums(X) ∧ ∀Y

(
Fin(Y ) →

(
X(#Y ) ↔ ϕα(Y ))

))
.

To prove this in w2FA + ¬Fin(V ), apply comprehension (in L+) to the formula

∃Y
(
x = #Y ∧ Fin(Y ) ∧ ϕα(Y )) .

Then use w2FA and the fact that ≈ is a congruence with respect to ϕα(Y ).

We will now define a translation 	 : L → LPA inspired by the Fraenkel model, and
show that it is an interpretation of AxL + ¬Fin(V ) in PA.
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Fix primitive recursive encodings of finite sets and sequences as natural numbers.
For finite sequences, this amounts to specifying the following functions in LPA:

(i) for each n ∈ N, a primitive recursive function 〈x1, ... , xn〉, which codes this
tuple as a single number,

(ii) primitive recursive functions length(s) and (s)i , which return the length and
the i-th element of the finite sequence coded by s.

We identify finite sets and sequences with their codes. We use the letter E for finite sets,
and the letter s for finite sequences.

Fix a primitive recursive Gödel numbering of LPA-formulas. We identify formulas
with their Gödel numbers. For each formula ϕ, let �ϕ� be a formal numeral that
denotes (the Gödel number of) ϕ.

Next, we describe LPA-formulas BoolEq, BoolSat, padn representing certain
primitive recursive relations and functions.

Let BoolEq(x, y, E) just in case: x is a Boolean combination of LPA-equalities with
exactly y free variables and with constant symbols drawn from {Se0 : e ∈ E}.

Let BoolSat(x, s) just in case: x is a Boolean combination of LPA-equalities that is
satisfied when the i-th variable of LPA is assigned the value (s)i , for all i ≤ length(s).
This is primitive recursive, because truth and satisfaction for bounded (Σ0) formulas
are primitive recursive notions.

For each n ∈ N, let padn(x1, ... , xn, y1, ... , yn) = s just in case: s is the shortest finite
sequence whose xi -th element is yi (for all 1 ≤ i ≤ n) and whose other elements are
all zero.

Definition 7.45. Define the translation 	 : L → LPA as follows.
Let the variables of LPA and the object variables of L be enumerated by v1, v2, v3, ....
Translate each object variable vi of L by the even-numbered variable v2i . Translate

each relation variable X of L by a distinct odd-numbered variable vX ∈ {v1, v3, v5, ...}.
In the last clause, E is a fresh variable and n is the arity of X.

(Xvi1 ··· vin )
	 := BoolSat(vX , padn(S

i1 0, ... , Sin0, v2i1 , ... , v2in )).

(vi = vj)	 := v2i = v2j .

(ϕ → �)	 := ϕ	 → �	.
(¬ϕ)	 := ¬ϕ	.

(∀vi ϕ)	 := ∀v2i ϕ
	 .

(∀X ϕ)	 := ∀vX (∃E BoolEq(vX , Sn0, E) → ϕ	).

Lemma 7.46. The translation 	 : L → LPA is an interpretation of AxL + ¬Fin(V ) in
PA.

Proof. It is easy to check that the 	-translation of any non-comprehension axiom is
a theorem of first-order logic, and hence is provable in PA.12 It remains to show that
PA proves the 	-translation of each comprehension axiom, and also that PA proves
(¬Fin(V ))	 .

12 In general, PA does not prove the 	-translation of ∀Xϕ(X ) → ϕ(Y ). However, it is not
these formulas that are axioms of L, but rather the closed universal generalizations of such
formulas. And PA does prove the latter.
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The idea is to formalize the proofs of Lemmas 6.38, 6.39, and 6.40 in PA. The main
obstacle is that we defined symmetric sets A ⊆ N

n in terms of arbitrary permutations
of N, and it is not obvious how to formalize those in PA. But in fact we do not
need arbitrary permutations. Say that a permutation � : N → N is essentially finite
if �(a) = a for all but finitely many a ∈ N. If we go through Section 6, replacing
‘permutation’ with ‘essentially finite permutation’ everywhere, we get exactly the same
model, and all the proofs still work.

We formalize Lemma 6.40 as follows. Say that an LPA-formula ϕ(x̄) is symmetric
with support E just in case, for every essentially finite permutation �,

(∀e ∈ E)(�(e) = e) =⇒ ∀x̄(ϕ(x̄) ↔ ϕ(�(x̄))).

Then we prove a theorem scheme in PA which says: ‘An LPA-formula is symmetric iff
there is a Boolean combination of equalities coextensive with it.’ More precisely, let
ϕ(vi1 , ... , vin ) be any LPA-formula with exactly the free variables displayed. Then PA
proves the following: ϕ(vi1 , ... , vin ) is symmetric with support E iff there exists y such
that

BoolEq(y, Sn0, E) ∧ ∀x̄(BoolSat(y, padn(S
i1 0, ... , Sin0, x̄)) ↔ ϕ(x̄)).

(=⇒). We reason in PA. Suppose that ϕ(vi1 , ... , vin ) is symmetric with support E.
Let �1, ... , �m be all possible disjunctions of formulas of the form∧

j,k≤n
j �=k

(¬) vij = vik ∧
∧
j≤n
e∈E

(¬) vij = Se0,

where parenthesized negations may or may not be present. Argue that x̄ ∼E ȳ →
(ϕ(x̄) ↔ ϕ(ȳ)), and hence

∀x̄(ϕ(x̄) ↔ �1(x̄)) ∨ ··· ∨ ∀x̄(ϕ(x̄) ↔ �m(x̄)).

Then observe that �i(x̄) ↔ BoolSat(��i�, padn(S
i1 0, ... , Sin0, x̄)), for each 1 ≤ i ≤

m.13 Reasoning by cases, we are done.
For the (⇐=) direction, copy the rest of the proof of Lemma 6.40.
Next, we formalize Lemma 6.38. We replace M � ϕ (‘M satisfies ϕ’) with ϕ	

throughout. For each L-formula ϕ(x̄, ȳ, Ȳ ) not containing X free, we wish to show
that PA proves

(∀ȳ∀Ȳ∃X∀x̄[Xx̄ ↔ ϕ(x̄, ȳ, Ȳ )])	 .

This basically says: ‘There is a Boolean combination of equalities coextensive with
ϕ(x̄, ȳ, Ȳ )	 .’ By the formalized version of Lemma 6.40, it suffices to prove in PA
that ϕ(x̄, ȳ, Ȳ )	 is a symmetric LPA-formula. To do this, use induction on L-formulas
ϕ(x̄, X̄ ) to prove the following theorem scheme in PA:

� is an essentially finite permutation → (∀x̄∀X̄ [ϕ(x̄, X̄ ) ↔ ϕ(�(x̄), �(X̄ ))])	 .

(This corresponds to our earlier observation that permuting everything uniformly
doesn’t change any truth-values in M relative to any variable-assignment.) Then copy
the rest of the proof of Lemma 6.38.

In the same way, it is easy to formalize Lemma 6.39 in PA.

13 This theorem scheme is provable in PA. See [19, p. 125, theorem 9.13] or [13, p. 56, I.1.70].
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We are now ready to prove the first main theorem of the paper.

Theorem 7.47. w2FA is not conservative over AxL + ¬Fin(V ).

Proof. Let ConPA denote a standard consistency statement for PA. We claim that
(ConPA)α is a witness to non-conservativeness. That is,

AxL + ¬Fin(V ) �� (ConPA)α, (1)

w2FA + ¬Fin(V ) � (ConPA)α. (2)

Proof of claim (1). Write � for ‘interprets’. From Lemmas 7.43 and 7.46, we have

PA �	 AxL + ¬Fin(V ) �α PA.

Suppose for a contradiction that AxL + ¬Fin(V ) � (ConPA)α . Then PA �
((ConPA)α)	 , and hence PA �	◦α PA + ConPA. However, by a strong version of
Gödel’s second incompleteness theorem, PA �� (PA + ConPA).14 Contradiction.

Proof of claim (2). It is well known that Z2 � ConPA. Hence, by Lemma 7.44,

w2FA + ¬Fin(V ) � (ConPA)α.

Corollary 7.48. w2FA is not conservative over AxL.

For proof, see Lemma 1.3.

Corollary 7.49. 2FA is not conservative over AxL.

§8. w2FA is conservative over stronger base theories. It is surprising that w2FA is
not conservative over AxL. However, the next two theorems establish some limits to
the non-conservativeness of w2FA.

Theorem 8.50. w2FA is conservative over third-order logic.

Proof. Let L3 be the third-order analog of the base language L. Let AxL3 denote
the axioms of the deductive system for L3, including full third-order comprehension in
the base sort. Note that w2FA still only includes second-order comprehension for the
numerical sort.

Take any L3-formula ϕ, and suppose that w2FA + AxL3 � ϕ. We show that AxL3 �
ϕ. Our strategy is to define an interpretation of w2FA in AxL3 that leaves L3-sentences
fixed (up to renaming of bound variables). Under such an interpretation, any derivation
ofϕ from w2FA + AxL3 is transformed into a derivation ofϕ from AxL3 . The idea is to
interpret each cardinality #X as the concept X from whence it came, with numerical-
sort equality being interpreted as equinumerosity.

First, we define a pre-translation from variables of L3 ∪ L+ into variables of L3.
Translate each variable of sort � as a variable of sort �∗, where

14 See [13, pp. 191–192, III.4.7–8]. The notation ‘T ⊇ IΣ1’ is explained at (p. 150, III.1.10).
Hájek and Pudlák generally assume that equality is interpreted as equality (p. 149, II.1.5(2)).
However, it is easy to adapt the proof of III.4.7–8 so as to dispense with this assumption.
See also [20, p. 76, theorem 1] for more details.
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0∗ := 0,

n∗ := 〈0〉,
〈�1, ... , �k〉∗ := 〈�∗1 , ... , �∗k 〉.

In other words, �∗ is obtained from � by replacing each occurrence of n with 〈0〉.
Set up the pre-translation so that distinct variables of L3 ∪ L+ are translated as

distinct variables of L3. For example, let the base-sort concept variables be enumerated
by X0, X1, X2, ..., and the numerical-sort object variables by v0, v1, v2, .... Then let the
pre-translations be

X ∗
i := X2i ,

v∗i := X2i+1.

Similarly for other sorts.
We now define the translation ∗ : L3 ∪ L+ → L3. In the first and last lines, let

� = 〈�1, ... , �k〉 be any second- or third-order sort. In the last line, Cong≈((X�)∗)
is a metalinguistic abbreviation of the statement: ‘≈ is a congruence for the relevant
argument-places of (X�)∗’, where the sort � determines which argument-places are
relevant.

(X�x�11 ···x�kk )∗ := (X�)∗(x�11 )∗ ··· (x�kk )∗.

(x = y)∗ := x∗ = y∗.

(x = y)∗ := x∗ ≈ y∗.
(x = #X )∗ := x∗ ≈ X ∗.

(ϕ → �)∗ := ϕ∗ → �∗.

(¬ϕ)∗ := ¬ϕ∗.

(∀x ϕ)∗ = ∀x∗ ϕ∗.

(∀x ϕ)∗ = ∀x∗ ϕ∗.

(∀X� ϕ)∗ =

{
∀(X�)∗ ϕ∗, if � ∈ Sorts3({0}),
∀(X�)∗(Cong≈((X�)∗) → ϕ∗), else.

It is easy to check that the ∗-translation of each axiom of w2FA is provable from
AxL3 . So, the translation works.

To prove the next theorem, we need another little fact about conservativeness.

Lemma 8.51. Let T be a theory in a formal language L, and let A be any L-sentence.
Suppose that a sentence Δ is conservative over T +A and is also conservative over
T + ¬A. Then Δ is conservative over T.

Proof. Take any ϕ ∈ L, and suppose that T + Δ � ϕ. We show that T � ϕ. Indeed

T +A+ Δ � ϕ,
T + A � ϕ,
T � A→ ϕ.

By the same reasoning, we also have T � ¬A→ ϕ. Hence, T � ϕ.

Theorem 8.52. w2FA is conservative over AxL + Fin(V ).
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Proof. Let |V | = 1 abbreviate the formula ∀x∀y x = y. By Lemma 8.51, we may
divide into cases according to whether |V | = 1 or |V | �= 1. The rest of the proof is
contained in Lemmas 8.53 and 8.54.

Lemma 8.53. w2FA is conservative over AxL + Fin(V ) + |V | �= 1.

Proof. We follow the same strategy as in Theorem 8.50. That is, we show how to
define an interpretation † of w2FA in AxL + Fin(V ) + |V | �= 1 that leaves L-sentences
fixed (up to renaming of bound variables). The idea is to interpret cardinalities #X
as pairs of base-sort objects. Specifically, we will fix distinct base-sort objects a and b,
represent #(V � x) as (x, a), and represent #∅ as (a, b).

First, we define a pre-translation from variables of L+ into variables of L. Translate
each variable of sort � as a distinct variable or pair of variables of sort(s) �†, where

0† := 0,

n† := 0, 0,

〈�1, ... , �k〉† := 〈�†
1 , ... , �

†
k〉.

For example, 〈n, 0, n〉† = 〈0, 0, 0, 0, 0〉 and 〈〈n〉, n〉† = 〈〈0, 0〉, 0, 0〉.
Set up the pre-translation so that no variable of L is ever used twice. For definiteness,

let the base-sort object variables be enumerated by v0, v1, v2, ..., and the numerical-sort
object variables by v0, v1, v2, .... Then let the pre-translations of the object variables be

v†
i := v3i ,

v†
i := v3i+1v3i+2.

Similarly for second-order variables.
Now we define the interpretation † : L+ → L. Fix a well-ordering ≤ of V, and fix

distinct base-sort objects a �= b. In the first and last lines, let � = 〈�1, ... , �k〉 be any
second-order sort.

(X�x�11 ···x�kk )† := (X�)†(x�11 )† ··· (x�kk )†.

(vi = vj)† := v3i = v3j .

(vi = vj)† := v3i+1 = v3j+1 ∧ v3i+2 = v3j+2.

(vi = #X )† := (X ≈ (V � v3i+1) ∧ v3i+2 = a) ∨ (X = ∅ ∧ v3i+1 = a ∧ v3i+2 = b).

(ϕ → �)† := ϕ† → �†.

(¬ϕ)† := ¬ϕ†.

(∀vi ϕ)† = ∀v3i ϕ
†.

(∀vi ϕ)† = ∀v3i+1∀v3i+2 ϕ
†.

(∀X� ϕ)† = ∀(X�)† ϕ†.

In order to justify the interpretation of #, we must check that for each base concept
X, there is a unique initial segment of (V,≤) that is equinumerous with X. For the
existence claim, recall that AxL proves that any two well-orderings are comparable
(Lemma 5.29). In particular, (X,≤) is order-isomorphic with a segment of (V,≤),
and hence X is equinumerous with that segment. For the uniqueness claim, use the
pigeonhole principle (Remark 5.31).
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Now it is easy to check that the †-translation of each axiom of w2FA is provable
from AxL + Fin(V ) + |V | �= 1. So, the interpretation works.

Lemma 8.54. w2FA is conservative over AxL + |V | = 1.

Proof. Observe that AxL + |V | = 1 is a categorical theory, and hence it is a complete
theory. So, the only way that w2FA could be non-conservative over AxL + |V | = 1 is
if the combined theory w2FA + |V | = 1 were inconsistent. But w2FA + |V | = 1 is
consistent: it has a model M with object domains M0 = {a} and Mn = {0, 1} and
with I (#) being the function mapping each base-sort concept to its cardinality.

§9. The non-conservativeness of 2FA. In the previous section, we established some
limits to the non-conservativeness of w2FA. In this section, we will show that 2FA is
more deeply non-conservative than w2FA. The main result is Theorem 9.67, which
says that 2FA is non-conservative over AxL + Fin(V ). Our proof of this result can be
generalized to show that 2FA is non-conservative over pure axiomatic n-th order logic
for any n ≥ 2, or even over simple type theory.

Roughly, the idea is to construct a Gödel sentence for AxL + Fin(V ). By a variation
on Gödel’s first incompleteness theorem, AxL + Fin(V ) does not prove its own Gödel
sentence. On the other hand, 2FA + Fin(V ) does prove the Gödel sentence, because
it is a powerful theory: it interprets second-order arithmetic in the new sort (and it is
smart enough to relate that arithmetic to the Gödel sentence expressed in L).

But AxL + Fin(V ) says that the universe is finite, so it cannot interpret Q. How,
then, is it possible to pull off the Gödel argument? The trick is that AxL + Fin(V ) has
arbitrarily large models. If AxL + Fin(V ) proved its own Gödel sentence, then any
sufficiently large model would contain a witness to the paradoxical derivation, yielding
a contradiction.

To implement this argument, it will be convenient to work with a definitional
extension T = AxL∪L′ + Fin(V ) + Δ, which we now describe.

Definition 9.55. Let L ∪ L′ := L{0}[{0, S,≤, A,M}].

We identify variables of L′ with object variables of L. Thus,

• 0 is a base object constant,
• S and ≤ are constants of sort 〈0, 0〉,
• A and M are constants of sort 〈0, 0, 0〉.

Let AxL∪L′ be the axioms of the deductive system for L ∪ L′.

Definition 9.56. Let Δ be the conjunction of the following (L ∪ L′)-formulas:

1. (V,≤) is a double well-ordering with least element 0,
2. Sxy iff y is the upper neighbor of x with respect to ≤,
3. Definitions of A and M:

Ax0z ↔ z = x,

Syy′ ∧ Szz ′ → (Axyz ↔ Axy′z ′),
Mx0z ↔ z = 0,

Syy′ ∧ Azxz ′ → (Mxyz ↔Mxy′z ′).
Definition 9.57. Let T = AxL∪L′ + Fin(V ) + Δ.
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Lemma 9.58. T � BA′.

Proof. It is obvious that T proves the universal closures of the first three axioms of
BA′. Furthermore, since (V,≤) is a well-ordering, we have induction for all (L ∪ L′)-
formulas. Using induction, it is easy to prove the universal closures of the remaining
axioms of BA′.

We will now describe the construction of the Gödel sentence of T.
Fix a Gödel numbering ofL ∪ L′. We describeLPA-formulas DerT , diag representing

certain primitive recursive notions.
Let DerT (x, y) just in case: x is the Gödel number of a T-derivation of a formula

with Gödel number y.
Let diag(x) = y be a function with the following property: if n is the Gödel number

of an (L ∪ L′)-formula �(y) with exactly the free variable y, then

diag(Sn0) = diag(��(y)�) = �∀y(y .= n → �(y))�.

(The notation y .= n is from Definition 4.21.) Note that diag is modeled on the Gödel
diagonal function: in essence, it substitutes into a formula its own Gödel number.

It is well known that recursive relations are Δ1-definable in PA [13, p. 18, theorem
0.45]. So, we may choose DerT and diag so that DerT (x, diag(y)) is a Σ1 formula.
By Lemma 4.23, there is an equivalent Σ′

1 formula ϕ(x, y) of L′ such that, for any
parameters a, b ∈ N,

N � ϕ(a, b) ⇐⇒ N � DerT (Sa0, diag(Sb0)).

Let p be the Gödel number of∀x¬ϕ(x, y). Then diag(Sp0) = diag(�∀x¬ϕ(x, y)�) =
�G�, where G is the following sentence:

G := ∀y(y .= p → ∀x¬ϕ(x, y)).

We say that G is the Gödel sentence of the theory T.

Lemma 9.59. The theory T = AxL∪L′ + Fin(V ) + Δ does not prove its own Gödel
sentence G.

Proof. Suppose for sake of contradiction that T � G . Let d be the Gödel number of
a derivation of G. Then we have

N � DerT (Sd0, diag(Sp0)),

N � ϕ(d, p).

Write ϕ(x, y) as ∃z�(x, y, z), where � is bounded′. Fix r ∈ N such that N �
�(d, p, r). By Lemma 4.25 and the Generalization Theorem,

BA′ � ∀x∀y∀z(x .= d ∧ y .= p ∧ z .= r → �(x, y, z)).

By Lemma 9.58,

T � ∀x∀y∀z(x .= d ∧ y .= p ∧ z .= r → �(x, y, z)).

https://doi.org/10.1017/S1755020322000156 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000156


TWO-SORTED FREGE ARITHMETIC IS NOT CONSERVATIVE 1223

It follows that

T � ∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r) → ∃y(y .= p ∧ ∃x∃z�(x, y, z)),

T � ∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r) → ¬G.

We assumed that T � G . Hence,

T � ¬∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r).

But T has arbitrarily large finite models. In particular, N � max{d, p, r} is a model of
T that satisfies ∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r). Contradiction.

Let us now turn our attention to what is provable in the stronger theory 2FA +
Fin(V ).

Lemma 9.60. 2FA interprets Z2, and hence Z ′
2.

The proof is an easy variation on Frege’s Theorem.
It will be convenient to fix a particular interpretation of Z2 and Z ′

2 in the numerical
sort of 2FA.

Definition 9.61. Fix a translation 
 : L′
2 → L+ which interprets Z ′

2 in the numerical
sort of 2FA. The interpretants of the nonlogical vocabulary items of L′

2 will be denoted
by 0, S, ≤, A, M. The universe of the interpretation is defined by the following formula
N(x):

∀X(X0 ∧ ∀y∀z(Xy ∧ Syz → Xz) → Xx).

Object quantifiers are relativized to N(x). Set quantifiers are relativized to ∀x(Xx →
N(x)).

The interpretation of Z2 in 2FA is obtained by extending the 
-translation so as
to interpret Z ′

2 + D, where D consists of the definitions of S,+, · in terms of S,A,M
(Definition 4.21).

The next two lemmas show that 2FA + Fin(V ) is smart enough to relate the
arithmetic in its base sort (BA′) with the arithmetic in its numerical sort (Z ′

2).
To ease clutter, we will often write ‘2FA + Fin(V ) � Δ → ··· ’ when we really mean

2FA + Fin(V ) � ∀(0, S,≤, A,M )(Δ → ··· ).

Lemma 9.62. 2FA + Fin(V ) proves that the base universe is order-isomorphic with an
initial segment of the natural numbers in the numerical sort:

2FA + Fin(V ) � Δ → ∃a
(
(V,≤) �o (N � a,≤)) .

Proof. We reason in 2FA + Fin(V ). Fix 0, S,≤, A,M , and suppose Δ. Then (V,≤)
is a double well-ordering. Further, it is easy to show that (N,≤) is a well-ordering.

By the comparability of well-orderings (Lemma 5.29, generalized to L+), exactly
one of the following holds:

(V,≤) <o (N,≤), (V,≤) �o (N,≤), (V,≤) >o (N,≤).

We can rule out the latter two options, because they imply that the converse of (N,≤)
is a well-ordering, which it isn’t. Hence, (V,≤) <o (N,≤). This is what we wanted.

For the next definition, fix 0, S,≤, A,M , and suppose Δ. Also fix a as in the statement
of Lemma 9.62.
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Definition 9.63. Let � : L′ → L+ be a translation which is exactly like 
, except that
object quantifiers are relativized to N � a, and we restrict the translation to first-order
formulas. In other words,

(x = 0)� := x = 0,

(Sxy)� := Sxy,

(x ≤ y)� := x ≤ y,

(Axyz)� := Axyz,

(Mxyz)� := Mxyz,

(x = y)� := x = y,

(ϕ → �)� := ϕ� → ��,
(¬ϕ)� := ¬ϕ�,

(∀x ϕ)� := ∀x((N � a)x → ϕ�).

Lemma 9.64. For any formula ϕ of L′,

2FA + Fin(V ) � Δ → (ϕ ↔ ϕ�).

Proof. We reason in 2FA + Fin(V ). Fix 0, S,≤, A,M , and suppose Δ. By Lemma
9.62, there is an order-isomorphismf : V → N � a. In other words, there is a bijection
f such that f(0) = 0 and

x ≤ y ↔ f(x) ≤ f(y).

We wish to prove corresponding statements for the other atomic formulas ofL′, namely,

Sxy ↔ Sf(x)f(y),

Axyz ↔ Af(x)f(y)f(z),

Mxyz ↔ Mf(x)f(y)f(z).

The first statement holds because S is definable in terms of ≤:

Sxy ↔ y is the upper neighbor of x with respect to ≤
↔ ∀z((x ≤ z ∧ x �= z) ↔ y ≤ z)
↔ ∀z((f(x) ≤ f(z) ∧ f(x) �= f(z)) ↔ f(y) ≤ f(z))

↔ ∀z((N � a)z → [(f(x) ≤ z ∧ f(x) �= z) ↔ f(y) ≤ z])

↔ f(y) is the upper neighbor of f(x) with respect to ≤
↔ Sf(x)f(y).

The second statement holds because A and A satisfy the same recursive definition
along their respective well-orderings (Definition 4.18). So, by the recursion theorem,
A and A are isomorphic. (If they are not isomorphic, then consider a counterexample
where y is ≤-minimal and derive a contradiction.)

The third statement holds for the same reason: M and M satisfy the same recursive
definition along their respective well-orderings.

By induction on formulas, ϕ ↔ ϕ� for every L′-formula ϕ.

In the next two lemmas, we show that 2FA formalizes the proof of Lemma 9.59.
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Let ϕ(x, y), �(x, y, z), and G be the L′-formulas from Lemma 9.59.
Let p be a term in the numerical sort of L+ that denotes the Gödel number of

∀x¬ϕ(x, y). In other words, p = �∀x¬ϕ(x, y)�.
Let G̃ be the following formula in the numerical sort of L+:

G̃ := ∀x¬ϕ
(x, p).

Observe that 2FA � G̃ ↔ G
 . (This is because we chose the interpretations of Z2 and
Z ′

2 to be compatible with one another. See Definition 9.61.) Intuitively, G̃ says: ‘The
Gödel sentence for T is not derivable in T.’ In other words, G̃ formalizes the statement
of Lemma 9.59.

It is well known that Z2 formalizes Tarskian definitions of truth and satisfaction
for LPA [31, pp. 183–187]. In the same way, 2FA formalizes Tarskian definitions of
truth and satisfaction for L′ with respect to the standard model N. Denote the truth
predicate by TrN(x) and the satisfaction predicate by SatN(x, y).

Lemma 9.65. Let � be an L′-formula whose free variables are among the first k free
variables of L′. Then 2FA proves

∀x1 ··· ∀xk(SatN(���, 〈x1, ... , xk〉) ↔ �
(x1, ... , xk)).

For proof, compare [31, pp. 186–187, proposition 18.12].

Lemma 9.66. 2FA � G̃.

Proof (sketch). The idea is to formalize the proof of Lemma 9.59 in 2FA.
We reason in 2FA. Suppose ¬G̃ . Then there exists d such that ϕ
(d, p). By Lemma

9.65, we have SatN(�ϕ�, 〈d, p〉). Writeϕ(x, y) = ∃z�(x, y, z). Unpacking the definition
of SatN, there exists r such that SatN(���, 〈d, p, r〉).

Formalize Lemma 4.25 to obtain

∃x DerBA′(x, �x .= d ∧ y .= p ∧ z .= r → �(x, y, z)�),

and so on, until we reach

∃x DerT (x, �¬∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r)�).

Let m = max{d, p, r}. Argue that DerT is sound with respect to the semantics TrN�m,
in the sense that

∀y(∃x DerT (x, y) → TrN�m(y)).

Finally, check that ¬TrN�m(�¬∃x∃y∃z(x .= d ∧ y .= p ∧ z .= r)�). Contradiction.

We are finally ready to prove the second main theorem of the paper.

Theorem 9.67. 2FA is not conservative over AxL + Fin(V ).

Proof. We establish the following witness to non-conservativeness:

AxL + Fin(V ) �� ∀(0, S,≤, A,M )(Δ → G), (3)

2FA + Fin(V ) � ∀(0, S,≤, A,M )(Δ → G). (4)
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Proof of claim (3). Suppose not. Then we have

AxL + Fin(V ) � ∀(0, S,≤, A,M )(Δ → G),

AxL∪L′ + Fin(V ) � ∀(0, S,≤, A,M )(Δ → G),

AxL∪L′ + Fin(V ) � Δ → G,
AxL∪L′ + Fin(V ) + Δ � G.

But this contradicts Lemma 9.59.

Proof of claim (4). We reason in 2FA + Fin(V ). Fix 0, S,≤, A,M , and suppose Δ.
Also fix a as in the statement of Lemma 9.62. We show G.

By Lemma 9.66, we have G̃ . Then we reason as follows:

G̃ =⇒ G
 =⇒ G� =⇒ G.

The first arrow holds because we set up the interpretations of Z2 and Z ′
2 correctly

(Definition 9.61). The second arrow holds by quantificational logic, using the fact
that G is Π′

1. (The idea is that universal formulas are preserved when passing to a
submodel.) The third arrow holds by Lemma 9.64. Hence, we obtain G.

By Lemma 1.3, this gives us another proof that 2FA is non-conservative over AxL.
By the same argument, we have:

Corollary 9.68. 2FA is not conservative over pure axiomatic n-th order logic, for any
n ≥ 2.

Corollary 9.69. 2FA is not conservative over simple type theory.

§10. HP is not deductively Field-conservative. As we noted in the introduction,
Hale and Wright hold that legitimate stipulative definitions need not be conservative in
the standard deductive sense. They need only be Field-conservative, i.e., conservative
over ‘previously recognized ontology’ [14, p. 133].

An abstraction principle is a purported implicit definition of a new operator @ by
means of a sentence of the form

@F = @G ↔ ϕ(F,G),

where ϕ(F,G) is an equivalence relation. In the special case of abstraction principles,
Hale and Wright [14, p. 319, n. 21] adopt a precise formulation of Field-
conservativeness, which we now describe.

For any formula ϕ, let ϕA(x) denote the relativization of ϕ to the formula A(x).15

For any theory T, let TA(x) = {ϕA(x) : ϕ ∈ T}.

Definition 10.70. Let T be a theory in a formal language L. Let Δ be an abstraction
principle introducing the new operator @, and let L+ = L ∪ {@}. Then Δ is Field-
conservative over T if for every L-formula ϕ,

T¬∃F (x=@F ) + Δ � ϕ¬∃F (x=@F ) =⇒ T � ϕ.

15 If ϕ is a second-order formula, then ϕA(x) is the formula obtained from ϕ by replacing
first-order quantifiers ∀x(··· ) with ∀x(A(x) → ··· ), and replacing second-order quantifiers
∀X (– – –) with ∀X (∀x1 ··· ∀xk(Xx1 ···xk → A(x1) ∧ ··· ∧ A(xk)) → – – –).
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If L is a second- or higher-order language, then � denotes the consequence relation with
respect to standard (full) semantics.

There are two differences between Field-conservativeness and standard deductive
conservativeness. Firstly, Field-conservativeness involves relativizing some of the quan-
tifiers to ‘non-abstracts’. Secondly, Field-conservativeness is formulated semantically
rather than deductively.

Hale and Wright’s suggestion, then, is that abstraction principles need only be Field-
conservative in order to be acceptable. Much of the neo-Fregean literature has followed
Hale and Wright on this point, if only because there seemed to be no other way for the
neo-Fregean project to get off the ground.16

Following [33, pp. 21–22], we may distinguish some notions closely related to Field-
conservativeness. See [6, 33] for motivation and further discussion.

Definition 10.71. Let L, L+, T, Δ be as in Definition 10.70. Assume that deductive
systems for L and L+ have been specified. Let P (for ‘previously recognized ontology’)
be a new unary predicate symbol. Then:

1. Δ is deductively Field-conservative over T iff for every L-formula ϕ,

T¬∃F (x=@F ) + Δ � ϕ¬∃F (x=@F ) =⇒ T � ϕ.
2. Δ is Caesar-neutral conservative over T iff for every L-formula ϕ,

TP + Δ � ϕP =⇒ T � ϕ.
3. Δ is deductively Caesar-neutral conservative over T iff for every L-formula ϕ,

TP + Δ � ϕP =⇒ T � ϕ.
Weir [33, p. 24, theorem 4.1] proved that HP is both Field-conservative and Caesar-

neutral conservative over pure second-order logic. It has remained an open question
whether HP satisfies the deductive analogue of either of these conditions. Our results
imply that it does not.17

Theorem 10.72. HP is not deductively Caesar-neutral conservative over pure axiomatic
second-order logic.

Proof. We proved that 2FA is not deductively conservative over pure axiomatic
second-order logic AxL (Corollary 7.49). Let � be an L-sentence such that 2FA �
� but AxL �� �. Let P be a new unary predicate symbol. It suffices to show that
AxL[{#,P}] + HP � �P .

16 Field-conservativeness and related notions have been extensively studied by Shapiro and
Weir [27], Weir [33], Linnebo [21], Cook [5], Cook and Linnebo [6], and others. These
authors, along with Fine [9] and Heck [16], do not require acceptable abstraction principles
to be conservative in the standard deductive sense. (Note that many of these authors do not
regard acceptable abstraction principles as stipulative definitions. Some of them conceive
of acceptable abstraction principles as analytic, or ‘epistemically innocent’, or definitions
of a non-stipulative variety, or philosophically significant in other ways.) On the other
hand, Burgess [3, pp. 158–161] raises some doubts about giving up standard deductive
conservativeness.

17 We are grateful to an anonymous referee who pointed this out to us.
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Actually, we show that AxL[{#,P}] + HP + ∃xPx � �P . Since P is supposed to stand
for ‘previously recognized ontology’, the hypothesis ∃xPx merely reflects the fact that
classical logic requires a nonempty domain. In any case, we can absorb the extra
hypothesis by replacing � with ∃x(x = x) → �.18

Let us define a translation � from our two-sorted language L+ = L{0,n}[{#0,#n}]
into the one-sorted language L[{#, P}]. The idea is to relativize base-sort quantifiers
to P and relativize numerical-sort quantifiers to Num(x) := ∃F (x = #F ).

First we define a pre-translation from variables of L+ into variables of L[{#, P}].
(Compare Theorem 8.50.) Translate each variable of sort � as a variable of sort ��,
where �� is obtained from � by replacing each occurrence of n with 0. Set up the
pre-translation so that distinct variables of L+ are translated as distinct variables of
L[{#, P}].

We now define the translation � : L+ → L[{#, P}]. Let j be any object sort, and let
� = 〈j1, ... , jk〉 be any second-order sort. Let Num(x) := ∃F (x = #F ). Let Aj be the
relativization predicate for sort j:

Aj(x) :=

{
Px, if j = 0,
Num(x), if j = n.

Then the translation runs as follows:

(X�xj11 ···xjkk )� := (X�)�(xj11 )� ··· (xjkk )�,

(xj = yj)� := (xj)� = (yj)�,

(#0X )� := #(X�),

(#nX)� := #(X�),

(ϕ → �)� := ϕ� → ��,
(¬ϕ)� := ¬ϕ�,

(∀x ϕ)� = ∀x�(P(x�) → ϕ�),

(∀x ϕ)� = ∀x�(Num(x�) → ϕ�),

(∀X� ϕ)� = ∀(X�)�((X�)� ⊆ Aj1 × ··· × Ajk → ϕ
�).

In other words, predication and equality are translated as themselves, both #0 and #n
are translated as #, and quantifiers are relativized to P and Num in the natural way.

We wish to show AxL[{#,P}] + HP + ∃xPx � �P . We have 2FA � �. Applying the
-translation, we obtain

2FA� + ∃xPx + ∃xNum(x) + ∀X ((X ⊆ P ∨ X ⊆ Num) → Num(#X )) � ��.
(The extra hypotheses serve to make the assumptions of our two-sorted notation
explicit.) Notice that �� is just �P . So, it suffices to show that AxL[{#,P}] + HP + ∃xPx
proves all of the following:

18 We could have added the extra hypothesis to the definition of deductive Caesar-neutral
conservativeness, so that it said: for every L-formula ϕ,

TP + Δ + ∃xPx 
 ϕP =⇒ T 
 ϕ.
It is easy to verify that this alternative definition is equivalent to ours.
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• 2FA�,
• ∃xPx,
• ∃xNum(x),
• ∀X ((X ⊆ P ∨ X ⊆ Num) → Num(#X )).

The second, third, and fourth bullets are obvious. For the first bullet, we have
2FA� = (AxL+)� + 2HP�. Now, (AxL+)� merely consists of relativizations of the
logical axioms AxL[{#,P}]. These relativizations are all provable from AxL[{#,P}] +
∃xPx + ∃xNum(x).

Similarly, 2HP� merely consists of relativizations of HP, such as

(∀F,G ⊆ P)(#F = #G ↔ (∃R ⊆ P × P)(F ≈R G)�).

These are all provable from AxL[{#,P}] + HP + ∃xPx + ∃xNum(x). The proof is
complete.

Corollary 10.73. HP is not deductively Field-conservative over pure axiomatic
second-order logic.

Proof. Set Px := ¬Num(x) in the proof of the previous theorem.

The upshot is that it makes a very great difference for the neo-Fregean program
whether conservativeness requirements are formulated deductively or semantically.
There seems to be no deductive criterion of conservativeness on which HP, or any
similar principle, is conservative. As a matter of fact, neo-Fregeans have tended to
prefer semantic notions of conservativeness anyway. But it would be desirable to see
more philosophical justification for the use of these semantic notions, given that the
deductive alternatives simply don’t work.19

By the way, just as our deductive conservativeness results in the two-sorted
setting could easily be transferred to the one-sorted setting, so too, Weir’s semantic
conservativeness results for HP can easily be transferred to the two-sorted setting.
Say that T1 is semantically conservative over T0 if every standard model of T0 can be
expanded to a standard model of T1. Then we have the following result:

Theorem 10.74. 2FA is semantically conservative over AxL.

Proof. Our argument is a simple adaptation of [33, p. 24, theorem 4.1].
Take any standard L-structure M, with object domain M0. We will show how to

expand M to a standard L+-structure N that satisfies 2HP.
To specify N , we have to specify object domainsN0 andNn, and an interpretation I

of the constant symbols #0,#n.
Set N0 =M0.
Set Ni = κ ∪ {κ}, where κ is the least infinite cardinal such that κ ≥ |N0|.
Set N� = P(Nj1 × ··· ×Njm ) for all other sorts � = 〈j1, ... , jm〉.
We claim that the cardinality of any base concept A ∈ N〈0〉 is a member of the

numerical universe Nn. Indeed, take any A ∈ N〈0〉. Then

A ⊆ N0 =⇒ |A| ≤ |N0| ≤ κ =⇒ |A| ∈ Nn.

19 See [14, p. 133, n. 32] and [33, pp. 22–24] for some philosophical discussion of the matter.
Semantic notions of conservativeness have also been studied in the literature on truth [4].
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Further, we claim that the cardinality of any numerical conceptA ∈ N〈n〉 is a member
of the numerical universe Nn. Indeed, take any A ∈ N〈n〉. Then

A ⊆ Nn =⇒ |A| ≤ |Nn| = κ =⇒ |A| ∈ Nn.

Let I (#0) be the function N〈0〉 → Nn which maps each concept to its cardinality.
Let I (#n) be the function N〈n〉 → Nn which maps each concept to its cardinality.
Then N is a standard L+-structure satisfying 2HP, and hence 2FA.

We conclude with some interesting open problems.

Problem 10.75. Is HP conservative over DI (= ¬DFin(V ))?

Problem 10.76. Is w2FA conservative over AxL + ¬DFin(V )?

Problem 10.77. Is 2FA conservative over AxL + ¬DFin(V )?

Problem 10.78. Is 2FA conservative over axiomatic third-order logic + ¬Fin(V )?
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