Categories whose objects are determined by their rings of endomorphisms

Grigore Călugăreanu jr

Abstract

In an additive category A_{0}, objects are said to be determined by their rings of endomorphisms if for each ring-isomorphism F of the rings of endomorphisms of two objects A, B in A_{0} there is an isomorphism $f: A \rightarrow B$ in A_{0} such that $F(\alpha)=f \alpha f^{-1}$, for every endomorphism α of A. Considering this problem in the context of closed categories (in Eilenberg and Kelly's sense), the author proves a general theorem which generalises results of Eidelheit (for real Banach spaces) and of Kasahara (for real locally convex spaces).

0. Introduction

Let A, B be two objects in an additive category A_{0}. We consider the following problem: under what conditions on A_{0} does a ring isomorphism $F: A_{0}(A, A) \rightarrow A_{0}(B, B)$ induce an isomorphism $f: A \rightarrow B$ in A_{0}, such that $F=A_{0}\left(f^{-1}, f\right)$, or equivalently, $F(\alpha)=f \alpha f^{-1}$, for every $\alpha \in A_{0}(A, A)$?

Examples of categories in which this problem has an affirmative answer are abundant. We concentrate on three of them, namely: the category of vector spaces and linear transformations over a division ring, the category
of real Banach spaces and linear continuous transformations (see [1]) and the category of real locally convex spaces and linear continuous transformations (see [3]).

Having these in mind, the notion of closed category (in the sense of [2]) is easily seen to be needed. According to this, we rephrase our initial problem in the following terms.

Let $F:(A A) \rightarrow(B B)$ be an isomorphism in the closed category $A=\left(A_{0}, V\right.$, hom $\left.A, I, i, j, L\right)$, the subjacency of which is a ring homomorphism (and thus a ring-isomorphism). Under what conditions on A is there an isomorphism $f: A \rightarrow B$ in A_{0} such that $F=\left(f^{-1}, f\right)$? We shall use the notations in the paper by Eilenberg and Kelly [2] and shall also denote by $E(A)$ the ring $A_{0}(A, A)$ of the endomorphisms of A.

1. Preliminaries at the subjacent level

From now on, let A_{0} be an additive category with kernels and finite products (coproducts), and let A, B be two objects in A_{0}.

LEMMA 1. If $P(A), P(B)$ denote the sets of direct factors (summands) of A and B, respectively, then each ring-isomorphism $F: E(A) \rightarrow E(B)$ induces a canonical bijection $F^{*}: P(A) \rightarrow P(B)$.

Proof. By natural restriction, F obviously induces a bijection between $E I(A)$ and $E I(B)$, the sets of idempotent endomorphisms of A and B, respectively. It is then sufficient to indicate, for each object A in A_{0}, a bijection $U_{A}: P(A) \rightarrow E I(A)$. If A_{1} is a direct factor of A, and p_{1}, u_{1} are the canonical projection and injection, respectively, then defining $U_{A}\left(A_{1}\right)=u_{1} p_{1}$ and $U_{A}^{-1}(\theta)=\operatorname{ker}(1-\theta)$ for every $\theta \in E I(A), U_{A}$ and U_{A}^{-1} are easily seen to be mutually inverse (see [4], I, 18.5). So $F^{*}=U_{B}^{-1} \cdot F /_{E I(A)} \cdot U_{A}$.

REMARK. Considering $P(A)$ preordered by the well-known relation of comparing subobjects, one can easily verify that F^{*} is actually a
preorder isomorphism. Indeed, one has to show that if $\left(A_{1}, u_{1}\right) \leq\left(A_{2}, u_{2}\right)$ then $\left(F^{*}\left(A_{1}\right), u_{1}^{*}\right) \leq\left(F^{*}\left(A_{2}\right), u_{2}^{*}\right)$; but this follows immediately from $\left(1_{B}-F\left(u_{2} p_{2}\right)\right) \cdot u_{1}^{*}=0$.

COROLLARY. Under the assumptions of the previous lemma, if $A=\prod_{i=1}^{n} A_{i}$ then $B=\prod_{i=1}^{n} F^{*}\left(A_{i}\right)$.

Proof. Let $\left(u_{i}: A_{i} \rightarrow A\right)_{i=1}^{n}$ and $\left(p_{i}: A \rightarrow A_{i}\right)_{i=1}^{n}$ be the injections and projections of the biproduct A. We then have $p_{i} u_{j}=\delta_{i j}$ and $\sum_{i=1}^{n} u_{i} p_{i}=I_{A}$. The morphisms $u_{i} p_{i}$ being idempotent, $F\left(u_{i} p_{i}\right)$ have the same property, and we have $F^{*}\left(A_{i}\right)=\operatorname{ker}\left(1_{B}-F\left(u_{i} p_{i}\right)\right)$. From $\left(1_{B}-F\left(u_{i} p_{i}\right)\right) \cdot F\left(u_{i} p_{i}\right)=0$ follows the unique existence of morphisms p_{i}^{*} such that $F\left(u_{i} p_{i}\right)=u_{i}^{*} \cdot p_{i}^{*}, u_{i}^{*}$ denoting the injection of the direct factor $F^{*}\left(A_{i}\right)$ in B.

According to ([4], $1,18.1$) we only have to show that $\sum_{i=1}^{n} u_{i}^{*} p_{i}^{*}=1_{B}$ and $p_{i}^{*} \cdot u_{j}^{*}=\delta_{i j}$. The first equality is obvious because

$$
\sum_{i=1}^{n} u_{i}^{*} \cdot p_{i}^{*}=\sum_{i=1}^{n} F\left(u_{i} p_{i}\right)=F\left(\sum_{i=1}^{n} u_{i} p_{i}\right)=F\left(1_{A}\right)=1_{B},
$$

any ring-isomorphism being unital. As for the second, from $u_{i}^{*}=\operatorname{ker}\left(1_{B}-F\left(u_{i} p_{i}\right)\right)=\operatorname{equ}\left(1_{B}, F\left(u_{i} p_{i}\right)\right)$ we derive

$$
u_{i}^{*}=F\left(u_{i} p_{i}\right) \cdot u_{i}^{*}=u_{i}^{*} \cdot p_{i}^{*} \cdot u_{i}^{*},
$$

and u_{i}^{*} being mono, we have $p_{i}^{*} \cdot u_{i}^{*}=1$. For $i \neq j$ we also have $u_{i} \cdot p_{i} \cdot u_{j} \cdot p_{j}=0$, and then $F\left(u_{i} p_{i}\right) \cdot F\left(u_{j} p_{j}\right)=u_{i}^{*} \cdot p_{i}^{*} \cdot u_{j}^{*} \cdot p_{j}^{*}=0$. So $p_{i}^{*} \cdot u_{j}^{*}=0$ follows, p_{j}^{*} being epi (in fact, a retraction).

REMARK. Applying this corollary to F^{-1} and $\left(F^{*}\right)^{-1}$, one verifies that A^{\prime} is an indecomposable factor of A iff $F^{*}\left(A^{\prime}\right)$ is an
indecomposable factor of B.
LEMMA 2. If $\left(A_{1} ; u_{1}, p_{1}\right)$ is a direct factor of A then there is a ring-isomorphism $E\left(A_{1}\right) \rightarrow\left(u_{1} p_{1}\right) E(A)\left(u_{1} p_{1}\right)$.

Proof. If we define $W_{1}: E\left(A_{1}\right) \rightarrow\left(u_{1} p_{1}\right) E(A)\left(u_{1} p_{1}\right)$ and $W_{1}^{-1}:\left(u_{1} p_{1}\right) E(A)\left(u_{1} p_{1}\right) \rightarrow E\left(A_{1}\right) \quad$ by $\quad W_{1}\left(\theta_{1}\right)=u_{1} p_{1} \theta_{1} u_{1} p_{1} \quad$ and $W_{1}^{-1}\left(u_{1} p_{1} \theta u_{1} p_{1}\right)=p_{1} \theta u_{1}$, respectively; these are easily seen to be mutually inverse ring-homomorphisms.

COROLLARY. Under the assumptions of the previous lemma we have a ring-isomorphism $E\left(A_{1}\right) \rightarrow E\left(F^{*}\left(A_{1}\right)\right)$.

Proof. We have only to notice that if $E(A)$ and $E(B)$ are ringisomorphic then $u_{1} p_{1} E(A) u_{1} p_{1}$ and $u_{1}^{*} \cdot p_{1}^{*} E(B) u_{1}^{*} \cdot p_{1}^{*}$ are also ringisomorphic.

We are now in a position to prove the main subjacent-level result:
THEOREM 1. Let A_{0} be an additive category with kernels and finite products (coproducts), let A, B be objects in A_{0}, and let U be a direct factor of A. If $F: E(A) \rightarrow E(B)$ is a ming-isomorphism then there is a semi-iinear isomorphism of abelian groups $F_{U}: A_{0}(U, A) \rightarrow A_{0}\left(F^{*}(U), B\right)$, that is to say, F_{U} is a group homomorphism and $F_{U}(\alpha \theta)=F(\alpha) \cdot F_{U}(\theta)$ holds for each α in $E(A)$ and θ in $A_{0}(U, A)$.

Proof. Let u and p, respectively, be the injection and the projection of U in A. Define $F_{U}(\theta)=F(\theta p) . u^{*}$, for each $\theta \in A_{0}(U, A)$, where u^{*}, p^{*} denote the injection and the projection of $F^{*}(U)$ in B, respectively. It is only routine to verify that F_{U} is a group-homomorphism which is semi-linear (in the sense described above). $F_{U}^{-1}: A_{0}\left(F^{*}(U), B\right) \rightarrow A_{0}(U, A)$, defined by $F_{U}^{-1}\left(\theta^{*}\right)=F^{-1}\left(\theta^{*} p^{*}\right) . u$, is easily checked to be a two-sided inverse for F_{U}.

2. The main theorem

Let $A=\left(A_{0}, V, \operatorname{hom} A, I, i, j, L\right)$ be a closed category. We shall be concerned with the following conditions:

Al: A_{0} is an additive category with kernels and finite (bi)products;

A2: V is a faithful functor;
A3: for each nonzero object A in $A_{0}, A_{0}(I, A)$ contains a coretraction;

A4I: the object I is indecomposable (into direct (bi)products);
A42: according to A3, considering I as a direct factor of A, for each ring-isomorphism $F: E(A) \rightarrow E(B)$ there exists an isomorphism $w_{I}: I \rightarrow F^{*}(I)$.

THEOREM 2. Let A be a closed category which satisfies the conditions A1, A2, A3, and one of the conditions A41, A42. If for two objects A, B in A_{0} there is an isomorphism $F:(A A) \rightarrow(B B)$ in A_{0}, the subjacency of which is a ring-homomorphism, then there is a canonical isomorphism $f: A \rightarrow B$; that is $\mathrm{F}=\left(f, f^{-1}\right)$.

Proof. According to A3 we shall denote by p_{A} and u_{A}, respectively, the projection and the injection of I in A, and by p_{B}^{*}, u_{B}^{*} the projection and the injection of $F^{*}(I)$ in B, respectively.

First, let us show that the morphism $F_{I}:(I A) \rightarrow\left(F^{*}(I), B\right)$ in A_{0} given by $F_{I}=\left(u_{B}^{*}, l_{B}\right) . F \cdot\left(p_{A}, l_{A}\right)$ is an isomorphism. We note that if $F=V(F)$, then $F_{I}=V\left(F_{I}\right)$. We shall prove that
$\mathrm{F}_{I}^{-1}:\left(F^{*}(I), B\right) \rightarrow(I A)$, given by $\mathrm{F}_{I}^{-1}=\left(u_{A}, 1_{A}\right) \cdot \mathrm{F}^{-1} \cdot\left(p_{B}^{*}, 1_{B}\right)$, is a twosided inverse for F_{I}. In order to prove that

$$
\begin{aligned}
& \mathrm{F}_{I}^{-1} \cdot \mathrm{~F}_{I}=\left(u_{A}, 1_{A}\right) \cdot \mathrm{F}^{-1} \cdot\left(u_{B}^{*} p_{B}^{*}, 1_{B}\right) \cdot \mathrm{F} \cdot\left(p_{A}, 1_{A}\right), \\
& \mathrm{F}_{I} \cdot \mathrm{~F}_{I}^{-1}=\left(u_{B}^{*}, 1_{B}\right) \cdot \mathrm{F} \cdot\left(u_{A} p_{A}, 1_{A}\right) \cdot \mathrm{F}^{-1} \cdot\left(p_{B}^{*}, 1_{B}\right)
\end{aligned}
$$

are both identities, it is sufficient to prove that

$$
\left(u_{B}^{*} p_{B}^{*}, 1_{B}\right) \cdot \mathrm{F}=\mathrm{F} \cdot\left(u_{A} p_{A}, 1_{A}\right)
$$

because $p_{A} u_{A}=1, p_{B}^{*} u_{B}^{*}=1$. The subjacency functor being faithful, it is sufficient to check this equality at the subjacent level, namely,

$$
A_{0}\left(u_{B}^{*} p_{B}^{*}, I_{B}\right) \cdot F=F \cdot A_{0}\left(u_{A} p_{A}, I_{A}\right)
$$

Applying both members to a $\theta \in E(A)$, one has $u_{B}^{*} p_{B}^{*}=F\left(u_{A} p_{A}\right)$, which is true (see the proof of the corollary of the first lemma).

Now, using the remark following the same corollary, from A4I, I being indecomposable, $F^{*}(I)$ is also indecomposable and so, again by A3, there is an isomorphism $w_{I}: I \rightarrow F^{*}(I)$. If we choose the condition A42 instead of $A 41$, such an isomorphism w_{I} also exists, by hypothesis.

We are now in a position to define the canonical isomorphism $f: A \rightarrow B$ as follows: $f=i_{B}^{-1} \cdot\left(w_{I}, I_{B}\right) \cdot F_{I} \cdot i_{A}$, where i is the natural isomorphism given with the closed category structure in A. It is clear that f, as composite of isomorphisms, is also an isomorphism.

The functor V being faithful, the two ways of requiring the canonicity of f, namely, $V(F)(\alpha)=f . \alpha \cdot f^{-1}$ and $F=\left(f^{-1}, f\right)$, are equivalent. We adopt the first one, which is also equivalent to $F(\alpha) . f=f . \alpha$ for each $\alpha \in E(A)$.

One has to verify that

$$
\begin{aligned}
F(\alpha) \cdot i_{B}^{-1} \cdot\left(w_{I}, 1_{B}\right) \cdot\left(u_{B}^{*}, 1_{B}\right) \cdot \mathrm{F} \cdot\left(p_{A},\right. & \left.1_{A}\right) \cdot i_{A}= \\
& =i_{B}^{-1} \cdot\left(w_{I}, 1_{B}\right) \cdot\left(u_{B}^{*}, 1_{B}\right) \cdot F \cdot\left(p_{A}, 1_{A}\right) \cdot i_{A} \cdot \alpha
\end{aligned}
$$

First, we note that

$$
i_{A} \cdot \alpha, i_{A}^{-1}=\left(1_{I}, \alpha\right)
$$

and

$$
i_{B} \cdot F(\alpha) \cdot i_{B}^{-1}=\left(1_{I}, F(\alpha)\right)
$$

are true, because of the naturality of the isomorphism i. Thus it only remains to show that

$$
\left(u_{B}^{*} \cdot w_{I}, F(\alpha)\right) \cdot F \cdot\left(p_{A}, 1_{A}\right)=\left(u_{B}^{*} \cdot w_{I}, l_{B}\right) \cdot F \cdot\left(p_{A}, \alpha\right)
$$

But this can be readily checked at the subjactnt level: the equality $F(\alpha) \cdot F\left(\alpha \cdot p_{A}\right) \cdot u_{B}^{*} \cdot w_{I}=F\left(\alpha \cdot \theta \cdot p_{A}\right) \cdot u_{B}^{*} \cdot w_{I}$ is true for every $\theta \in A_{0}(I, A), F$ being a ring homomorphism. This completes our proof.

3. Several applications and comments

Let us denote by K the category of vector spaces and linear transformations over a division ring K, by B the category of real Banach spaces and linear continuous transformations, and by L the category of real locally convex spaces and linear continuous transformations.

First, it is obvious that $A l$ is fulfilled in any one of the three categories considered above. K and B have well-known structures of closed categories, and L also admits such a structure, obtained by considering on the vector space of the linear continuous transformations the locally convex topology of σ-convergence, with σ the family of the bounded subsets of the domain.

Next, for these closed categories, the division ring K in K and the real line in B and L are the corresponding objects I. Indecomposables are one-dimensional spaces and so A4l is fulfilled. All these categories being concrete, the Condition A2 is satisfied. Finally, Condition A3 holds in all of these categories, because for each nonzero element in a space in any of these categories, there is a nontrivial functional which takes the value l (identity of K or real number, respectively) on this element.

In fact, the largest category of topological vector spaces in which Condition A3 is satisfied contains all the spaces which admit a nontrivial functional, or equivalently (by a theorem of LaSalle), those which contain a proper open and convex subset. Unfortunately this is not a "nice" category for the rest of our conditions.

From another point of view, let R be an associative ring with identity, and let R-mod be the closed category of left unitary
R-modules. One can now raise the problem: Al, A2 being satisfied in R-mod, under what conditions on the ring R are Condition $A 3$ and one of the Conditions A41 and A42 satisfied?

Unfortunately again, the answer is a deceiving one: R must be a division ring. Indeed, Condition A3 implies the following concrete condition: the left R-module R^{R} must be a direct summand of every nonzero left R-module.

Let us suppose that for a ring R this condition holds. Let R^{M} be a simple left R-module (such ones do exist, for example, R / m for a left maximal ideal m in R, considered as a left R-module). R^{R} being isomorphic with a cyclic submodule of K^{M}, it follows that R^{R} is actually isomorphic with $\quad M$, and so simple as a left R-module.

Then R is a not necessarily commutative division ring. For this last comment, I am indebted to Mr Nae Popescu.

References

[1] M. Eidelheit, "On isomorphisms of rings of linear operators", Studia Math. 9 (1940), 97-105.
[2] Samuel Eilenberg and G. Max Kelly, "Closed categories", Proceedings of the Conference on Categorical Algebra, La Jolla, 1965, 421-562 (Springer-Verlag, Berlin, Heidelberg, New York, 1966).
[3] Shouro Kasahara, "Sur l'espace des endomorphismes continus de l'espace vectoriel localement convexe", Math. Japon. 3 (1955), 111-116.
[4] Barry Mitchell, Theory of categories (Pure and Applied Mathematics, 17. Academic Press, New York and London, 1965).

Department of Mathematics, Universitatea "Babes-Bolyai", Cluj-Napoca, Roumania.

