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Abstract. Let �n be the n-dimensional hyperbolic space with n ≥ 2. Suppose that
G is a discrete, sense-preserving subgroup of Isom�n, the isometry group of �n. Let
p be the projection map from �n to the quotient space M = �n/G. The first goal of
this paper is to prove that for any a ∈ ∂�n (the sphere at infinity of �n), there exists an
open neighbourhood U of a in �n ∪ ∂�n such that p is an isometry on U ∩ �n if and
only if a ∈ o�(G) (the domain of proper discontinuity of G). This is a generalization
of the main result discussed in the work by Y. D. Kim (A theorem on discrete, torsion
free subgroups of Isom�n, Geometriae Dedicata 109 (2004), 51–57). The second goal
is to obtain a new characterization for the elements of Isom�n by using a class of
hyperbolic geometric objects: hyperbolic isosceles right triangles. The proof is based
on a geometric approach.

2000 Mathematics Subject Classification. Primary: 30F35, 51M10; Secondary:
20H10, 22E40.

1. Introduction. Let n ≥ 2, �n be the n-dimensional hyperbolic space and �n be
the Poincaré ball model of �n, that is, �n = {x = (x1, x2, . . . , xn) ∈ �n : |x| < 1} with
length differential ds = 2|dx|

1−|x|2 . Let ∂�n denote the sphere at infinity of �n. We use �n−1

to denote ∂�n and Isom�n the full group of the isometries of �n.
In this paper, G always denotes a sense-preserving subgroup of Isom�n. The action

of G on �n extends to a continuous action on the compactification of �n by the sphere
at infinity ∂�n. As in [6], let �(G) and �(G) denote the limit set and the domain of
discontinuity of G, respectively.

In [10, Section 12.1], the following is obtained:

PROPOSITION 1.1. Suppose that G is discrete and a ∈ �(G). Then there exists an open
neighbourhood U of a in �n ∪ �(G) such that for each f ∈ G, either U ∩ f (U) = ∅ or
U = f (U) and f (a) = a.

For a ∈ ∂�n, if there exists an open neighbourhood U of a in �n ∪ ∂�n such that for
each non-trivial element f ∈ G, U ∩ f (U) = ∅, then a is called a properly discontinuous
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point of G. The set of all properly discontinuous points of G, which is called the domain
of proper discontinuity, is denoted by o�(G) (see [9] for the case n = 3). It is obvious that
o�(G) ⊂ �(G) and �(G)\o�(G) consists of only fixed points of some elliptic elements
of G. If G is discrete and not finite, then �(G) 
= ∅ if and only if o�(G) 
= ∅. These
imply following:

PROPOSITION 1.2. If G is discrete and torsion free, then o�(G) = �(G).

PROPOSITION 1.3. Suppose that G is discrete and a ∈ ◦�(G). Then there exists an
open neighbourhood U of a in �n∪◦�(G) such that for each non-trivial element f ∈ G,
U ∩ f (U) = ∅.

Let p : �n → M = �n/G be the projection map, where G is discrete, d� be the
hyperbolic metric of �n and d be defined on M as follows:

d(p(x), p(y)) = inf
f ∈G

d�(x, f (y)) for x, y ∈ �n.

As the main result of [6], Kim proved the following:

THEOREM K. Suppose that G is a discrete, torsion-free subgroup and a ∈ �(G). Then
there exists an open neighbourhood U of a in �n ∪ �(G) such that

d(p(x), p(y)) = d�(x, y) for x, y ∈ U ∩ �n.

Firstly, we will prove the following:

THEOREM 1.4. Suppose that G is a discrete subgroup. Then for any a ∈ ∂�n, there
exists an open neighbourhood U of a in �n ∪ ∂�n such that

d(p(x), p(y)) = d�(x, y) for x, y ∈ U ∩ �n

if and only if a ∈ o�(G).

As a corollary of Theorem 1.4 and Proposition 1.2, we can easily get the following:

COROLLARY 1.5. Suppose that G is a discrete, torsion-free subgroup and a ∈ ∂�n.
Then there exists an open neighbourhood U of a in �n ∪ ∂�n such that

d(p(x), p(y)) = d�(x, y) for x, y ∈ U ∩ �n

if and only if a ∈ �(G).

REMARK 1.1. Corollary 1.5 shows that Theorem 1.4 is a generalization of
Theorem K .

A map f of �n to itself is called r-hyperplane preserving if the image of any
r-dimensional hyperplane in �n under f is still an r-dimensional hyperplane. When
r = 1, we call the corresponding map f to be a geodesic-preserving map in �n. The
relation between isometries and r-hyperplane preserving maps in �n has been studied
by many authors. For instance, in [5], Jeffers proved

THEOREM Je ([5, Theorem 3.6]). Suppose that f : �n → �n is a bijection. If f is
geodesic preserving, then f is an isometry, i.e., f ∈ Isom�n.
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Recently, Li, Wang and Yao [7, 8] studied this relation too and obtained the
following generalization:

THEOREM LWY1 ([7, Theorem 2] and [8, Theorem 3]). Suppose that f : �n → �n

is an r-hyperplane preserving map. Then f is an isometry if and only if f is non-degenerate.

Here, f is called degenerate if the image f (�n) of �n under f is an r-hyperplane.
The second goal of this paper is to study this relation further. By using a class of

hyperbolic geometric objects: hyperbolic isosceles right triangles, we get the following:

THEOREM 1.6. Suppose f : �n → �n is a continuous bijection. Then f is an isometry
in �n if and only if f preserves hyperbolic isosceles right triangles in �n.

Here, we say that a map f : �n → �n preserves hyperbolic isosceles right triangles
in �n if for every hyperbolic isosceles right triangle in �n, its image under f is still a
hyperbolic isosceles right triangle in �n and vertices correspond to vertices under f .

2. The proof of Theorem 1.4. For any non-trivial sense-preserving element f ∈
Isom�n, f is called

(1) elliptic if it has a fixed point in �n;
(2) parabolic if it has only one fixed point in ∂�n and none in �n;
(3) loxodromic if it has two fixed points in ∂�n and none in �n.

Suppose f is loxodromic and its fixed points are x and y. We say that x is attractive if
f r(z) → x as r → +∞ for any z ∈ ∂�n−{y}. And y is called repulsive (cf. [4]). Then y
is the attractive fixed point of f −1 and x the repulsive one.

2.1. Preliminary lemmas. As in [14], let �n denote the n-dimensional Clifford
group; see [1, 2, 12–14, 16] etc. for the representation of sense-preserving Möbius
transformations by using the Clifford numbers in �n and its applications. It easily
follows from [1, Theorem A] or [2, Vahlen’s theorem] that

LEMMA 2.1. Every sense-preserving element f in Isom�n has the following
representation:

f =
(

a b
b′ a′

)
,

where a, b ∈ �n−1 ∪ {0}, ab∗, āb ∈ �̄n−1 and |a|2 − |b|2 = 1.

Let f = ( a b
b′ a′

) ∈ Isom�n be sense preserving and b 
= 0, i.e., f (∞) 
= ∞. Then

S(cf , rf ) =
{

x ∈ �n−1 : |x − (b′)−1a′| = 1
|b|

}

is called the isometric sphere of f , where cf = (b′)−1a′ and rf = 1
|b| are the centre and

the radius of S(cf , rf ), respectively.
For any z ∈ �n ∪ ∂�n, let

StabG(z) = {g ∈ G : g(z) = z},
which is called the stabilizer of z in G.
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By using Lemma 2.1, we can get the following generalization of [6, Proposition 1]:

LEMMA 2.2. Suppose that G is a discrete subgroup of Isom�n and G\StabG(O) 
=
∅, where O denotes the origin of �n. For f ∈ G\StabG(O), let f = Af ◦ if be the
decomposition of f as in [6, Theorem 3], where if is the reflection in the sphere S(cf , rf )
(cf. [3]). Then

sup
f ∈G\StabG(O)

rf < ∞.

Proof. Suppose

sup
f ∈G\StabG(O)

rf = ∞.

Then there is an infinite sequence {fm} in G such that

rfm → ∞.

By Lemma 2.1, we may assume that

fm =
(

am bm

b′
m a′

m

)
,

where bm 
= 0.
Then

|bm|−1 = rfm → ∞.

This yields

bm → 0 and |am| → 1

since |am|2 − |bm|2 = 1.
It follows from

fm(O) = amb∗
m

|am|2
that

fm(O) → O as m → ∞.

This implies that O ∈ �(G) ⊂ �n−1. This is the desired contradiction. �
We recall the following result from [10].

LEMMA 2.3 [10, Theorem 5.5.1]. If G is discrete and purely elliptic (that is, each
non-trivial element of G is elliptic), then there exists η ∈ �n such that f (η) = η for each
f ∈ G.

REMARK 2.1. The condition ‘G being discrete’ in Lemma 2.3 cannot be removed
(cf. [15]).

LEMMA 2.4. Suppose that G is discrete. For any a ∈ ∂�n, if there exists an open
neighbourhood U of a in �n ∪ ∂�n such that

d(p(x), p(y)) = d�(x, y) for x, y ∈ U ∩ �n,

then U ∩ ∂�n ⊂ �(G). In particular, a ∈ �(G).
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Proof. Suppose that there exists some b ∈ �(G) ∩ (U ∩ ∂�n), for the contradiction.
Since loxodromic fixed points are dense in the limit set (see, for example, [11,
Theorem B1] or [3, Theorem 5.3.8]), we may assume that b is fixed by some f ∈ G
which is loxodromic or parabolic. Without loss of generality, we assume that b is
the attractive fixed point of f if f is loxodromic. For any x ∈ U ∩ �n, there exists a
sufficiently large number r > 0 such that f r(x) ∈ U ∩ �n and f r(x) 
= x.

Let y = f r(x). Then

d(p(x), p(y)) = inf
g∈G

d�(x, g(y)) ≤ d�(x, f −r(y)) = 0 < d�(x, y).

This is the desired contradiction. �

2.2. The proof of Theorem 1.4. In the proof, we use the Poincaré ball model �n

of �n.
Since dE (the topological Euclidean metric on �n) is invariant under the subgroup

StabG(O), it implies that, except for Theorem 2 and Proposition 1, all other theorems,
propositions and lemmas used in the proof of [6, Theorem 1] (i.e., Theorem K) also
hold in the case of G being only discrete. Hence, the proof of the sufficiency follows
from Proposition 1.3, Lemma 2.2 and similar discussions as those in [6].

Here, we prove the necessity.
Since the assumptions in Lemma 2.4 are satisfied it follows that a ∈ �(G). Suppose

a /∈ o�(G), for the contradiction. Then there exists some elliptic element h ∈ G such that
h(a) = a. Then StabG(a) is non-trivial and purely elliptic. It follows from Lemma 2.3
that there is η ∈ �n such that

g(η) = η for any g ∈ StabG(a).

Let A be the hyperbolic geodesic in �n with the endpoint a passing through η. Let
ω ∈ �n−1 be the other endpoint of A. Then ω is also fixed by each element of StabG(a).
This implies that there exists a neighbourhood V ⊂ �n−1 ∪ �n of a such that

V ⊂ U and g(V ) = V for every g ∈ StabG(a).

We can find x ∈ V ∩ �n and g ∈ StabG(a) such that g(x) 
= x. Let y = g(x). Then y ∈ V
and

d�(x, y) > 0,

but

d(p(x), p(y)) = 0.

This contradiction completes the proof.

3. The proof of Theorem 1.6. Here, we also use the Poincaré ball model �n of �n.
We always use A, B, C, . . . to denote the points in �n. Also we denote by A′, B′,

C′, . . . the images of A, B, C, . . . under f , by ÂB the geodesic segment between A and
B, by �ABC the hyperbolic triangle with vertices A, B and C, and by ∠ABC the angle
between ÂB and B̂C. Recall that O denotes the origin of �n.
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Here, we assume that f : �n → �n is a continuous bijection that preserves the
hyperbolic isosceles right triangles in �n and fixes the origin O. For any hyperbolic
triangle AOB, we use �2

�AOB to denote the intersection of the two-dimensional
hyperplane in �̄n containing �AOB and �n, which is a two-dimensional unit disk
with the centre O.

3.1. Preliminary lemmas.

LEMMA 3.1. For any hyperbolic isosceles right triangle, it is uniquely determined by
its acute angle.

Proof. It easily follows from [3, Theorem 7.11.2]. �

LEMMA 3.2. Suppose �AOB is a hyperbolic isosceles right triangle in �n and ∠AOB
is the right angle. Then ∠A′O′B′ is the right angle in �A′O′B′.

Proof. Assume the contradiction. Without loss of generality, we may assume that
∠O′A′B′ is the right angle in �O′A′B′. We may find a point C ∈ �2

�AOB which satisfies
that d�(O, A) = d�(A, C), ∠OAC is a right angle and ÔC intersects ÂB with the
intersection point D. Then D lies in the interior of ÂB and �OAC is a hyperbolic
isosceles right triangle. Since f is a bijection and preserves hyperbolic isosceles right
triangles, we see that �O′A′C′ is also a hyperbolic isosceles right triangle and D′ is an
interior point of Â′B′. Obviously, ∠O′A′C′ > π

2 . It follows from [3, Theorem 7.16.2]
that this is a contradiction. �

LEMMA 3.3. Suppose �AOB is a hyperbolic isosceles right triangle in �n and ∠AOB
is an acute angle. Then ∠A′O′B′ is also an acute angle.

Proof. Assume the contradiction. Then ∠A′O′B′ is the right angle in �A′O′B′. We
may find a point C in �2

�AOB such that �AOC is a hyperbolic isosceles right triangle
with ∠AOC being the right angle and ÔB intersects ÂC with the intersection point D.
Then �A′O′C′ > π

2 and D′ is an interior point of Ô′B′. This is a contradiction by [3,
Theorem 7.16.2]. �

LEMMA 3.4. Suppose �AOB is a hyperbolic isosceles right triangle with ∠OAB
being the right angle. Then ∠O′A′B′ is a right angle.

Proof. Assume the contradiction. By Lemma 3.3, we know that ∠A′O′B′ is an
acute angle. Hence, ∠O′B′A′ is the right angle. Choose two points D and E in the
interior of ÔA and ÂB, respectively, such that d�(D, A) = d�(A, E). Then �D′A′E′ is
a hyperbolic isosceles right triangle. Obviously, D′ and E′ are interior points in Â′O′
and Â′B′, respectively. By Lemma 3.1, this is the desired contradiction. �

LEMMA 3.5. f preserves any angle with the vertex origin O.

Proof. Let ∠AOB be any angle in �n. We come to prove that ∠AOB is the same as
∠A′O′B′. By Lemma 3.2 and the hypothesis f being a bijection, we may assume that
∠AOB is an acute angle. Let us start our discussions with the following special cases.

Case I. ∠AOB = π
p with p > 4.
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By [3, Theorem 7.16.2], we may assume that �AOB is a hyperbolic isosceles right
triangle with the angle ∠OAB being right angle. In �2

�AOB, let

K1 = {z ∈ �2
�AOB : d�(O, z) = d�(O, A)},

K2 = {z ∈ �2
�AOB : d�(O, z) = d�(O, B)}

and the rays ri (i = 1, 2, . . . , 2p) from O satisfy that the 2p rays ri are anticlockwise
arranged from r1 to r2p and each angle formed by ri and ri+1 is π

p , where we assume
that A lies in r1 and B in r2.

We also let Ai be the intersection point of K1 and ri, and Bi the one of K2 and ri,
where i = 1, 2, . . . , 2p, A1 = A and B2 = B.

Then each hyperbolic triangle �AiOBi+1 is an isosceles right one (i = 1, 2, . . . , 2p),
where B2p+1 = B1, and the union of the closures of all �AiOBi+1 (i = 1, 2, . . . , 2p)
consists of a neighbourhood of O. By Lemmas 3.3 and 3.4, and the hypothesis f being
a bijection, we know that ∠A′O′B′ = ∠AOB = π

p .

Case II. ∠AOB = π
3 .

By dividing ∠AOB into two π
6 -valued angles and Case I, we see that ∠A′O′B′ =

∠AOB.

Case III. ∠AOB = π
4 .

Similar discussions as in Case II show that ∠A′O′B′ = π
4 .

Case IV. ∠AOB = qπ

p , where the two natural numbers p and q are prime.

Since ∠AOB is acute, we see that 0 < 2q < p. By the discussions as mentioned
above, we may assume that p > 4. Let us divide ∠AOB into q2 many π

pq -valued angles.
Then it follows from Case I that ∠A′O′B′ = ∠AOB.

For general case, since f is continuous, it follows from Case IV that ∠A′O′B′ =
∠AOB. The proof is complete. �

3.2. The proof of Theorem 1.6. The necessity is obvious. Hence, we only need to
prove the sufficiency.

By composite with some element in Isom�n, we may assume that f fixes O. Let A
be an arbitrary point in �n which is different from O. Then we can find a hyperbolic
isosceles right triangle �AOB such that ÔA is a side of �AOB and ∠AOB is an acute
angle. It follows from Lemmas 3.1, 3.2 and 3.5 that d�(O, A) = d�(O′, A′). Then for
any points B and C in �n, we see that d�(O′, B′) = d�(O, B), d�(O′, C′) = d�(O, C)
and by Lemma 3.5, we also see that ∠A′O′B′ = ∠AOB. These imply that d�(B′, C′) =
d�(B, C). These mean that f is an isometry. This completes our proof.
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