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Abstract This paper studies topological and metric rigidity theorems for hypersurfaces in a Euclidean
sphere. We first show that an n(� 2)-dimensional complete connected oriented closed hypersurface with
non-vanishing Gauss–Kronecker curvature immersed in a Euclidean open hemisphere is diffeomorphic to
a Euclidean n-sphere. We also show that an n(� 2)-dimensional complete connected orientable hyper-
surface immersed in a unit sphere Sn+1 whose Gauss image is contained in a closed geodesic ball of
radius less than π/2 in Sn+1 is diffeomorphic to a sphere. Finally, we prove that an n(� 2)-dimensional
connected closed orientable hypersurface in Sn+1 with constant scalar curvature greater than n(n − 1)
and Gauss image contained in an open hemisphere is totally umbilic.
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1. Introduction

A classical result in the theory of submanifolds states that an n(� 2)-dimensional con-
nected closed oriented hypersurface in a Euclidean space R

n+1 with non-vanishing Gauss–
Kronecker curvature is diffeomorphic to an n-sphere [6]. Recall that the Gauss–Kronecker
curvature of a hypersurface M in a Euclidean space is defined to be the product of all the
princpal curvatures of M . Similar differentiable sphere theorems for hypersurfaces in a
Riemannian manifold have recently been obtained. For example, Sacksteder [14] showed
that an immersed closed orientable hypersurface with non-negative sectional curvature
in R

n+1 is the boundary of a convex body and thus is diffeomorphic to a sphere. Since
a closed hypersurface M in R

n+1 has at least one elliptic point, we know that if M

has non-vanishing Gauss–Kronecker curvature, then it has positive sectional curvature.
Thus, Sacksteder’s theorem generalized the above classical result. Furthermore, do Carmo
and Warner [7] proved that an n(� 2)-dimensional connected closed oriented hypersur-
face with sectional curvature no less than 1 in Sn+1 is diffeomorphic to an n-sphere.
Alexander [3] obtained a similar theorem for compact connected orientable hypersur-
faces in a complete simply connected Riemannian manifold of non-positive sectional
curvature. On the other hand, it is not true that an oriented closed hypersurface with
non-vanishing Gauss–Kronecker curvature in Sn+1 is diffeomorphic to a sphere. Here, the
Gauss–Kronecker curvature of a hypersurface M in Sn+1 is also defined as the product
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of all the principal curvatures of M . For example, for any positive constants r1, r2 with
r1 + r2 = 1 and any integer k ∈ {1, . . . , n − 1}, the hypersurfaces

Sk(r1) × Sn−k(r2) := {(x, y) | x ∈ R
k+1, y ∈ R

n−k+1, |x|2 = r1, |y|2 = r2}

of Sn+1 have non-vanishing Gauss–Kronecker curvature but they are clearly not diffeo-
morphic to a sphere. Thus it is natural to find conditions so that a closed hypersurface
with non-vanishing Gauss–Kronecker curvature in Sn+1 is diffeomorphic to a sphere. In
this paper, we obtain the following differentiable sphere theorem.

Theorem 1.1. Let M be an n(� 2)-dimensional connected oriented closed hypersur-
face immersed in Sn+1 with non-vanishing Gauss–Kronecker curvature. If M is contained
in an open hemisphere, then M is diffeomorphic to a Euclidean n-sphere.

We then prove the following theorem.

Theorem 1.2. Let M be an n(� 2)-dimensional complete connected orientable hyper-
surface immersed in Sn+1 and denote by N a unit normal vector field globally defined
on M . If the Gauss image of M under N is contained in a closed geodesic ball of radius
less than π/2 in Sn+1, then M is diffeomorphic to a Euclidean n-sphere.

Hypersurfaces with constant scalar curvature in Euclidean space or spheres have been
studied extensively recently. For surfaces in R

3 the combined classical results of Hilbert
and Hartman–Nirenberg classify complete surfaces with non-zero constant curvature as
standard spheres and those with zero curvature as planes or cylinders [8]. Also, a well-
known result of Cheng and Yau [4] classifies a complete hypersurface Mn (n > 2) with
constant scalar curvature and non-negative sectional curvature in En+1 as a round hyper-
sphere, a hyperplane or a generalized cylinder Sk(c)×En−k, 1 � k � n−1. Similarly, work
by Li [10] showed that a compact hypersurface Mn of constant scalar curvature n(n−1)r
with r � 1 in Sn+1, whose squared norm of the second fundamental form is bounded
above by a certain constant which depends only on n and r, is isometric to the totally
umbilical sphere Sn(r) of radius r or the Riemannian product S1(

√
1 − c2) × Sn−1(c) for

a certain value of the constant c. Recently, Alencar et al . [1] have given an interesting gap
theorem for closed hypersurfaces with constant scalar curvature n(n−1) in a unit sphere.
Aslo, one can find some interesting results about minimal hypersurfaces in a sphere with
constant scalar curvature in, for example, [5], [12], [13] and [15].

In the present paper, we obtain the following characterization of totally umbilic spheres
in a unit sphere in terms of scalar curvature and Gauss map.

Theorem 1.3. Let M be an n(� 2)-dimensional connected closed orientable hyper-
surface of constant scalar curvature n(n − 1)r with r > 1 immersed in Sn+1. Let N be a
unit normal vector field of M and assume that N(M) is contained in an open hemisphere.
Then M is totally umbilic.
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2. Proofs of the theorems

Before proving our results, we first fix some notation. For an oriented hypersurface M of
Sn+1 ⊂ R

n+2, we shall denote by N a unit vector field globally defined on M . Let 〈 , 〉
be the Riemannian metric on R

n+2 as well as those induced on Sn+1 and M . Assume
that ∇̃, ∇̄ and ∇ are the Riemannian connections of R

n+2, Sn+1 and M , respectively.
We have

∇̃XY = (Xy1, . . . , Xyn+2) (2.1)

for X, Y = (y1, . . . , yn+2) ∈ X (Rn+2). Let A stand for the shape operator of M in Sn+1

associated with N . Then

∇̃XY = ∇̄XY − 〈X, Y 〉x = ∇XY + 〈AX, Y 〉N − 〈X, Y 〉x (2.2)

and

A(X) = −∇̃XN = −∇̄XN (2.3)

for all tangent vector fields X, Y ∈ X (M).

Proof of Theorem 1.1. Let a ∈ Sn+1 and assume that M is contained in the upper
open hemisphere determined by a. That is,

M ⊂ {y ∈ Sn+1 | 〈y, a〉 > 0}. (2.4)

Let

Sn
a = {x ∈ Sn+1 | 〈x, a〉 = 0}

be the equator determined by a and define a map ψ from M to Sn
a as

ψ(x) =
N(x) − 〈N(x), a〉a√

1 − 〈N(x), a〉2
.

Since 〈N(x), x〉 = 0, ∀x ∈ M , it follows from (2.4) that N(x) �= ±a, ∀x ∈ M , and so ψ

is a well-defined map. We shall show that ψ is a diffeomorphism. In order to see this, let
us calculate the tangent map dψ of ψ. For any x ∈ M and any v ∈ TxM , it is easy to
see from (2.1) and (2.3) that

dψx(v) =
−Av + 〈Av, a〉a√

1 − 〈N(x), a〉2
− 〈N(x), a〉〈Av, a〉

(1 − 〈N(x), a〉2)3/2 (N(x) − 〈N(x), a〉a).

Thus, noticing that 〈Av, N(x)〉 = 0, we get

〈dψx(v), dψx(v)〉 =
|Av|2(1 − 〈N(x), a〉2) − 〈Av, a〉2

(1 − 〈N(x), a〉2)2 .
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By the Schwarz inequality,

〈Av, a〉2 = 〈Av, aT 〉2 � |Av|2|aT |2,

where aT denotes the projection of a in TxM . Thus it follows from

1 − 〈N(x), a〉2 − |aT |2 = 〈a, x〉2

that

〈dψx(v), dψx(v)〉 � |Av|2〈a, x〉2
(1 − 〈N(x), a〉2)2 . (2.5)

Observe that M has non-vanishing Gauss–Kronecker curvature, which implies that, if
v �= 0, then Av �= 0. Since 〈a, x〉 �= 0, ∀x ∈ M , we conclude from (2.5) that, if v �= 0, then
dψx(v) �= 0. Hence ψ is a local diffeomorphism by the inverse function theorem. Since
M is compact, ψ is a covering map (cf. [6,11]). But M is connected and Sn

a is simply
connected, so we know that ψ is a diffeomorphism (cf. [6,11]). This completes the proof
of Theorem 1.1. �

Proof of Theorem 1.2. Fix p ∈ Sn+1, r ∈ (0, π/2) and denote by d the distance
function on Sn+1. Assume that N(M) is contained in the geodesic ball

B(p, r) = {x ∈ Sn+1 | d(x, p) � r}.

Let

Sn
p = {x ∈ Sn+1 | 〈x, p〉 = 0}

be the equator determined by p and define a map φ from M to Sn
p as

φ(x) =
x − 〈x, p〉p√
1 − 〈x, p〉2

.

Our condition ‘N(M) ⊂ B(p, r)’ implies that x �= ±p, ∀x ∈ M . Hence φ is a well-defined
map. For any x ∈ M and any v ∈ TxM , a straightforward computation shows that

dφx(v) =
v − 〈v, p〉p√
1 − 〈x, p〉2

+
〈x, p〉〈v, p〉

(1 − 〈x, p〉2)3/2 (x − 〈x, p〉p).

It then follows from 〈v, x〉 = 0 that

〈dφx(v), dφx(v)〉 =
1

(1 − 〈x, p〉2)2 ((1 − 〈x, p〉2)|v|2 − 〈v, p〉2). (2.6)

We have from the Schwarz inequality that

〈v, p〉2 = 〈v, pT 〉2 � |pT |2|v|2,
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where pT denotes the projection of p in TxM . On the other hand, we have

p = pT + 〈p, x〉x + 〈p, N(x)〉N(x),

which gives
1 − 〈x, p〉2 − |pT |2 = 〈p, N(x)〉2.

Thus we obtain from (2.6) that

〈dφx(v), dφx(v)〉 � 1
(1 − 〈x, p〉2)2 〈p, N(x)〉2|v|2

� 〈p, N(x)〉2|v|2. (2.7)

But

∠(N(x), p) = d(N(x), p) � r,

so we know that
〈N(x), p〉2 � cos2 r.

Therefore,

〈dφx(v), dφx(v)〉 � cos2 r|v|2.

It then follows that

φ∗(〈 , 〉Sn
p
) � cos2 r〈 , 〉. (2.8)

Thus φ is a local diffeomorphism. Since 〈 , 〉 is a complete Riemannian metric on M , the
same is true for the homothetic metric

〈̃ , 〉 = cos2 r〈 , 〉.

Equation (2.8) means that the map

φ : (M, 〈̃ , 〉) → (Sn
p , 〈 , 〉Sn

p
)

increases distance. If a map from a connected complete Riemannian manifold Mn
1 into

another connected Riemannian manifold Mn
2 increases the distance, then it is a covering

map and M2 is complete [9, Lemma 8.1]. Thus φ is a covering map. But Sn
p is simply

connected and we conclude that φ is a global diffeomorphism. This completes the proof
of Theorem 1.2. �

If M is a compact hypersurface in Sn+1 such that N(M) is contained in an open
hemisphere, then N(M) is contained in a geodesic ball of radius less than π/2. Thus the
following corollary of Theorem 1.2 holds.

Corollary 2.1. Let M be an n(� 2)-dimensional complete connected closed orientable
hypersurface immersed in Sn+1. If the Gauss image of M is contained in an open hemi-
sphere, then M is diffeomorphic to an n-sphere.
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Proof of Theorem 1.3. Let a ∈ Sn+1 and assume that N(M) is contained in the
upper open hemisphere determined by a. That is,

N(M) ⊂ {y ∈ Sn+1 | 〈y, a〉 > 0}.

Let ∆ be the Laplacian operator acting C∞(M). Now consider the height function 〈x, a〉
and the function 〈N, a〉, which are defined on M . From (2.1) and (2.2) we know that
their gradients are given by

∇〈a, x〉 = aT and ∇〈a, N〉 = −A(aT ), (2.9)

where

aT = a − 〈a, N〉N − 〈a, x〉x (2.10)

is tangent to M . Taking the covariant derivative of (2.10) and using (2.2) and (2.3), we
get

∇XaT = 〈a, N〉A(X) − 〈a, x〉X (2.11)

for X ∈ X (M). Thus, the Hessian of 〈a, x〉 is given by

∇2〈a, x〉(X, Y ) = 〈∇XaT , Y 〉 = 〈a, N〉〈AX, Y 〉 − 〈a, x〉〈X, Y 〉,

for X, Y ∈ X (M), and its Laplacian is

∆〈a, x〉 = nH〈a, N〉 − n〈a, x〉, (2.12)

where H = (1/n) tr(A) is the mean curvature function of M . The Hessian of 〈a, N〉 is
given by

∇2〈a, N〉(X, Y ) = −〈∇X(AaT ), Y 〉
= −〈(∇XA)(aT ), Y 〉 − 〈A(∇XaT ), Y 〉
= −〈(∇XA)(aT ), Y 〉 − 〈a, N〉〈AX, AY 〉 + 〈a, x〉〈AX, Y 〉, (2.13)

for X, Y ∈ X (M). It follows from the Codazzi equation that

(∇XA)(aT ) = (∇aT A)(X).

Thus the Laplacian of 〈a, N〉 is

∆〈a, N〉 = − tr(∇aT A) − 〈a, N〉|A|2 + nH〈a, x〉
= −n〈∇H, a〉 − 〈a, N〉|A|2 + nH〈a, x〉. (2.14)
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Consider the vector field Z = A(∇〈a, N〉). Take a local orthonormal frame {ei}n
i=1 on M .

Then the divergence of Z is given by

div Z =
∑

i

〈∇ei
(A(∇〈a, N〉)), ei〉

=
∑

i

〈A(∇ei∇〈a, N〉) + (∇eiA)(∇〈a, N〉), ei〉

=
∑

i

(〈Aei,∇ei∇〈a, N〉〉 + 〈(∇∇〈a,N〉A)(ei), ei〉)

=
∑

i

∇2〈a, N〉(ei, Aei) + n〈∇〈a, N〉,∇H〉. (2.15)

Integrating (2.15) on M and using the divergence theorem and (2.14), we get

0 =
∫

M

(∑
i

∇2〈a, N〉(ei, Aei) + n〈∇〈a, N〉,∇H〉
)

=
∫

M

(∑
i

∇2〈a, N〉(ei, Aei) − nH∆〈a, N〉
)

=
∫

M

(∑
i

∇2〈a, N〉(ei, Aei)
)

+
∫

M

(n2HaT H + nH〈a, N〉|A|2 − n2H2〈a, x〉). (2.16)

Now assume that {ei}n
i=1 is a basis of orthonormal principal directions corresponding to

the principal curvatures λ1, . . . , λn. Then Aei = λiei, i = 1, . . . , n. Thus, by using (2.13),
we have∑

i

∇2〈a, N〉(ei, Aei) =
∑

i

λi∇2〈a, N〉(ei, ei)

= −
∑

i

(λi〈(∇ei
A)(aT ), ei〉 + 〈a, N〉λ3

i ) + 〈a, x〉|A|2

= −
∑

i

(〈∇aT (Aei), Aei〉 + 〈a, N〉λ3
i ) + 〈a, x〉|A|2

= − 1
2aT |A|2 −

∑
i

〈a, N〉λ3
i + 〈a, x〉|A|2. (2.17)

It follows from the Gauss equation that

n(n − 1)(r − 1) = n2H2 − |A|2. (2.18)

Since r is a constant, we have

aT ((nH)2 − |A|2) = 0. (2.19)

Substituting (2.17) and (2.19) into (2.16), we get∫
M

(
(|A|2 − n2H2)〈a, x〉 +

(
nH|A|2 −

∑
i

λ3
i

)
〈a, N〉

)
= 0. (2.20)
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Since (nH)2 − |A|2 is a constant, we know from (2.12) that∫
M

(|A|2 − n2H2)〈a, x〉 =
∫

M

H(|A|2 − n2H2)〈a, N〉. (2.21)

Consequently, we have∫
M

(
H(|A|2 − n2H2) + nH|A|2 −

∑
i

λ3
i

)
〈a, N〉 = 0. (2.22)

Set S = |A|2 − nH2; then∑
i

λ3
i = nH3 + 3HS +

∑
i

(λi − H)3. (2.23)

It follows by combining (2.22) and (2.23) that∫
M

(
(n − 2)HS −

∑
i

(λi − H)3
)

〈N, a〉 = 0. (2.24)

Before we can finish the proof of Theorem 1.3, we will need the following lemma.

Lemma 2.2 (see [10]). Let ai, i = 1, . . . , n, be real numbers satisfying
∑

i ai = 0
and

∑
i a2

i = S. Then

− n − 2√
n(n − 1)

S3/2 �
∑

i

a3
i � n − 2√

n(n − 1)
S3/2 (2.25)

and one of the equalities holds if and only if at least (n − 1) of the ai are equal.

Since r > 1, we know from (2.18) that H(x) �= 0, ∀x ∈ M . Thus either H > 0 on M

or H < 0 on M , since M is connected. Consider the case H > 0 on M . In this case, by
using r > 1 and (2.18), we obtain

H >

√
S

n(n − 1)
.

Since
∑

i(λi − H) = 0,
∑

i(λi − H)2 = S, it follows from Lemma 2.2 that

(n − 2)HS −
∑

i

(λi − H)3 � (n − 2)S
(

H −
√

S

n(n − 1)

)
� 0.

Therefore, since 〈a, N〉 > 0 on M , (2.24) implies that S ≡ 0. That is, M is totally
umbilic. The case H < 0 on M is similar and will be omitted. This completes the proof
of Theorem 1.3. �
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Note added in proof

The authors were informed recently that Theorem 1.3 in this paper has also been proved,
by a different method, in [2].

References

1. H. Alencar, M. do Carmo and W. Santos, A gap theorem for hypersurfaces of the
sphere with constant scalar curvature one, Comment. Math. Helv. 77 (2002), 549–562.

2. H. Alencar, H. Rosenberg and W. Santos, On the Gauss map of hypersurfaces of
constant scalar curvature in spheres, Proc. Am. Math. Soc. 132 (2004), 3731–3739.

3. S. Alexander, Locally convex hypersurfaces of negatively curved spaces, Proc. Am.
Math. Soc. 64 (1977), 321–325.

4. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann.
225 (1977), 195–204.

5. S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with
second fundamental form of constant length, in Functional analysis and related fields (ed.
F. Browder), pp. 59–75 (Springer, 1970).

6. M. P. do Carmo, Riemannian geometry (Birkhäuser, Boston, MA, 1993).
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