Proceedings of the Edinburgh Mathematical Society (2006) **49**, 241–249 © DOI:10.1017/S0013091504001002 Printed in the United Kingdom

RIGIDITY OF HYPERSURFACES IN A EUCLIDEAN SPHERE

QIAOLING WANG AND CHANGYU XIA

Departamento de Matemática-IE, Universidade de Brasília, Campus Universitário, 70910-900 Brasília-DF, Brasil (wang@mat.unb.br; xia@mat.unb.br)

(Received 21 September 2004)

Abstract This paper studies topological and metric rigidity theorems for hypersurfaces in a Euclidean sphere. We first show that an $n \geq 2$ -dimensional complete connected oriented closed hypersurface with non-vanishing Gauss–Kronecker curvature immersed in a Euclidean open hemisphere is diffeomorphic to a Euclidean *n*-sphere. We also show that an $n \geq 2$ -dimensional complete connected orientable hypersurface immersed in a unit sphere S^{n+1} whose Gauss image is contained in a closed geodesic ball of radius less than $\pi/2$ in S^{n+1} is diffeomorphic to a sphere. Finally, we prove that an $n \geq 2$ -dimensional connected closed orientable hypersurface in S^{n+1} with constant scalar curvature greater than n(n-1) and Gauss image contained in an open hemisphere is totally umbilic.

Keywords: rigidity; hypersurfaces; topology; sphere

2000 Mathematics subject classification: Primary 53C20; 53C42

1. Introduction

A classical result in the theory of submanifolds states that an $n \geq 2$ -dimensional connected closed oriented hypersurface in a Euclidean space \mathbb{R}^{n+1} with non-vanishing Gauss-Kronecker curvature is diffeomorphic to an n-sphere [6]. Recall that the Gauss–Kronecker curvature of a hypersurface M in a Euclidean space is defined to be the product of all the principal curvatures of M. Similar differentiable sphere theorems for hypersurfaces in a Riemannian manifold have recently been obtained. For example, Sacksteder [14] showed that an immersed closed orientable hypersurface with non-negative sectional curvature in \mathbb{R}^{n+1} is the boundary of a convex body and thus is diffeomorphic to a sphere. Since a closed hypersurface M in \mathbb{R}^{n+1} has at least one elliptic point, we know that if M has non-vanishing Gauss-Kronecker curvature, then it has positive sectional curvature. Thus, Sacksteder's theorem generalized the above classical result. Furthermore, do Carmo and Warner [7] proved that an $n \geq 2$ -dimensional connected closed oriented hypersurface with sectional curvature no less than 1 in S^{n+1} is diffeomorphic to an *n*-sphere. Alexander [3] obtained a similar theorem for compact connected orientable hypersurfaces in a complete simply connected Riemannian manifold of non-positive sectional curvature. On the other hand, it is not true that an oriented closed hypersurface with non-vanishing Gauss–Kronecker curvature in S^{n+1} is diffeomorphic to a sphere. Here, the Gauss-Kronecker curvature of a hypersurface M in S^{n+1} is also defined as the product

Q. Wang and C. Xia

of all the principal curvatures of M. For example, for any positive constants r_1 , r_2 with $r_1 + r_2 = 1$ and any integer $k \in \{1, \ldots, n-1\}$, the hypersurfaces

$$S^{k}(r_{1}) \times S^{n-k}(r_{2}) := \{(x, y) \mid x \in \mathbb{R}^{k+1}, \ y \in \mathbb{R}^{n-k+1}, \ |x|^{2} = r_{1}, \ |y|^{2} = r_{2}\}$$

of S^{n+1} have non-vanishing Gauss–Kronecker curvature but they are clearly not diffeomorphic to a sphere. Thus it is natural to find conditions so that a closed hypersurface with non-vanishing Gauss–Kronecker curvature in S^{n+1} is diffeomorphic to a sphere. In this paper, we obtain the following differentiable sphere theorem.

Theorem 1.1. Let M be an $n \geq 2$ -dimensional connected oriented closed hypersurface immersed in S^{n+1} with non-vanishing Gauss-Kronecker curvature. If M is contained in an open hemisphere, then M is diffeomorphic to a Euclidean n-sphere.

We then prove the following theorem.

Theorem 1.2. Let M be an $n \geq 2$ -dimensional complete connected orientable hypersurface immersed in S^{n+1} and denote by N a unit normal vector field globally defined on M. If the Gauss image of M under N is contained in a closed geodesic ball of radius less than $\pi/2$ in S^{n+1} , then M is diffeomorphic to a Euclidean n-sphere.

Hypersurfaces with constant scalar curvature in Euclidean space or spheres have been studied extensively recently. For surfaces in \mathbb{R}^3 the combined classical results of Hilbert and Hartman–Nirenberg classify complete surfaces with non-zero constant curvature as standard spheres and those with zero curvature as planes or cylinders [8]. Also, a wellknown result of Cheng and Yau [4] classifies a complete hypersurface M^n (n > 2) with constant scalar curvature and non-negative sectional curvature in E^{n+1} as a round hypersphere, a hyperplane or a generalized cylinder $S^k(c) \times E^{n-k}$, $1 \leq k \leq n-1$. Similarly, work by Li [10] showed that a compact hypersurface M^n of constant scalar curvature n(n-1)rwith $r \geq 1$ in S^{n+1} , whose squared norm of the second fundamental form is bounded above by a certain constant which depends only on n and r, is isometric to the totally umbilical sphere $S^n(r)$ of radius r or the Riemannian product $S^1(\sqrt{1-c^2}) \times S^{n-1}(c)$ for a certain value of the constant c. Recently, Alencar *et al.* [1] have given an interesting gap theorem for closed hypersurfaces with constant scalar curvature n(n-1) in a unit sphere. Aslo, one can find some interesting results about minimal hypersurfaces in a sphere with constant scalar curvature in, for example, [5], [12], [13] and [15].

In the present paper, we obtain the following characterization of totally umbilic spheres in a unit sphere in terms of scalar curvature and Gauss map.

Theorem 1.3. Let M be an $n \geq 2$ -dimensional connected closed orientable hypersurface of constant scalar curvature n(n-1)r with r > 1 immersed in S^{n+1} . Let N be a unit normal vector field of M and assume that N(M) is contained in an open hemisphere. Then M is totally umbilic.

2. Proofs of the theorems

Before proving our results, we first fix some notation. For an oriented hypersurface M of $S^{n+1} \subset \mathbb{R}^{n+2}$, we shall denote by N a unit vector field globally defined on M. Let \langle , \rangle be the Riemannian metric on \mathbb{R}^{n+2} as well as those induced on S^{n+1} and M. Assume that $\tilde{\nabla}, \bar{\nabla}$ and ∇ are the Riemannian connections of \mathbb{R}^{n+2} , S^{n+1} and M, respectively. We have

$$\tilde{\nabla}_X Y = (Xy_1, \dots, Xy_{n+2}) \tag{2.1}$$

for $X, Y = (y_1, \ldots, y_{n+2}) \in \mathcal{X}(\mathbb{R}^{n+2})$. Let A stand for the shape operator of M in S^{n+1} associated with N. Then

$$\tilde{\nabla}_X Y = \bar{\nabla}_X Y - \langle X, Y \rangle x = \nabla_X Y + \langle AX, Y \rangle N - \langle X, Y \rangle x$$
(2.2)

and

$$A(X) = -\bar{\nabla}_X N = -\bar{\nabla}_X N \tag{2.3}$$

for all tangent vector fields $X, Y \in \mathcal{X}(M)$.

Proof of Theorem 1.1. Let $a \in S^{n+1}$ and assume that M is contained in the upper open hemisphere determined by a. That is,

$$M \subset \{ y \in S^{n+1} \mid \langle y, a \rangle > 0 \}.$$

$$(2.4)$$

Let

$$S_a^n = \{ x \in S^{n+1} \mid \langle x, a \rangle = 0 \}$$

be the equator determined by a and define a map ψ from M to S^n_a as

$$\psi(x) = \frac{N(x) - \langle N(x), a \rangle a}{\sqrt{1 - \langle N(x), a \rangle^2}}$$

Since $\langle N(x), x \rangle = 0$, $\forall x \in M$, it follows from (2.4) that $N(x) \neq \pm a$, $\forall x \in M$, and so ψ is a well-defined map. We shall show that ψ is a diffeomorphism. In order to see this, let us calculate the tangent map $d\psi$ of ψ . For any $x \in M$ and any $v \in T_x M$, it is easy to see from (2.1) and (2.3) that

$$d\psi_x(v) = \frac{-Av + \langle Av, a \rangle a}{\sqrt{1 - \langle N(x), a \rangle^2}} - \frac{\langle N(x), a \rangle \langle Av, a \rangle}{(1 - \langle N(x), a \rangle^2)^{3/2}} (N(x) - \langle N(x), a \rangle a).$$

Thus, noticing that $\langle Av, N(x) \rangle = 0$, we get

$$\langle \mathrm{d}\psi_x(v), \mathrm{d}\psi_x(v) \rangle = \frac{|Av|^2 (1 - \langle N(x), a \rangle^2) - \langle Av, a \rangle^2}{(1 - \langle N(x), a \rangle^2)^2}.$$

Q. Wang and C. Xia

By the Schwarz inequality,

$$\langle Av, a \rangle^2 = \langle Av, a^T \rangle^2 \leqslant |Av|^2 |a^T|^2,$$

where a^T denotes the projection of a in $T_x M$. Thus it follows from

$$1 - \langle N(x), a \rangle^2 - |a^T|^2 = \langle a, x \rangle^2$$

that

$$\langle \mathrm{d}\psi_x(v), \mathrm{d}\psi_x(v) \rangle \ge \frac{|Av|^2 \langle a, x \rangle^2}{(1 - \langle N(x), a \rangle^2)^2}.$$
 (2.5)

Observe that M has non-vanishing Gauss–Kronecker curvature, which implies that, if $v \neq 0$, then $Av \neq 0$. Since $\langle a, x \rangle \neq 0$, $\forall x \in M$, we conclude from (2.5) that, if $v \neq 0$, then $d\psi_x(v) \neq 0$. Hence ψ is a local diffeomorphism by the inverse function theorem. Since M is compact, ψ is a covering map (cf. [6,11]). But M is connected and S_a^n is simply connected, so we know that ψ is a diffeomorphism (cf. [6,11]). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. Fix $p \in S^{n+1}$, $r \in (0, \pi/2)$ and denote by d the distance function on S^{n+1} . Assume that N(M) is contained in the geodesic ball

$$B(p,r) = \{ x \in S^{n+1} \mid d(x,p) \leq r \}.$$

Let

$$S_p^n = \{ x \in S^{n+1} \mid \langle x, p \rangle = 0 \}$$

be the equator determined by p and define a map ϕ from M to S_p^n as

$$\phi(x) = \frac{x - \langle x, p \rangle p}{\sqrt{1 - \langle x, p \rangle^2}}.$$

Our condition $(N(M) \subset B(p, r))$ implies that $x \neq \pm p, \forall x \in M$. Hence ϕ is a well-defined map. For any $x \in M$ and any $v \in T_x M$, a straightforward computation shows that

$$\mathrm{d}\phi_x(v) = \frac{v - \langle v, p \rangle p}{\sqrt{1 - \langle x, p \rangle^2}} + \frac{\langle x, p \rangle \langle v, p \rangle}{(1 - \langle x, p \rangle^2)^{3/2}} (x - \langle x, p \rangle p).$$

It then follows from $\langle v, x \rangle = 0$ that

$$\langle \mathrm{d}\phi_x(v), \mathrm{d}\phi_x(v) \rangle = \frac{1}{(1 - \langle x, p \rangle^2)^2} ((1 - \langle x, p \rangle^2) |v|^2 - \langle v, p \rangle^2).$$
(2.6)

We have from the Schwarz inequality that

$$\langle v, p \rangle^2 = \langle v, p^T \rangle^2 \leqslant |p^T|^2 |v|^2,$$

where p^T denotes the projection of p in $T_x M$. On the other hand, we have

$$p = p^{T} + \langle p, x \rangle x + \langle p, N(x) \rangle N(x),$$

which gives

$$1 - \langle x, p \rangle^2 - |p^T|^2 = \langle p, N(x) \rangle^2.$$

Thus we obtain from (2.6) that

$$\langle \mathrm{d}\phi_x(v), \mathrm{d}\phi_x(v) \rangle \ge \frac{1}{(1 - \langle x, p \rangle^2)^2} \langle p, N(x) \rangle^2 |v|^2$$
$$\ge \langle p, N(x) \rangle^2 |v|^2.$$
(2.7)

But

$$\angle(N(x), p) = d(N(x), p) \leqslant r$$

so we know that

$$\langle N(x), p \rangle^2 \ge \cos^2 r.$$

Therefore,

$$\langle \mathrm{d}\phi_x(v), \mathrm{d}\phi_x(v) \rangle \ge \cos^2 r |v|^2.$$

It then follows that

$$\phi^*(\langle\,,\rangle_{S_n^n}) \geqslant \cos^2 r\langle\,,\rangle. \tag{2.8}$$

Thus ϕ is a local diffeomorphism. Since \langle , \rangle is a complete Riemannian metric on M, the same is true for the homothetic metric

$$\langle , \rangle = \cos^2 r \langle , \rangle.$$

Equation (2.8) means that the map

$$\phi: (M, \widetilde{\langle , \rangle}) \to (S_p^n, \langle , \rangle_{S_p^n})$$

increases distance. If a map from a connected complete Riemannian manifold M_1^n into another connected Riemannian manifold M_2^n increases the distance, then it is a covering map and M_2 is complete [9, Lemma 8.1]. Thus ϕ is a covering map. But S_p^n is simply connected and we conclude that ϕ is a global diffeomorphism. This completes the proof of Theorem 1.2.

If M is a compact hypersurface in S^{n+1} such that N(M) is contained in an open hemisphere, then N(M) is contained in a geodesic ball of radius less than $\pi/2$. Thus the following corollary of Theorem 1.2 holds.

Corollary 2.1. Let M be an $n \geq 2$ -dimensional complete connected closed orientable hypersurface immersed in S^{n+1} . If the Gauss image of M is contained in an open hemisphere, then M is diffeomorphic to an n-sphere.

Proof of Theorem 1.3. Let $a \in S^{n+1}$ and assume that N(M) is contained in the upper open hemisphere determined by a. That is,

$$N(M) \subset \{ y \in S^{n+1} \mid \langle y, a \rangle > 0 \}.$$

Let Δ be the Laplacian operator acting $C^{\infty}(M)$. Now consider the height function $\langle x, a \rangle$ and the function $\langle N, a \rangle$, which are defined on M. From (2.1) and (2.2) we know that their gradients are given by

$$\nabla \langle a, x \rangle = a^T \text{ and } \nabla \langle a, N \rangle = -A(a^T),$$
 (2.9)

where

$$a^{T} = a - \langle a, N \rangle N - \langle a, x \rangle x \tag{2.10}$$

is tangent to M. Taking the covariant derivative of (2.10) and using (2.2) and (2.3), we get

$$\nabla_X a^T = \langle a, N \rangle A(X) - \langle a, x \rangle X \tag{2.11}$$

for $X \in \mathcal{X}(M)$. Thus, the Hessian of $\langle a, x \rangle$ is given by

$$\nabla^2 \langle a, x \rangle (X, Y) = \langle \nabla_X a^T, Y \rangle = \langle a, N \rangle \langle AX, Y \rangle - \langle a, x \rangle \langle X, Y \rangle,$$

for $X, Y \in \mathcal{X}(M)$, and its Laplacian is

$$\Delta \langle a, x \rangle = nH \langle a, N \rangle - n \langle a, x \rangle, \tag{2.12}$$

where $H = (1/n) \operatorname{tr}(A)$ is the mean curvature function of M. The Hessian of $\langle a, N \rangle$ is given by

$$\nabla^{2} \langle a, N \rangle (X, Y) = -\langle \nabla_{X} (Aa^{T}), Y \rangle$$

= $-\langle (\nabla_{X} A) (a^{T}), Y \rangle - \langle A (\nabla_{X} a^{T}), Y \rangle$
= $-\langle (\nabla_{X} A) (a^{T}), Y \rangle - \langle a, N \rangle \langle AX, AY \rangle + \langle a, x \rangle \langle AX, Y \rangle,$ (2.13)

for $X, Y \in \mathcal{X}(M)$. It follows from the Codazzi equation that

$$(\nabla_X A)(a^T) = (\nabla_{a^T} A)(X).$$

Thus the Laplacian of $\langle a, N \rangle$ is

$$\Delta \langle a, N \rangle = -\operatorname{tr}(\nabla_{a^T} A) - \langle a, N \rangle |A|^2 + nH \langle a, x \rangle$$

= $-n \langle \nabla H, a \rangle - \langle a, N \rangle |A|^2 + nH \langle a, x \rangle.$ (2.14)

Consider the vector field $Z = A(\nabla \langle a, N \rangle)$. Take a local orthonormal frame $\{e_i\}_{i=1}^n$ on M. Then the divergence of Z is given by

$$\operatorname{div} Z = \sum_{i} \langle \nabla_{e_{i}} (A(\nabla \langle a, N \rangle)), e_{i} \rangle$$

$$= \sum_{i} \langle A(\nabla_{e_{i}} \nabla \langle a, N \rangle) + (\nabla_{e_{i}} A)(\nabla \langle a, N \rangle), e_{i} \rangle$$

$$= \sum_{i} (\langle Ae_{i}, \nabla_{e_{i}} \nabla \langle a, N \rangle \rangle + \langle (\nabla_{\nabla \langle a, N \rangle} A)(e_{i}), e_{i} \rangle)$$

$$= \sum_{i} \nabla^{2} \langle a, N \rangle (e_{i}, Ae_{i}) + n \langle \nabla \langle a, N \rangle, \nabla H \rangle.$$
(2.15)

Integrating (2.15) on M and using the divergence theorem and (2.14), we get

$$0 = \int_{M} \left(\sum_{i} \nabla^{2} \langle a, N \rangle (e_{i}, Ae_{i}) + n \langle \nabla \langle a, N \rangle, \nabla H \rangle \right)$$

$$= \int_{M} \left(\sum_{i} \nabla^{2} \langle a, N \rangle (e_{i}, Ae_{i}) - nH\Delta \langle a, N \rangle \right)$$

$$= \int_{M} \left(\sum_{i} \nabla^{2} \langle a, N \rangle (e_{i}, Ae_{i}) \right) + \int_{M} (n^{2}Ha^{T}H + nH \langle a, N \rangle |A|^{2} - n^{2}H^{2} \langle a, x \rangle). \quad (2.16)$$

Now assume that $\{e_i\}_{i=1}^n$ is a basis of orthonormal principal directions corresponding to the principal curvatures $\lambda_1, \ldots, \lambda_n$. Then $Ae_i = \lambda_i e_i$, $i = 1, \ldots, n$. Thus, by using (2.13), we have

$$\sum_{i} \nabla^{2} \langle a, N \rangle (e_{i}, Ae_{i}) = \sum_{i} \lambda_{i} \nabla^{2} \langle a, N \rangle (e_{i}, e_{i})$$

$$= -\sum_{i} (\lambda_{i} \langle (\nabla_{e_{i}} A) (a^{T}), e_{i} \rangle + \langle a, N \rangle \lambda_{i}^{3}) + \langle a, x \rangle |A|^{2}$$

$$= -\sum_{i} (\langle \nabla_{a^{T}} (Ae_{i}), Ae_{i} \rangle + \langle a, N \rangle \lambda_{i}^{3}) + \langle a, x \rangle |A|^{2}$$

$$= -\frac{1}{2} a^{T} |A|^{2} - \sum_{i} \langle a, N \rangle \lambda_{i}^{3} + \langle a, x \rangle |A|^{2}.$$
(2.17)

It follows from the Gauss equation that

$$n(n-1)(r-1) = n^2 H^2 - |A|^2.$$
(2.18)

Since r is a constant, we have

$$a^{T}((nH)^{2} - |A|^{2}) = 0.$$
 (2.19)

Substituting (2.17) and (2.19) into (2.16), we get

$$\int_{M} \left((|A|^{2} - n^{2}H^{2})\langle a, x \rangle + \left(nH|A|^{2} - \sum_{i} \lambda_{i}^{3} \right) \langle a, N \rangle \right) = 0.$$
 (2.20)

Q. Wang and C. Xia

Since $(nH)^2 - |A|^2$ is a constant, we know from (2.12) that

$$\int_{M} (|A|^{2} - n^{2}H^{2}) \langle a, x \rangle = \int_{M} H(|A|^{2} - n^{2}H^{2}) \langle a, N \rangle.$$
 (2.21)

Consequently, we have

$$\int_{M} \left(H(|A|^{2} - n^{2}H^{2}) + nH|A|^{2} - \sum_{i} \lambda_{i}^{3} \right) \langle a, N \rangle = 0.$$
 (2.22)

Set $S = |A|^2 - nH^2$; then

$$\sum_{i} \lambda_i^3 = nH^3 + 3HS + \sum_{i} (\lambda_i - H)^3.$$
 (2.23)

It follows by combining (2.22) and (2.23) that

$$\int_{M} \left((n-2)HS - \sum_{i} (\lambda_{i} - H)^{3} \right) \langle N, a \rangle = 0.$$
(2.24)

Before we can finish the proof of Theorem 1.3, we will need the following lemma.

Lemma 2.2 (see [10]). Let a_i , i = 1, ..., n, be real numbers satisfying $\sum_i a_i = 0$ and $\sum_i a_i^2 = S$. Then

$$-\frac{n-2}{\sqrt{n(n-1)}}S^{3/2} \leqslant \sum_{i} a_i^3 \leqslant \frac{n-2}{\sqrt{n(n-1)}}S^{3/2}$$
(2.25)

and one of the equalities holds if and only if at least (n-1) of the a_i are equal.

Since r > 1, we know from (2.18) that $H(x) \neq 0$, $\forall x \in M$. Thus either H > 0 on M or H < 0 on M, since M is connected. Consider the case H > 0 on M. In this case, by using r > 1 and (2.18), we obtain

$$H > \sqrt{\frac{S}{n(n-1)}}$$

Since $\sum_{i}(\lambda_{i}-H)=0$, $\sum_{i}(\lambda_{i}-H)^{2}=S$, it follows from Lemma 2.2 that

$$(n-2)HS - \sum_{i} (\lambda_i - H)^3 \ge (n-2)S\left(H - \sqrt{\frac{S}{n(n-1)}}\right) \ge 0.$$

Therefore, since $\langle a, N \rangle > 0$ on M, (2.24) implies that $S \equiv 0$. That is, M is totally umbilic. The case H < 0 on M is similar and will be omitted. This completes the proof of Theorem 1.3.

Acknowledgements. This work was supported in part by CNPq.

https://doi.org/10.1017/S0013091504001002 Published online by Cambridge University Press

Note added in proof

The authors were informed recently that Theorem 1.3 in this paper has also been proved, by a different method, in [2].

References

- 1. H. ALENCAR, M. DO CARMO AND W. SANTOS, A gap theorem for hypersurfaces of the sphere with constant scalar curvature one, *Comment. Math. Helv.* **77** (2002), 549–562.
- 2. H. ALENCAR, H. ROSENBERG AND W. SANTOS, On the Gauss map of hypersurfaces of constant scalar curvature in spheres, *Proc. Am. Math. Soc.* **132** (2004), 3731–3739.
- 3. S. ALEXANDER, Locally convex hypersurfaces of negatively curved spaces, *Proc. Am. Math. Soc.* **64** (1977), 321–325.
- 4. S. Y. CHENG AND S. T. YAU, Hypersurfaces with constant scalar curvature, *Math. Ann.* **225** (1977), 195–204.
- S. S. CHERN, M. DO CARMO AND S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length, in *Functional analysis and related fields* (ed. F. Browder), pp. 59–75 (Springer, 1970).
- 6. M. P. DO CARMO, Riemannian geometry (Birkhäuser, Boston, MA, 1993).
- 7. M. P. DO CARMO AND F. W. WARNER, Rigidity and convexity of hypersurfaces in spheres, J. Diff. Geom. 4 (1970), 133–144.
- 8. P. HARTMAN AND L. NIRENBERG, On spherical image maps whose Jacobians do not change sign, Am. J. Math. 81 (1959), 901–920.
- 9. S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, vol. 1 (Interscience, 1963).
- 10. H. Z. LI, Hypersurfaces with constant scalar curvature in space forms, *Math. Ann.* **305** (1996), 665–672.
- 11. S. MASSEY, Introduction to algebraic topology (Harcourt, New York, 1967).
- C. K. PENG AND C. L. TERNG, Minimal hypersurfaces of spheres with constant scalar curvature, Ann. Math. Stud. 103 (1983), 177–198.
- C. K. PENG AND C. L. TERNG, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983), 105–113.
- R. SACKSTEDER, On hypersurfaces with no negative sectional curvatures, Am. J. Math. 82 (1960), 609–630.
- 15. J. SIMONS, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968), 62–105.