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I . SUMMARY

In various branches of applied mathematics the problem arises of making
decisions to reconcile conflicting criteria. One example is the classical
statistical problem, where a type I error cannot be arbitrarily reduced
without increasing the probability for a type 2 error. Another example,
quite familiar to actuaries, is graduation, where a compromise between
smoothness and fit has to be reached. This motivates the concept of Pareto-
optimal decisions, which is discussed in section 2. There is a simple method,
maximizing a weighted average of the scores, to obtain certain Pareto-
optimal decisions. In section 3 a condition is given, which is satisfied in
most applications, that guarantees that all the Pareto-optimal decisions
can be found by this method. This is applied in section 4, where the problem
of risk exchange between n insurance companies is considered. The original
model of Borch is generalized: it is assumed that some of the companies
are not willing to contribute more than a certain fixed amount towards
the aggregate loss of the other companies. The theorem in section 4 gives
a characterization of all the Pareto-optimal risk exchanges. Because of the
restrictions, these risk exchanges do not just depend on the combined surplus
(which would amount to pooling) in general, and can be found by an algo-
rithm. One benefit of this generalization of Borch's Theorem is that two
seemingly unrelated results (optimality of a stop loss contract, and optimality
of certain dividend formulas in group insurance) follow from it as special
cases.

2. EVALUATION OF DECISIONS UNDER CONFLICTING VIEW POINTS

Often one is faced with the situation where a decision has to be
made in the presence of several criteria. Mathematically, the prob-
lem can be formulated as follows.

Let D be the set of all possible decisions. We are given n real-
valued functions si(d), . . ., sn(d), d e D. If d\, d?. e D and Si(di) >
Si(d2), this means that decision d\ is better than (or at least as good
as) decision di with respect to criterion i. Let

s(d) = (si(d), . . .,sn{d) ), deD (1)

and

S = {xjx = s(d) for some d e D} (2)

denote the range of the "score function" s('): D —> Rn. A decision
d\ is said to be strictly better than a decision di, if sj(rfi) > Si(dz)
for i — 1, . . ., n, and if at least one of these inequalities is strict.
A decision d is called Pareto-optimal, if there is not a decision that
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is strictly better than d. If 7? is any subset of Rn, a point x e R is
called a Pareto-optimal point of R if the intersection of R with Qx =
{y/Vi > X{, i = i, . . ., n] consists only of the point x. Thus a deci-
sion d is Pareto-optimal, if and only if s(d) is a Pareto-optimal point
of S.

Under fairly general conditions (for example if S is finite, or if S
is a closed region that is bounded by a plane whose normal vector
points to the positive 2«-tant) one should obviously chose a Pareto-
optimal decision. However, we shall not discuss the question, which
of the Pareto-optimal decisions should be chosen.

Example i

In a class of k students n quizzes were given during the term. Let
Si(d) denote the score of student d in quiz i (i = i, . . ., n, d = i, . . .,
k). Who is the top student of the class? Thus D = {i, . . ., k}, and
clearly the Pareto-optimal students (and only these) are candidates
for this honor.

Example 2

Consider the following statistical decision problem: Population i
has a pdf f(x; i), i =- i, . . ., n. Given an observation, say X, the
statistician tries to name the underlying population. Thus D con-
sists of all "tests" (see [5] for example). It is convenient to allow
randomized tests. Then a test S is defined by n non-negative
functions pi(x), . . ., pn{%) with pi(x) + . . . + pn(x) = 1 for all x.
This means that the statistician, having observed X, will name
population i with probability pi(X). Let

st($) = Spt(x)f(x;i)dx (3)

be the probability for a correct guess if the observation originates
from population i, i = 1, . . ., n. Clearly, the statistician wants
to select a test that is Pareto-optimal.

Example 3

Consider the Whittaker-Henderson Problem. Given are m un-
graduated values, say vi, . . ., vm. A decision is the choice of m
graduated values, u = («i, . . ., um). Thus D = Rm in this example.

Let

F(u) = S Wi{ui — vtf (4)
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be a measure for "fit", where w\, . . ., wm are certain weights, and
let

S(u) = Y (A*«,)» (5)

be our measure for "smoothness", where z < m is some integer, see
[6]. Here w = 2, si(w) = —F(u), sz(u) = — S(M), and we want to
find graduated values that are Pareto-optimal in this sense.

The most important example (at least as far as this paper is
concerned) will be discussed in section 4.

3. How TO FIND PARETO-OPTIMAL DECISIONS

Certain Pareto-optimal decisions can be found by the following
method: chose n positive numbers ki ,. . ., kn and try to maximize
the linear combination

S kiSi{d), deD. (6)

For, if a decision d has the property that there are positive con-
stants ki, . . ., kn such that

2 kiSi(d) < S kiSi{d) (7)
i \ i - 1

for all deD, it is obviously Pareto-optimal.

In Example 1 above this method amounts to assigning certain
weights to the n quizzes, and (based on this) to determine the
student(s) with the highest (weighted) average score.

In Example 2 let

M(x) = max{k{f(k; i)\i = 1, . . ., n], (8)

and let S be a test, described by pi(x), . . ., pn{%), such that

pi(x) — o whenever ktf(x; i) < M(x), (9)

i = 1, . . ., n. Thus 8 consists of naming the population (or one of
the populations), for which the maximum is attained in formula (8).

Then if S is another test, given by pi(x), . . ., pn(%),
n n

S ktst(8) == 2 I kiPi(x)f{x;i)dx
, --1 . - I

< 2 J M(x)pt(x) dx (10)

= J M(x) dx = S ktsi(8).
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Hence a test S of this form is Pareto-optimal. Note that the in-
equality is strict unless S satisfies condition (9) too.

In Example 3 the vector u which minimizes kiF(u) -\- kiS{uj)
is found as the solution of a certain matrix equation, see [6].

The question arises whether all the Pareto-optimal decisions can
be obtained by this method. In general, the answer is no. Consider
Example 1 with a class of just three students. Suppose the scores
in 2 quizzes were (6, 1) for student A, (3, 3) for student B, and (1, 6)
for student C. Obviously, all 3 students are Pareto-optimal. But
only students A and C can be obtained by the above method.

However, if 5 is a closed convex region, all the Pareto-optimal
points and decisions can be obtained by this method: if d is a
Pareto-optimal decision, inequality (7) holds for all d e D, where
(ki, . . ., kn) is a vector that is perpendicular to the (or a) plane
that is tangent to S at x = s(d). A convenient way to verify con-
vexity of S is to show that for any two points xo, xi e 5, the line
segment {xjx = rx\ -\- (1 —r)x0, 0 < r < 1} is contained in S.
The validity of this condition can be easily seen in Example 2: if
So, Si are any two tests, define a test Sr (o < r < 1), which consists
of using 81 with probability r and So with probability 1 — r. Then,
by the law of total probability,

si(8r) = rst(8i) + (1 — r)st (So) (11)

(i = 1, . . ., n). Hence all the Pareto-optimal tests are of the form
(9), which is essentially the content of the lemma of Neyman-
Pearson, see [5] for example.

Often it is possible to show the validity of the following condition
(which may hold even if S is not convex).

Condition C. For any two decisions do, d\ e D there is a family
of decisions dr e D, 0 < r < 1, such that

+ (1 — r)st{d0) (12)

for 1' = 1, . . ., n.

If S is closed and if Condition C is satisfied, all the Pareto-optimal
points and decisions can be obtained by the method described at
the beginning of this section: Condition C implies that the set of
Pareto-optimal points on S coincides with the set of Pareto-optimal
points on the convex hull of 5. In Example 3 the validity of Condi-
tion C can be verified as follows. If M(0), M(1> are two vectors of
graduated values

« < » = ( « ! » , . . . , « « > ) , > = o , i , ( 1 3 )
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set M(r) = ra*1* + (i —r)u^°\ Then one uses the inequality

(ra + (i — r)b)2 < ra* + (i — r)b2, o < r < i, (14)

which is valid for any two numbers a and b, to show that

F(u{r)) < rF(uw) + (1 — r)F(M<0)) (15)
and

.S>(r)) < rS(uw) + (1 — r).S>(0>). (16)

Therefore, all the Pareto-optimal graduated sets are obtained
by the usual Whittaker-Henderson procedure, i.e., minimizing
kiF(u) + k2S{u).

4. THE PROBLEM OF RISK EXCHANGE

Consider n insurance companies whose surplus at the end of the
year will be Xi, . . ., Xn, respectively. These are n random variables
with known joint distribution. The decision to be made is the
selection of a risk exchange. A risk exchange is best characterized
by its effect on the distribution of the surplus among the n compa-
nies. In this sense a risk exchange is a random vector

Y = (Y1; . . ., Yn),

where Yi should be interpreted as the modified surplus of company i
at the end of the year. Since the combined surplus before and after
the exchange is the same, we must have

Yi + • • • + Yn = X, + . . . + Xn. (18)

We want to allow for the possibility that some of the companies
are not willing to pay more than a certain amount towards the
losses of the other companies. For this purpose assume n constants
ci, . . ., cn with o < a < 00. Then only risk exchanges are ad-
missible for which

Yi > Xi — cu i = 1, . . ., n. (19)

We shall exclude the case where ci •=... = cn = o, because in
that case only the trivial "exchange" (no exchange) is possible. To
summarize, a risk exchange is a random vector of the form (17) that
satisfies conditions (18) and (19) with probability one.

To evaluate the different risk exchanges, assume n utility func-
tions Ui(x), . . ., un(x), — 00 < x < 00. Suppose that these functions
are twice differentiate, with

u'{(x) > o, u'f(x) < 0. (20)

For simplicity, we shall also assume that at most one of these
utility functions is linear and that all of the others have the prop-
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erty that their derivative decreases from oo to o as the argument
increases from — oo to oo. Then a problem of the following type
has a unique solution: given a number X and positive numbers
ki, . . ., kn, find numbers zi, . . ., zn such that

kjii'^z^ is independent of i (21)

and

2l + . . . + * „ = X. (22)

This solution z = (zi, . . ., zn) has a geometric interpretation: it
corresponds to the point on the surface

F-K = {x = (*i, • • ., xn)l%t = UfHi), tx + . . . + tn = X} (23)

where the tangential plane is perpendicular to the vector (ki, . . ,,
kn). In the case of exponential utility functions,

Ui{x) = <xj(i — exp(— x/af) ), (24)

where X\ > o, . . ., xn > o, this problem can be solved explicitly.
One finds that

Zi = PJX + ai(log * ( - S P j log kf), (25)

where ^ = ot</(«i + • • • + xn).

It is assumed that company i is only interested in the expected
utility of its own surplus,

Si(Y) = E[Ui(Yi)l (26)

« = 1, . . . , « . In this sense we are faced with the problem of finding
Pareto-optimal risk exchanges. Let us verify the validity of Condi-
tion C in this case. If Y(0), Y(1) are any two risk exchanges,

Y<» = (Yi»,...,Ytf>),y = o,i> (27)

define

Y(r) = (Y[r\ . . ., Y<[>), o < r < i, (28)

by setting

Y{r> =rY<1) + ( 1 — r)Y<0). (29)

Since Y<0) and Y(1) satisfy (18) and (19), it follows that Y<r)

satisfies these conditions. Thus Y(r) is a risk exchange. Since the
function U{ is concave from below,

«,(yjr)) > ^ (YW) + (I - r)»,(Y<°>). (30)

https://doi.org/10.1017/S0515036100006310 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100006310


RISK EXCHANGES 31

Taking expected values, we get

st(Y^) > rSi(YV) + (i - r)S<(Y<°>), (31)

which shows that Condition C holds. Obviously, S is closed, so to
find the Pareto-optimal risk exchanges it is enough to choose
positive constants ki, . . ., kn and to try to maximize

S kiSi(Y) = S ktE[u%(Yt)l (32)

In this paragraph we shall construct a risk exchange Y and then
verify that it maximizes (32). Let

/<0) = {1 n), /<0) = 9. (33)

We define random vectors
Z(m) = ( Z (») > _ -f Z(m)) ( 3 4 )

and index sets 7(m> and /< m ) as follows. For m = 1, 2, . . . set

Z(™) = X , - C 4 i f ^ / < » - 1 > (35)

and choose Z(
4
m), i e / (m"1), such that

k^ (Z\m)), i e /<m-1>, is independent of i (36)

and

2 Z</»>= S I ( + I ct. (37)

Then

/<»> = {*/Z<*> > X, — c j (38)

and

/<») = {,7Z<«> < X4 - c j . (39)

From this recursive definition it follows immediately that

(i) 7(m) c 7<™~1> /•<"*) 3 J^m^1)

(ii) 7(ra) is not empty.

Furthermore, if Af(m) denotes the common value of the ex-
pressions in (36), one can show that

(iii) M<m + 1) >M(m)

(iv) ktu't (Z[m>) < Mim)

(v) klui (Z\m)) < Mim) implies Z^ = Xt — c,.

Now let V = (Yi, . . ., Yn) be the limit of Z<m>, m -> 00. (Note
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that this limit is obtained after finitely many steps; as a matter of
fact, Y --= Z<M>.) Observe that Y is a risk exchange and has the
following property:

Property B

Let M = max{&X (^j)A' = i, • • ., «}• Then k^Y^ < M
implies that Yi = Xt — cv

We shall now compare Y with an arbitrary risk exchange Y =
(Yi, . . ., Yn) as follows: since the function «*(•) is concave from
below, and since k^'^Y^ < M implies that Yt > Yp

k^Yi) < ktutWi) + ki< (Y) • (Yi - Yi)

< ktut(Yt) + M • (Yt - Yt). (40)

Thus

S klUi{Yi) < £ kMYi) (41)
i - I i - 1

and

S ^ [ ^ ( Y i ) ] < S ^£[%(Yi)]. (42)
! » 1 ! - 1

Furthermore, the last inequality is strict unless Y = Y (almost
surely). Our findings can be summarized as follows.

Theorem

a) Given ki > o, . . ., kn > 0, there is exactly one risk exchange
that satisfies Property B. b) A risk exchange is Pareto-optimal if
and only if it is of this form.

Special cases

1) If c\ = . . . = cn = 00, this result reduces to the classical
Theorem of Borch, see [2], [3], or [4].

2) Consider the case, where ui(x) = x, ex = 00, u^{x) = u(x)
(strictly concave from below), and c2 = P > 0. We find that the
Pareto-optimal risk exchanges are of the form

Xx + P if X» > a
Yx = (43)

Xx + P — (a — X2) if Xz < a

X2 — P if X2 > a
Y2 = (44)

a — P if X2 < a
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where the parameter a, satisfying the equation ki = k%u' (a-—P),
plays the role of a deductible. This result (optimality of a stoploss
contract) is due to Arrow, see [i],

3) Consider the case, where U\(x) = x, ci = o, uz(x) = u(x)
(strictly concave from below), and c2 = oo. Thus Yi = Xi + D,
Y2 = X2 — D, where D > o is a dividend payable from company 2
to company 1. We find that Pareto-optimal dividends are of the
form

Xo — a. if X9 ~> a.
(45)

This result has been found in [7] in connection with dividend
formulas in group insurance.
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