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BOUNDARY UNIQUE CONTINUATION THEOREMS UNDER ZERO
NEUMANN BOUNDARY CONDITIONS

XlANGXING TAO AND SONGYAN ZHANG

Let u be a solution to a second order elliptic equation with singular potentials be-
longing to the Kato-Fefferman-Phong's class in Lipschitz domains. We prove the
boundary unique continuation theorems and the doubling properties for u2 near the
boundary under the zero Neumann boundary condition.

1. INTRODUCTION

The following boundary unique continuation theorem was proved in [1]: if u is a
harmonic function on a connected C1'1 domain Cl in K" whose normal derivative vanishes
everywhere on an open subset F of dQ and whose gradient vanishes on a subset of F with
positive surface measure, then u must be identically constant on ft. In fact, the unique
continuation problem for second order partial differential equations has been receiving
increasing attention from both workers in partial differential equations and mathematical
physics. In particular, this attention has been focusing on second order equations in which
the coefficients of the lower-order terms are allowed to be singular, which is suggested by
situations of physical interest; see for instance the extensive survey papers [3, 11].

A useful approach to the unique continuation for the elliptic equations is based on
a combination of geometric and variational methods that exploits the following local
doubling properties of solutions u of the elliptic equations. The original idea goes back
to Garofala and Lin [6] who dealt with the inner unique continuation for the equation
div(AVu) = 0, and Adolfsson and Escauriaza [1, 2] who dealt with the boundary unique
continuation for harmonic functions. Suppose

(1.1) f \u{x)\2dx^C [ \u(x)fdx
JBiAxo) JBr(X0)
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for any ball B2r(x0) C R" with rr0 € Q. and 0 < r < r0, r0 is a positive number. If
B2r0(xo) C fi or i 0 £ ^ , (1.1) is the so called inner doubling property; and if xo € 9fi,
(1.1) is the so called boundary doubling property.

In this paper we shall extend all the above results, under the zero Neumann boundary
condition, to second order elliptic operators of form,

(1.2) Lu{x) = -div(A(z)Vu(z)) +b(x) -Vu(x) + V{x)u{x), x € fi,

in a connected Lipschitz domain fi, where A(x) = (aJfc(a;))"fc_1 is a real symmetric
matrix function satisfying the ellipticity condition and Lipschitz continuity, b{x) is a
singular vector-valued function, and V(x) is a real-valued potential satisfying some Kato
type conditions.

It may be worthwhile to remark that for a nonnegative solution u to the equation
Lu = 0, the doubling property (1.1) is a simple consequence of Harnack's inequality,
see [4]. However, if u has arbitrary sign the situation is drastically different, as one has
to control the zeros of u. So the main thrust in (1.1) consists in the fact that no sign
assumption is made on u.

There have been many results about the inner unique continuation and the boundary
unique continuation under the zero Dirichlet boundary condition and the assumption
V € Kn(f2), the Kato's class, refer to [5, 7, 9, 10, 12]. In this paper, we shall study the
singular potential V which belongs to a large class Qt, the Kato-Fefferman-Phong's class.
We shall derive the boundary unique continuation under the zero Neumann boundary
condition.

To state our results precisely, we first need to introduce Kato's class, Kn(Q,), and
Fefferman-Phong's class, Ft(Q).

DEFINITION 1.1: We say a measurable function V e Ljod^l) belongs to Kato's
class Kn(Q) if

lim oK(r; V) = 0, 0
K{r; V) = sup /

•-*0 x6R" JBr( \x - y\n

where Br{x) = {y £ W : \y - x\ ^ r} is the ball in R". For 1 ^ t ^ n/2, V e Ll
loc{Q) is

said to be in Fefferman-Phong's class Ft(Q) if

= SUP r • / \V(y) \dy) < + 0 0 .
x6K",r>0 \\BT(X)\ JBr{x)nn )

We note that Kn C Fx and Fn / 2 = Ln'2 C Ft C Fs for 1 < s ^ t ^ n/2; but L"/2(fi)

and Kn{Cl) are incomparable for n ^ 3.

For 1 < t ^ n/2, we define the function space Qt($l) by

Q»(n) = {v = v1 + v2: vi e irB(n), v2 e Ft(n)}
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and set

V(r-x0; V) =

The assumptions on A, b and V in this paper are the following.

ASSUMPTION (A). For any x0 e fi, there exists a A > 1 such that for every z € fi and

There exists a constant C > 0 and a nondecreasing function / : R+ -> R+ such that
lim /(r) = 0 and for every x G .Bi(xo) I"1 ^)
r—»0

(1.3) |VA(x)| ^ C/{ | I"I ( ; I ) , |A(x) -

ASSUMPTION (B). For any xo € fi and any sufficiently small positive number e, there
exists a t with 1 < t ^ n/2 such that

(i) VeQt(n), (2(x-x0)/\x-xo\V + \x-x0\VV)eQt(n), and

lim
r-*0

;x0; V")

where V denotes the negative part of the function V.

(ii) (|x - xo\V-)2 £ Qt{Cl), when 6 ^ 0 .

ASSUMPTION (C). For every x0 € fl,

1lilldr<OQ

We would like to remark here that the above assumptions are weaker than those
required in [1, 5, 7, 10, 12]. One can see that the potential

- 2K = | x - x o | - 2 - / ( | x - x o | ) | x - X o |

belongs to Qt(fi) and satisfies Assumption (B) above. But it does not belong to Kato's
class and does not satisfy the assumptions in [1, 5, 7, 10, 12].

In this paper, we always denote a Carleson region for the boundary point Q, Q 6 d£l
by Ar(Q) = BT{Q) nd£l a surface ball, and by TT[Q) = Br{Q)nQ . Taking a boundary
point Qo 6 dfl, we may assume T3(Q0) c fl, and write

e!>[r;g) = eK(r;0;gxT,{Qo)), Mr, 9) = v(r;0;gxT3(Q0))
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for brevity.

The main results in this paper are the following doubling properties near the bound-

ary of the Lipschitz domain.

THEOREM 1 .2 . Let £2 be a Lipschitz domain, L be the operator in (1.2) satisfying

Assumptions (A), (B) and (C), and let u € Hfoc(Q.) be a solution to Lu — 0 in Q whose

conormal derivative vanishes almost everywhere on As(Q0) for some Qo £ 9£2. Suppose

that there exists a positive number r0 and a point XQ € Bi(Qo) n £2 such that A(x0) = I,

the unit matrix, and

(1.5) A(Q){Q - x0) • P{Q) = 0, for almost everywhere Q<zdnnB2TO(x0),

where P(Q) is the outward unit normal vector at Q € dfi. Then

(1.6) / \u{x)\2dx^2c(TO'> [ \u{x)\2dx

for all 0 < r < r0, where C(r0) is a constant independent ofx0 and r.

THEOREM 1 . 3 . Suppose the same conditions as in Theorem 1.2 hold except As-

sumption (C). Then there exist absolute constants Ci and C2 independent of 0 < r < r0,
and x0 e B\(Qo) n £2 such that

(1.7) / |«(x)|2dx^exp(^) / \u(x)\2dx.

with some small positive number e = e(r0) satisfying e(r) -*Oifr-*O.

We remark that if B2ro{xo) CC £2, then the condition (1.5) is trivial, and the in-
equality (1.6) and (1.7) are the doubling properties in the interior of domain f2, from
which we can deduce the following inner unique continuation, results of Corollary 1.4
and 1.5. Also see [6, 7] where the potential

(̂x) = ix-Ior
2/(i^-^oi)

with Dini function / or

V(x) = V(\x-x0\)eKn{0)

have been considered.

COROLLARY 1 . 4 . Suppose Assumptions (A), (B) and (C) hold, and Q is a con-
nected domain in R". Then the operator L has the following strong inner unique contin-

uation property: ifu 6 Hf^Q.) is a solution to Lu = 0 and satisBes for a point x0 € fi

and every m > 0,
r

0,L
then u = 0 in £2.
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COROLLARY 1 . 5 . Suppose Assumptions (A) and (B) hold, and Q is a connected
domain in R". Then the operator L has the following inner unique continuation property:
if u e i / f ^ n ) is a solution to Lu = 0 and satisfies for a point x0 € fi and two positive
numbers K and e,

I. \u{x)\ dx = O(exp(-Ar/r£), r -> 0,
Br(X0)

then u = 0 in Q.

In particular, L has the weak inner unique continuation property: if u vanishes on

an open subset Qo ofQ, then u = 0 in Q.

Another result of this paper is the following B2(da) weight property of the solution
to Lu — 0 at a Lipschitz boundary.

THEOREM 1 . 6 . Let Q be a Lipschitz domain in R", L be the operator in (1.2)
with coefficients satisfying Assumption (A), (B) and (C). Ifu 6 Hf^Q) is a solution in Q
to Lu = 0 whose conormal derivative vanishes almost everywhere on A3(Q0), Qo € d£l,
and u vanishes on a subset S of A3 (Qo) where S has positive surface measure. Assume
that there exists a constant M, possibly depending on u, such that for all Q € Ai(Qo)
and 0 < r < I we have

(1.8) / \u{x)\2dx^M[ \u(x)\2dx.
JTiAQ) JTr(Q)

Then there exists a constant C and r$ > 0 depending on M, the Lipschitz character of

Cl and n, such that for all Q G Ai(Q0) and 0 < r < r0

1 f \1^2 C t
/ | V | 2 d ^ ° / |Vu|d<7.

That is, \Vu\ is a B2{da) weight when restricted to Ai(Q0).

From the theorems above, we shall deduce the following boundary unique continua-
tion theorem for the solution u to Lu = 0 under zero Neumann boundary condition on
C1'1 domains.

THEOREM 1 . 7 . Let Q be a connected C1'1 domain in R", L be the operator
in (1.2) with coefficients satisfying Assumption (A), (B) and (C). If u € Hfoc(Ci) is a
solution in Q to Lu = 0 wiose conormal derivative vanishes almost everywhere on an
open subset F of the boundary dQ, and u vanishes on a subset ofT which has positive
surface measure, then u must be identically zero in fi.

REMARK 1.8. By using an approximation argument we can prove unique continuation
theorems similar to those above even for ///^-solutions.

In this paper, the letter C always denotes a positive constant which may depend

on A, n, the Qt norm, and the Lipschitz character of fi, but may change at different

occurrences. By the notation h = O(f), we mean that |ft| ^ C\f\ for a constant C.
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2. DOUBLING PROPERTIES WITH ZERO NEUMANN BOUNDARY CONDITION

The purpose of this section is to establish the doubling properties for elliptic op-
erators with singular potential, Theorems 1.2 and 1.3. We first recall some lemmas
concerning Kato's class and Fefferman-Phong's class which will be useful in this paper.

LEMMA 2 . 1 . Let n be a Lipschitz domain with x0 6 U C R", n > 2, and

u 6 #£,.(0). Then

n( f \Vu\2dx + - f \u\2do)(2.1) /

for all r, x0 and u.

PROOF: This lemma is a variation of the Heisenberg's uncertainty principle. We

can deduce it as in [7]:

I
Br(zo)nn

= [(f
JO \Jd
[(f
O \JdBinn

/ u2{x)do- —— / \ ' \ °'u(x)dx.
n * |i Xr

^ („ i\r / u{x)do / \ \
(n- 2}r JaBT{xo)nn n — * JBr(xo)nn | i — Xor

This, by Holder inequality, implies the inequality (2.1) and the lemma. D

LEMMA 2 . 2 . ([5]) Let Q be a Lipschitz domain, g e Kn(£l), u € H]oc(Sl), and
let B = Br(x0) for x0 € fi and r > 0. Then there exists a dimensional constant Cn

independent of r, xQ and u such that

(2.2) f \g\\u\2dx^Cng
K(r;gxB^)( f \Vu\2dx + \ f \u\2dx).

JBnn \JBnn T Jsnn /

LEMMA 2 . 3 . ([9]) Let Q be a Lipschitz domain, u e Hloc(Q.), g e Ft(Q) with

1 ^ t < n/2, and let B = Br(x0) for XQ € U and r > 0. Tien there exists a dimensional

constant C = C{n,t) independent ofr, xo and u such that

(2.3) f \g\ \u\2 dx < CHffXflnnllF. ( f \Vu\2dx + \ f \u\2dx).
Jenn \JBnn T Jenn /

The two lemmas could be proved with the same arguments as in [5, 9]. In particular,

some modifications are needed for the proof of Lemma 2.2, so we shall give the line of

the proof in the appendix of the paper for completeness.

We now start the proof of Theorem 1.2 and 1.3. Without loss of generality, we. may

assume xo = 0 is the origin and write Br = Br(0). Thus the condition (1.5) in Theorem

1.2 or 1.3 can be rewritten as

(2.4) A{Q)Q • V{Q) = 0, for almost everywhere QedQn B2ro-
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We introduce the function \x and vector field /3 defined as

p(x) = A(x)x • x/\x\2, 8(x) = A{x)x/n(x),

and from Assumption (A) we have for | i | = r,

(2.5) A"1 «$/*(*)< A, | |

(2.6) |/9(x)|=0(r), div(AE) = n + O(/(r)), {d/dXj)pk = Sjk + O(f(r)),

where the constants depend only on A and n. For u as in Theorem 1.2 or 1.3, and
0 < r < 2, we consider the following functions:

h{r)= f AVu-Vudx, I2(r) = f (b-Vu)udx,

(2.7) /3(r) = f V\u\2dx, I(r) = 7,(r) + J2(r) + J3(r),

H(r) = f M|U|2da, iV(r) = ^
JdBrnn -n(r)

Since
H(r)= vM2do= div(^\u

JdBTnn JBrr\n ^ \x\
differentiating H(r), we can get from (2.5) and (2.6) that

H'(r) = f d iv (^ | U | 2 )da
J8Brnn v \x\ '

= / divfT4>)|u|2do-+ /
JdBrc\n K\x\/ JdBrrnn

We note that u is a solution to equation — div(ylVu) + b • Vu + Vu = 0 on domain

n, and -T— = 0 on dfl n B\. Then by the divergence theorem,

(2.8) I(r) = f div(uylVu) dx = [ u^-da.[
Thus we have

(2.9) H'(r) = 2I(r)

LEMMA 2 . 4 . For every 0 < r < 1, there exists an absolute constant C depending

only on A, n and the Qt norms of V such that

(2.10) \h(r)\ + | / ,(r) | < C(/(r) + %(r; V)) ( ^
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Further, there exists a smaJJ number r0 > 0 such that

(2.11) h(r) < — ^ + 2/(r), for all 0 < r < 2r0.

PROOF: Using Assumption (A) and (B), one can see that the inequality (2.10) is a
simple result of Lemma 2.1, 2.2 and 2.3. Moreover,

Thus if we take a positive number r0 small enough, we obtain the inequality (2.11) for
any 0 < r < 2r0. D

LEMMA 2 . 5 . For every r e (0,2r0), H(r) > 0 uniess u = 0 in BT n fi.

PROOF: Assume that H(r) = 0 for a certain r sufficiently small. Noting (2.8) we
have I(r) = 0. This and (2.11) imply Ii(r) = 0, and so we obtain jVu(x)| = 0 for almost
everywhere x € BT n fl. Thus, H(r) = 0 implies u = 0 in BT n fi. D

Our next task is to find the size of frequency function N(r). From Lemma 2.5, one
can see that the function N(r) is almost everywhere, differentiable. We consider the
differentiation of the function I(r) and N(r). Our argument is based on the following
identity.

LEMMA 2 . 6 . For every 0 < r < 1,

I'i(r) = f
JdBr

AVu • Vudcr
nil

(2.12) =2 [ -\AVu-P\2da+\—- + o(^-)] f AVu-Vudx

- - / p-V
r JBrnn

2 / _
/ /3 V 6 Vudxr

where V is the outward unit normal vector on dBT or dQ.

PROOF: From a direct computation, we have the following Rellich-Necas identity

(2.13) di\{PAVu • Vu) - 2 div(£ • VuAVu) - div(p)AVu • Vu

dcijk du du d0i du du du d / du\
+ p'~dx7dx~dx~k ~ jkdx~kdx~,dx~ ~ Pldx~tdx~k \ajkdx~)

We recall that /3 • V = r on dBT and p • VuAVu • V = (r/n)\AVu • V\2 on dBT. Also
we note @ • V — 0 and AVu • V = 0 almost everywhere on BT n dQ.. Therefore, integrating
the Rellich-Necas identity (2.13) over BT ("I Q, we obtain Lemma 2.6. D

LEMMA 2 . 7 . Let 60{r) = /(r)+T?0(r;(2V + £ W ) ~ ) and Z(r) = N(r) + l, then
there exists an absolute constant C and a positive number TQ such that

(2.14) Z'{T) > -C6-^-Z{r), for all 0 < r < 2r0:
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PROOF: We introduce the following quantities

-\AVu • u\2da,[
JdBrnn

and

f p , J(r;V) = -- [ Q-VuVudx,
r JBrr\n T JBTnn

and therefore (2.12) can be rewritten

(2.15) I[(r) = F(r) + [iLzi + 0 ( Z £ ) ) j j l ( r ) + J(r-,b) + J(r;V)

Using divergence theorem, we can get that

(2.16) J{r; V) = - f div{0V)u2 dx - - f 0- uVu2da
r JBrnn r Jd(Brn<i)

= n - 2 + O(/(r))J > ( r ) +l r {2V
r r JBTnn

It's not difficult to see that

\{2V + pVV)| ^ A2|{{2x/\x\)V + \x\VV)| €

From (2.15), (2.16) and Lemma 2.1, 2.2, 2.3 and 2.4, we obtain that

(2.17) I'(r) > I'2(r) + F(r) + ̂ / ( r ) + J(r; b)

_ cf(r) + r,o{r;(2V + 0W)-) (H{r) {

Therefore, in the case 6 = 0, the above inequality implies

By this inequality and (2.9), and the quotient rule we obtain

/(r)ff(r) + rf(r)g(r) - r/(r)/f (r)z(r)= w?

> -

with an absolute constant C > 0 independent of r G (0,2r0), where we have used the

fact F(r)H(r) — 2I(r)2 ^ 0 by Holder's inequality. Thus we have deduced the inequality

(2.14) in the case 6 = 0.
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For the case b ^ 0, some more careful estimates are needed. First by the assumptions

for b we have

(2.19) \J(r;b)\^- [ \x\ \b\ |Vu|2 dx ^ Cf-^- f \Vu\2dx
T JBrnn ' ' r JBrnn

where the positive constant C independent of r.

An analogous estimate as in (2.16) and Lemma 2.2, 2.3 and 2.4 give

(2.20) -I'3(r) ^ f V~u2

JdBrn
dx

+ - f {2V- + PVV~)u2dx + -
r JBrlMl r

<?('<••> * ^ ) .
where we have used the Holder inequality and the assumption (\x — xo| V~) € Qt(f2) for

the integral / (/3Vu)V~udx.
JBrnn

Now from the inequalities (2.15), (2.16), (2.19) and (2.20), we have

I'i(r) < -rs(r) + F(r) + ^ ( J i ( r ) + 73(r))

(2.21) +Cl^I!2^V

and moreover,

l ^ f bVu\u\do^C.[ \Vu\2da f \b\2u2da
JdBrnn y JdBrnn JdBrnn

(2.22) ^

Combining (2.17), (2.19), (2.22) and Lemma 2.4, we have

(2.23) 7'(r) ^ F(r) + = ^ /

where 0o(r) = /(r) + Vo(r; (2V +
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By (2.23), (2.9) and the quotient rule we obtain

I(r)H(r)+rI'(r)H(r)-rI(r)H'(r)Z M =
rF(r)H(r) - 2r/(r)2

 CJ{r)r—-— 00(r)

with an absolute constant C > 0 independent of r € (0, r<j).

Since F(r)H(r) - 21{rf > 0, so if F(r)H{r) < 4/(r)2, then

and thus the desired differential inequality (2.14) holds. Otherwise, we assume F(r)H(r)
^ 4/(r)2. We note that

and so the inequality (2.24) implies

rF(r)H(r) - 2rl{rf Cf(r)rF(r) 90(r)z (r) > ^ w 5 w— - c^-
. (1 - Cf(r))rF(r)H(r) - 2r/(r)2 0o(r)

for sufficiently small r satisfying Cf(r) < 1/2, which yields the inequality (2.14). D

LEMMA 2 . 8 . Let L be an operator as in (1.2) satisfying Assumption (A) and (B),
and let u be a solution to Lu = 0 in fi whose conormal derivative vanishes on A3(Q0).
With the notation above, if the condition (1.5) in Theorem 1.2 or 1.3 holds for x0 = 0
and small positive number r0, and if A(0) = / , then there exists an absolute constant
C > 0 such that

is nondecreasing in r € (0,2ro). Moreover,

(1) Iff*(60(r)/r) dr < +oo, then N{T) < C{r0) for all re (0,2r0),

(2) In general, for every r € (0,2r0), N(r) ^ (C^n , ) ) / ( r 0 * 0 *™) where

C(ro),Ci(ro) andC2{ro) are bounded constants independent ofr, ande(r0)

= max 0Q(T).
0<r<2r0

 V '

PROOF: Recalling the inequality (2.14) above, we have

(2.25) ~ log Z{r) 2 -C°-^-, for all 0 < r < 2r0,
dr r
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which shows that

Z(r)expj-C J r°{e0(t)/t)dt\

is nondecreasing. Further, we integrate (2.25) between r and r0 to get

which yields the assertion. D

This lemma and (2.9) imply Theorem 1.2 and 1.3 by a standard argument. For the
details see [2, 5, 6].

3 . B2 WEIGHT PROPERTY ON THE BOUNDARY

Before proving the B2 weight property on the boundary, Theorem 1.6, we need to
prove several lemmas. Using Lemma 2.1, we can first deduce the following Cocciopoli
inequality ([8]).

LEMMA 3 . 1 . Let Q be a Lipschitz domain with Qo G dQ, and L be an operator

as in (1.2) satisfying Assumption (A) and (B). Suppose u G H}0C{Q) is a solution to

Lu = 0 whose conormal derivative vanishes almost everywhere on A3(Q0)- Then there

exist constants C and 0 < rQ < 1 such that for all 0 < r < r0 and x0 € Bi(Qo) H Q,

(3.1) / \Vu\2dx<^[ \u\2dx.
J r J

P R O O F : Take 0 < r < 1, and let (f> e C£°(Rn) be a real function, <j> = 1 on BT(x0),
du

supp4> C B2r{x0), |V0| s$ C/r. Since ^ - = 0 on B2T{X0) n 9fi, u<j>2 6 tf^B^zo) n fi).
ovA

Thus
/ [AVu • V{u<t>2) + (bVu)u<f? + Vuu<f>2] dx = 0.

JB2r(i0)nn
By the assumptions and Holder's inequality, one can see from Lemma 2.1, 2.2 and 2.3
that

J JV(u<j>)\2dx

^ Cx,n f \u\2\V4>\2 dx + C f \hi<t>\2 dx + C f V~\u^2 dx
/B2r(i0)nn

(3.2)

C{f{r)+r,0(2r;V-)} f |V(u0)|2dx
JB2r(x0)nn

Taking 0 < r0 < 1 such that C{f{r) + r}0{2r;V-)} < 1/2 for all r G (0,r0), then
from (3.2) we can get (3.1). The lemma is proved. 0
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LEMMA 3 . 2 . Let Q be a Lipschitz domain in R" with Qo G d£l, and let u be

a nonconstant solution in T^Qo) to Lu = 0 whose conormal derivative vanishes almost

everywhere on A3(Q0), where L is the operator as in (1.2) with its coefBcients satisfying

Assumption (A), (B) and (C). If the doubling property (1.8) holds, then there exist

constants C and 0 < r0 < 1 such that for any Q G Ai(Q0) and all 0 < r < 2r0,

(3.3) If |Vu|2da) ^ CV-("+3)/2 f \u(x)\dx.

P R O O F : Without loss of generality we may assume Q — 0 and .4(0) = I, and that
fi is the set of points x — (x', xn) in the unit cylindrical body of E" such that xn > <p(x'),

where tp is a Lipschitz function in R""1 verifying < (̂0) = 0 and

for all x' € R""1, where Q is a Dini function. From the mean value theorem we get

(3.4) x'V<p(x') - <p(x') > -2\X'\Q(\X'\) > - i r , for all | i ' | ̂  2r,

with some small positive number r0 and 0 < r < r0.

We take a nonnegative function <f> G C~(B2r(0)) such that <j> = 1 in BT(0) and
\V(j>\ ^ C/r for some positive constant C. Let x0 = (0, r) and 7(1) = (x - xo/r)<j>3(x), a
vector field supported in B2r{0), then one can see |V7(x)| ^ C i / r in T2r = B2r(0)nQ. So
we can see from (3.4) that 7 • V ̂  Ci on A r = BT(0) n dQ for some positive constants C\
and Ci depending on the Lipschitz character of fi, and that 7 • V > 0 on A2 r . Recalling
the Rellich-Necas identity (2.13) and integrating over T2r gives

7 • PAVu • Vudo

(3.5) = — ^ / \Vu\2dx-2 7 • Vu[b- Vu + Vu]dx

= / IVul2 dx — 2 I 7 • VuVudx
7* / /

= —— / \Vu\2dx- j-PVu2da+ div(7V)|u|2dx.

where the last equality follows from the divergence theorem. Moreover, since V G Qt and

\2V + (x - x 0 ) W | < |2(x - xo)/ |x - xo\V +\x- x o | W G Qt l
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we can get from Lemma 2.1, Lemma 2.3, and the Caccioppoli inequality (3.1) in Lemma
3.1 that

(3.6) f div{W)\u\2 dx
JT2r

JTir\r r

= 2 I H f \v\ \4>u\2 dx - - f (2V + (x-xo)VV)<f>\<l>u\2dx
r JTir

 T JTir

^ - f \v\ |<H2 dx + - f 2 , I " I ° y + \x- i o | v y \<f>u\2 dx
r JT2T

 r JBir(xa)nn F - so!

\Vu\2dx + ^ f \u\2dx)
{x0)nii T JBirMnn /r \JB3r{

£ / \u\2dx.

Using the uncertainty principle, Lemma 2.2 and 2.3 on A2r, we have

(3.7) -f ^•uVu2da^Crt{r\V-) f \Vu\2dc.
J Air J Air

Now combining inequalities (1.8), (3.5), (3.6) and (3.7), we get that

(3.8) C2\~
l j \Vu\2da^^f \u\2dx,
JAr r JTrli

where the constants Ci and C are independent of r < 2ro, ro is a sufficiently small positive
number. Now using the maximum principle, we can obtain the lemma from (3.8). D

LEMMA 3 . 3 . Let n be a Lipschitz domain in E", L be the operator in (1.2)
whose coefficients satisfy Assumption (A), (B) and (C). IfQe d£l, 0 < r < 1, and u is a
solution to Lu = 0 on T2r{Q) vanishing continuously on a subset S of Ar(Q) and S has

positive surface measure, and the conortnai derivative of the solution u vanishes almost

everywhere on TiT(Q). Then for each e > 0 tiere exists a constant C(e) such that the

following holds:

f \u\dx^C{e)r2 f \Vu\do + el \u\dx.
JTr{Q) J^r(Q) JTlAQ)

PROOF: After a translation and dilation, we may assume Q = 0 and r — 1. Follow-

ing from the similar idea of [1, Lemma 3.1] we let T denote the set of Lipschitz mappings

ip on R""1 verifying f(Q) = 0 and ||V¥j||L<»(Rn-i) ^ m for m > 0, and C denote the

set of all the operators L as in (1.2) whose coefficient matrix A satisfies A(0) = I and

otRn-i) ^ m. For each <p G T we denote Q{<p) = {(x',xn);xn > <p{x')}.
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If Lemma 3.3 were false, we could find t > 0, a sequence {(pk} in T, {Lk} in C with

Lkw = div(/4fcVu)) + bk • Vw + Vkw,

and a sequence {uk} of functions verifying that Lkuk = 0 on B2 n fi(yjfc), ̂ A = 0 on
), ut = 0on S* C Bx V

(3.9) / | u t | d i = l,

and

(3.10) e/ \uk\dx

For each fc we let to* and fk = (fk,..., /£) denote the zero extensions to the whole
ball B2 outside of domain Q(ipk) oiuk and Vuk, respectively. Since all the above sequences
are compact in the proper topologies, we can find subsequences that we can assume are
the whole sequences such that <pk —> cp E T and Ak —>> A uniformly over compact sets,
bi -> b and Vk -y V weakly in L2(B3/2), and wk -»• w, fk -> / = (Z1, • • - , / " ) weakly in
L2(B3/2) and uniformly over compact sets contained in B3/2\d£l(tp). From the divergence
theorem, the Poincare inequality on A2 and (3.10), we find that there is a constant C
such that for all T/> € C%°{B3/2) and 1 < j < n

(3.11)

/ (wk — + flip) dx +\ (AkfkVxp + bk • fkip + Vkwkip) dx
\J v OXj I \J

I Uki>Vjdo
J B3/2nan(Vk)

/ kfc - 7^-7 /
JB3/Jndil(<pky P*l Jsk

ukda da/
B3/Jndil(<pky

< f I
Taking limits in (3.9) and (3.11), we find that the limit w satisfies the following:

w e W 1 I 2 ( JB 3 /2 ) , ft) is the solution to Lw = 0 on B3/2,

(3.12) f
JB

and w vanishes on B} \£l(tp). But an operator L € C has the interior unique continuation
property; thus w = 0 on £3/2- This contradicts (3.12) and proves the lemma. D

PROOF OF THEOREM 1.6: Using doubling property (1.8) and choosing the e in

Lemma 3.3 sufficiently small, we can deduce that

(3.13) / \u(x)\dx^Cr2 f \Vu\da.
JT2AQ) J&AQ)

for all 0 < r < ro, where r0 > 0 and the constant C depends only on ro. (3.13) and

Lemma 3.2 yield the B^ida) property (1.9) for |Vu|. D
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4. BOUNDARY UNIQUE CONTINUATION FOR C U DOMAIN

Our ultimate aim is to establish the unique continuation at the boundary, Theorem
1.7. We first have the following lemma by the same argument as in [l].

LEMMA 4 . 1 . Let Q be a C1'1 domain, L be the operator in (1.2) satisfying As-
sumptions (A), (B) and (C), and let u G Hf^U) be a solution to Lu — 0 in Q whose
conormal derivative vanishes almost everywhere on A3(Q0) for some Qo 6 dfi. Then
there exists a positive number r0 depending on the C1'1 character ofQ and n, and a con-
stant M depending on n, the C1*1 character of Q and u, such that the doubling property
(1.8) holds for all Q € A^Qo) and 0 < r < r0.

PROOF: The proof of theorem 0.8 in [1] can be used here with some obvious modifi-
cations. After a translation we may let Q — 0 S A3(Qo)i we can construct a proper C1'1

diffeomorphism \& : Bri(0) —> Bro(0), where rj and ro are two small positive numbers.
Defining u(x) = u o $(i) and Q = ^~l(Q), we have that u is a solution to

Lu — - div(^Vu) + 6 • Vu + Vu - 0,

on Bn{Q0) nfi, where Q = {(x',xn); xn > 0} and

A(x) = d l

V(x)=detJV{x)Vo<l>(x).

Moreover, the operator L, u and Q satisfy all the assumptions in Theorem 1.2, thus
the doubling property (1.6) with x0 = 0, and then (1.8), holds for u and as a consequence
for u, which implies the lemma. D

PROOF OF THEOREM 1.7: Without loss of generality we may assume that
T = A3(Q0) and

S={QeT: u(Q) = 0}cAl(Q0)

for some Qo € dQ.. We suppose u € H^Q) is a solution to Lu — 0 as in Theorem 1.7 and
that Q € Ai(Qo) denotes a density point of the set E = {Q e A^Qo) : Vu(Q) - 0}.

By Lemma 4.1 and Theorem 1.6, we obtain from Holder's inequality that

q(Ar(Q)\E)yn c

for all 0 < r < r0. This implies that there is a positive constant C such that

r a n a (A r (Q) \g) 2
( 4 1 ) a(Ar(Q)) >C
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for any small r > 0. But one can find that \i a{E) > 0 the inequality (4.1) is impossible

by taking r —> 0. On the other hand, since -^~ = 0, <J(S) > 0 implies a(E) > 0.
auA

Therefore, we have a(S) = 0 if u ^ 0 in ft, and then complete the proof of Theorem

1.7. ' D

5. APPENDIX

LEMMA 5 . 1 . Let ft be a Lipschitz domain, BT = Br(xo), and assume

v e A-n(ft)nL°°(ftnBr),

and V > 0. Then t ie following Neumann problem

in ft n £ r ,

(5-1)
^t = 0, on dQ n Br,
ov

is solvable, where V denotes the unit outer normal vector. Moreover, the solution ip to

the above Neumann problem satisfies the following estimate

(5.2) IMU~(finBr) ^ CnQ
K(r; VXBrnn)

with a dimensional constant Cn.

PROOF: For g € C(d(Br n ft)) and P,Q e d(Br n ft), we define

where wn denotes the measure of the unit sphere dB\ in R". By known results (see [13]),
the operator 5 = ( - ( / + K')/2)~1 maps L2

0(d(BT n ft)) into itself. Let

„ in\-) "n\x - Q\n

I l i ' QSiindBr,i 7 ^ l | nun\x-Q\n \Q

then gx(Q) e Ll(d(Br D ft)). We can now define the Neumann function,

(53) N{X' V) =
 Wn(2 - „) |x - y|-» " ^ ( 2 ^ ) i(Brnn) | y -V- a < f t ? l

and one can see from [13] that the solution of the Neumann problem (5.1) is given by

(5.4) ip(x)= [ N(x,y)V{y)dy.
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Substituting (5.3) into (5.4), one can see that because of the assumption V 6 Kn the
terms corresponding to the addend in (5.3) have L°° norm QC\Br that satisfies the bound
(5.2) by the same arguments as that in [5]. D

LEMMA 5 . 2 . ([5]) Let Q be a Lipschitz domain, V € A"n(Q), and u e H^Q).

Then there exists a dimensional constant Cn, independent of B = BT(x0) and u, such

that

(5.5) f \V\\u\2dx^Cng
K(r;VXBnn)( f \Vu\2dx+-f \u\2do).

JBnn \JBnn r JdBnn /

PROOF: Denote gK(r; VxBrnn) by g(r), and set

\V(y)\dy,

we can see that h(r) ^ C{g(r)lr). From the divergence theorem and Lemma 5.1, we
have

f \V\ \u\2 dx= f At/m2 dx = h{r) f u2da - 2 f uVip • Vu dx
JBnn JBnn JdBnn JBnn

r (r \1/2/ r V2

(5.6) ^h(r) u2do + 2\ u2\V\p\2dx I 1 / |Vu|2d:r) .
JdBnn \JBnn / \JBnn /

Using the divergence theorem and Cauchy inequality, we can deduce that

Bnn
= \ f u2&{ip2)dx- [ \V\u2ipdx

2 JBnn JBnn

2 JdBnn dv

dx(5.7) - \ j V(u2Mtf)dx + M\\L~ f \V\u2

* JBnn JBnn
^ ^ ( l ) f uW+\( u2\Vi>\2dx

r JdBnn 2 ,/jjnn

+ 2 f \Vxp\2]Vu)2dx + Cg{r) f \V\u2 dx.
JBnn JBnn

Inequality (5.7) yields

(5.8) f u2\Vi>\2dx^Cg2(r)\- f u2do + f |Vu|2dx]
JBnn lr JdBnn JBnn J

+ Cg{r) f \V\u2dx
JBnn

Now we replace (5.8) in (5.6), we can deduce (5.5) and obtain the lemma.

Finally, we can prove Lemma 2.2 by Lemma 5.2 and the following inequality

(5.9) / \u\2da^—f \u\2dx + Cnr f \Vu\2dx,
J6Br(xo)nn r JBr(i0)nn JB,(io)nn

which can be deduced as (2.1) of Lemma 2.1.
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