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Abstract. A strategy is proposed for applying Chabauty’s Theorem to hyperelliptic curves of genus
> 1. Inthe genus 2 case, it shown how recent developments on the formal group of the Jacobian can
be used to give a flexible and computationally viable method for applying this strategy. The details
are described for a general curve of genus 2, and are then applied to find C(Q) for a selection of
curves. A fringe benefit isamore explicit proof of aresult of Coleman.
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0. Introduction

We recall the following result of Chabauty [4], which gives a way of deducing
information about the K -rational points on a curve from its Jacobian.

PROPOSITION 0.1. Let C be a curve of genus ¢ defined over a number field K,
whose Jacobian has Mordell-\Weil rank < g — 1. Then C has only finitely many
K-rational points.

This is a weaker result than Faltings Theorem; however, when applicable,
Chabauty’s method can often be used to give good boundsfor the number of points
on a curve. For example, McCallum in [14], [15] obtains conditional bounds on
the number of rational points on the Fermat curves, and Coleman [5] has given the
following conditional genus 2 applications.

PROPOSITION 0.2. Let C be a curve of genus 2 defined over @, and p > 4 be
a prime of good reduction. If the Jacobian of C has rank at most 1 and C is the

reduction of C mod p then #C(Q) < #C(F,) + 2. O
PROPOSITION 0.3. Let C be the curve of genus 2:
C:Y2=X(X2-1)(X —1/N\)(X%2+aX +b),

with \,a,b € Z. Suppose 3%||)\ , for some » > 0, and 3 does not divide
b(1—a + b)(1+ a + b), and that the Jacobian of C has rank at most 1. Then
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C(Q) contains precisely the points (0, 0), (1, 0), (—1,0), (1/,0) and the 2 ratio-
nal points at infinity. O

The only non-trivial application of Proposition 0.2 in the literature is due to
Gordon and Grant [11], [13].

EXAMPLE 04. Let C be the curve Y2 = X (X — 1)(X — 2)(X — 5)(X — 6)

defined over Q. Then J7(Q) hasrank 1 and #C(Q) = #C(F7) + 2 = 10. O

It seemslikely that it will be hard to find many other direct applications of Propo-
sition 0.2 which will resolve #C(Q) completely, since one requires the bound
#C(F,) + 2 to be attained. However, there have recently been applications of
Proposition 0.3 in [10], such as the following examples.

EXAMPLE 0.5. The Jacobian of the curve: Y2 = X(X? — 1)(X — §)(X? —
18X + 1) has rank 1 over Q. Hence, by Proposition 0.3, there are no Q-
rationa points on the curve apart from the points (0, 0), (1,0), (—1,0), (1/9,0)
and the 2 rational points at infinity. Similarly, the Jacobian of the curve:
Y2 = X(X? - 1)(X + 3)(X2 — 4X — 1) has rank 1 over Q. Hence, by
Proposition 0.3, there are no Q-rational points on the curve apart from the
points (0, 0), (1,0), (—1,0), (—1/9,0) and the 2 rational points at infinity. O

The above 3 examples are the only non-trivial applications of these methods so far
which haveresolved C(Q) entirely. For atypical curve, apart from the above special
cases, it would be desirable to have a direct method of exploiting the arithmetic
information specific to the curve. Chabauty’s general strategy [4] in the genus 2
case can be described asfollows. Let us supposethat the curveY? = (sexticin X)
of genus2 isdefined over anumber field K, andthat 7 (K'), the group of K -rational
points on the Jacobian, has been shown to have rank 1, generated by the torsion
group and the non-torsion generator D. Let v be any place of good reduction, K,
be the completion of K with respect to v, and k, be the residue field. Further, let
D be the image of D under the reduction map from 7 (K,) to J (k,), and let M
be the torsion order of D (such an M must exist, since 7 (k,) is afinite group).
It followsthat D' = M - D isin the kernel of reduction, and that any member of
J(K) can bewritten in theform: A + N - D' for some N € 7, and some divisor
A inthefinite set:

That isto say, S + D'Z = J(K). If we now let E and L represent the formal
exponential and logarithm maps on the formal group of 7, then

G={A+E(N-L(D")): A€ SN € K,,|N|, <1}
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isaonedimensional analytic subgroup of J (K,) which contains 7 (K'). We have
a natural map C — J which takes a point P on C to the class of the divisor
2P — 0o — 0o~ (note that the role of co™, co™ could be performed by any two
distinct points on C conjugate under the hyperelliptic involution). Let T denote the
image of C under this map. The map C — 7Y is bijective outside the Weierstrass
points of C. Following Chabauty, we observe that C(K) C C(K,) N G and the
latter set isfinite.

Our main aim in this paper is to make this explicit. We shall embed 7 into P%°
and identify T (K), the image of C(K), as an explicit quadric section of 7; {j €
J(K) : q(j) = 0} forsomegq. Let ha(N) = A+ N - D'.ThenC(K,) NG isin
one-to-one correspondence with the digoint union over A € S of the sets

{N €EK,: Q(hA(N)) =0, |N|v < 1}

By using bilinear forms relating to the group law, and an explicit construction of
the terms of the formal group, we can construct, for each A € S apower series

O(N) = 04(N) = co+ 1N + coN? + - -- € K, [[N]]

whose coefficients tend to 0 in K,,, and whose zeroes include al zeroes of
q(ha(N)). We shall show how to compute the coefficients ¢; = ¢;(A) to any
desired degree of accuracy, and then use a version of Newton’'s lemma deduce a
bound on the number of zeroes of 64 (N). Adding these bounds over all A € S
gives a bound on the size of C(K'), which we hope to be the same as the number
of members of C(K) aready known. Note that the bound obtained can differ from
the true value of C(K') when there exist valuesof N € K, with |N|, < 1 suchthat
N satisfies and N ¢ Z. In this case, we have the option of trying a new place
of good reduction v at which the above process can be repeated; each choice of v
givesanew chancethat C(K) will be determined completely. It is not claimed that
this is guaranteed to terminate, but we shall see that in practice it seems either to
resolve C(K') completely, or at least to give a very sharp bound. There is aso the
advantage that, when there is a suspected missing point in C(K) still to be found,
the above process will impose congruence conditions on the possible value of IV,
speeding the search for the missing point.

The above strategy, and the mechanical details to be presented in Sections 1
and 2, canin principle easily be generalised to hyperelliptic curves of higher genus
g > 2 for which J(K) hasrank r < ¢, with non-torsion generators Dy, ..., D,.
The aboveargument is unchanged, except the M isreplaced by My, ..., M,,and 6
replaced by a set of g power series. One would then combine finite resultant com-
putations with Strassman’s Theorem to bound the possible values of Ny, ..., N,.

Most of the work in implementing the above strategy is contained in the deriva-
tion of the power series #. There are two requirements: the ability to compute
arbitrarily many coefficients of ¢ up to any required degree of accuracy in K,
and an explicit sequence d,, — 0 such that |c,|, < d,, for al n. In Sections 1
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and 2 we shall use the formal group, and its associated formal exponential and
logarithm maps, to show how both of these can be done for an arbitrary curve of
genus 2. We a so demonstrate a time-saving refinement which often allows the use
of generators of J(K)/2J (K ), even when generators of 7 (K') are not known.
In Section 3, we use the technique to compute C(Q) completely for a selection of
curves of genus 2, and give a brief indication of how the technical details might in
future be generalised to hyperelliptic curves of genus > 2.

1. TheJacobian variety and formal group

In this section we briefly summarise some of the explicit structures which have
been developed in [6], [7], and fix notation. A general curve C of genus 2, over a
ground field K of characteristic not equal to 2, 3 or 5, may be taken to have the
form

C:Y?2=F(X) = feX® + fsX° + fuX* + f3 X3 + oX2 + 1X + fo, (D)

with fo,..., fe in K, fs # 0, and the discriminant A(F) # 0. We let Pic% (C)
denotethe Picard group of C over thealgebraic closure K of K; that is, the group of
divisors of C of degree 0 modulo linear equivalence ([14], p. 32). We represent [1]
any element of Pic‘}((C) by an unordered pair of points {(z1,y1), (x2,y2)} onC,
wherewe also alow co™ and oo™ (the 2 branches of the singularity of C at infinity)
to appear in the unordered pair. The notation {(z1, y1), (x2,y2)} is shorthand for
thedivisor: (z1,y1) + (22, y2) — 0o — oo™ Thisrepresentation givesaone-to-one
correspondence except that we must identify all pairs of theform {(z, y), (z, —y)}
to give the canonical equivalence class, which we denote by O. Generically, three
such elements will sum to O if there is a function of the form Y — (cubic in X)
which meets C at al 6 component points. The Mordell-Weil group, Pic%(C), is
the subgroup of Pic?-((C) invariant under Galois action. In our representation, it
consists of pairs of points which are either both defined over K, or are conjugate
over K and quadratic.

Asagroup, Pic%(c ) may beidentified with the K valued points on the Jacobian
of C. Jacobian of C. The Jacobian may be given the structure of asmooth projective
variety in P of dimension 2 using the following basis[2].

DEFINITION 1.1. Letthemap J: Pic (C) — P take D = {(z1,41), (z2,92)} €

Pic (C) toa = (ao,...a1s), Wherea, . . . ass are asfollows:

2
ais = (1 —22)%,a14 = 1, a13 = 1+ 22, a12 = 122,011

T122(71 + T2), a10 = (7172)?,
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ag = (y1 —y2)/ (71 — 2), ag = (v2y1 — 11Y2)/(v1 — 72), a7
= (25y1 — 25y2)/ (w1 — w2),
ag = (23y1 — 23y2) /(11 — 72), a5 = (Fo(z1, 22) — 2y1y2)/ (z1 — 22)?,
as = (Fi(z1,22) — (21 + 22)y1y2) /(11 — 22)?, a3 = (z172)as,
az = (Go(x1,z2)y1 — Go(w2, 21)y2)/ (z1 — 22)3,

a1 = (G1(z1, 22)y1 — Ga(z2, 21)y2)/ (z1 — 22)3, a0 = a2,

where

Fo(w1,2) = 2fo+ fi(wr + 22) + 2f2(w122) + fa(w1w2) (21 + 2)
+2fa(z122)? + fo(z122)?(71 + 72) + 2f6(2122)3,
Fi(z1,22) = folz1+ 22) + 2f1(x122) + fo(x172) (21 + 22)
+2f3(172)? + fa(z172)?(21 + 22) + 2f5(z122)°
+f6($1x2)3($1 + x2),
Go(z1,72) = 4fo+ fi(z1+ 312) + f2(2z172 + 273) + f3(3z125 + 23)
+4f4(z123) + fs(x223 + 3r123) + fo(27225 + 27173),
G1(z1,22) = fo(2z1+ 222) + f1(3z122 + :v%) + 4f2(:r1:v%)
+fa(z373 + 3r173) + fa(22573 + 21123)
+f5(31225 + x173) + 4fe(z223).

The canonical divisor class O ismapped by J to (1,0, .. ., 0), and the MordellI—
Weil group Pic% (C) is mapped into P(K). There is a simpler embedding into
P8 described in [12] for the special case when C has a rational Weierstrass point.
However, we wish our final power series to provide arithmetic information about
any curve of genus 2, regardless of whether it has arational Weierstrass point, and
so we shall use structures based only on the general P> embedding. The above 16
functions are a basis for the space of functions symmetric in (z1, y1) and (z2, y2),
which may have a pole of any order at O and are a worst the order of 223 at

infinity, but have no other poles; see[2] for more details. The following result from
[6] givesthe structure of the Jacobian variety.

THEOREM 1.2. Let Z¢ denote Z | fo, . . . , fg]. The 72 quadratic forms over Zs giv-
en in the file ~ftp/pub/genus 2/jacobian.variety/defining.equations available from
the machine ftp.livac.uk by anonymous ftp. are a set of defining equations for
the Jacobian variety, denoted 7 = 7(C), induced by the embedding of Definition
11 O
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The map J of Definition 1.1 gives a group isomorphism between Pic%(C) and
J(K), the K-rational points of 7. The restriction of .J to Pic%(C) gives a group
isomorphismwith J (K).

The localised coordinates: s; = a;/ag for i = 1,...,15include a pair of local
parameters: s1, s2. A process of recursive substitution (as described in [6], p. 429)
then allows each s; to be written asformal power seriesin s1, s over Zs.

s; = 0i(s1,52) € Zf[s1, s2]]. )

It was shown in [6], p. 433, that the formal group induced by the local parameters
s1, 82 is defined over the same ring as the coefficients of C.

THEOREM 1.3. Suppose that the ground field K is a non-Archimedean field with
valutaion v and that fo, ..., fs all lie in the valuation ring of K. Let a,b,c €
J(K,) be such that c = a + b, where a + b is addition in J(K,). Further,
let s1 = a1/ao,s2 = az/ao,t1 = bi/bo,t2 = ba/bo,u1 = c1/co,u2 = c2/co
(the local parameters of a, b, ¢, respectively). Then there is a formal group law

(A
F = 5

contain terms only of odd degree. If a, b both liein the kernel of reduction:

where F, F» are power seriesin s, s», t1, t» defined over Z;, which

N ={ae J(K,) :|si(@)], <1, for 1 <4 < 15}, ©)

then Fp, > converge on N x N,and u; = f1(81,82,t1,t2), Uy = .'/_"2(31, S2,
tlat2)‘ |

It is described in [6], [7] how the terms of the formal group may be computed
up to terms of any given degree. Up to cubic terms the formal groupis:

F1 = s1+t1+ 2fas5ts + 2fas1t5 — f1s5ta — frsats + -+, "
F2 = s2+t2+ 2f28%t2 + 2f232t% — f53%t1 — fsglt% o,

We can therefore describe the group law locally up to any desired degree of
accuracy. We shall also require explicit equations which relate to the image of the
global group law on the Kummer surface. An embedding of the Kummer surfaceis
givenby thefunctions: as, a1», a13, a14. FOr convenience, weintroducethelabeling:
k1 = ai4, k2 = a13, k3 = a1z, k4 = as, so that:

k1=1, k2 = 21+ 32, k3 = 2122, ka = (Fo(z1,22) — 2y152) /(1 — 22)%,  (5)
where Fo(z1, z2) isasdefinedin 1.1. For any field L containing K, welet /C( L) rep-

resent theimage of themap x on 7 (L) whichtakes (ao, . . . , a15) t0 (k1, k2, k3, k4).
The map « identifies +; that isto say, x(a) = k(—a) forany a € J(L).
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THEOREM 1.4.Leta,b,c € J(L) besuchthat c = a+b, where L isanyfield con-
taining K . Thenthe4 x 4 matrix, giveninthefile~ftp/pub/genus 2/jacobian.variety/
bilinear.forms available from the machine ftp.livac.uk by anonymous ftp, of
bilinear forms (¢;;(a,b)) defined over Z¢ is projectively equal to the matrix
(ki(a— b)k;j(a+ b)). That is, there exists a constant p € L such that p # 0
and ¢;;(a,b) = p- ki(a—b)k;(a+ b) for all i, ;. O

For our purposes here, we shall usually only require (a1, ¢42, $a3), which projec-
tively give the triple (k1, k2, k3), where kK = k(c), provided that k4(a — b) # O.
Theinitial terms of these are asfollows.

¢ar(a,b) = boas + 2a2by + agbs + - - -,
(]542(61, b) = 2agbg + 2biar + 2a1by + 2bgas + - - - , (6)
¢a3(a,b) = agbz + 2a1b1 + boaz + - - -

Note that, in the exceptional situations where k4(a — b) = 0, there must always
exists an 7 such that k;(a — b) = 0, in which case the above can be replaced by

(di1, biz, Pi3).

2. Finding the Strassman bound

In order to obtain information about the series 6 (V), mentioned in theintroduction,
it ishelpful first to derive coefficients of the standard exponential and logarithm of
the formal group F.

DEFINITION 2.1. Let F betheformal group defined over Z; asdescribed in Theo-
rem 1.3. Let sbeashorthand notation for the pair of variables ( ) ;similarly t for

S1
52
to B ,Where E1, E, are power
seriesin s over thefield of fractions of Z, by: E(s) = s+ terms of higher degree,
and E(s+t) = F(E(s), E(t)). Smilarly define the formal logarithm of F as

L = fz , Where L1, L, are power series in s over the field of fractions
of Zs, by: L(E(s)) = s. Equivalently: L(s) = s+ termsof higher degree, and
L(F(s,t)) = L(s) + L(t).

These power series give the formal isomorphism, defined over the field of

fractions of Z¢, between the formal group F and the additive formal group: s+ t.
The following lemma describes what denominators can occur in the coefficients.

(tl . Definethe formal exponential of F asE = By

LEMMA 2.2. Let F, E, L be asin Definition 2.1. Then each of E1,F,L1,L, can
be written in the form: Y- (a;;/i!4!) s} s3, wherea;; € Z¢ and a;; = Owheni + j is
even.
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Proof. Let E'(s) denote the 2 x 2 matrix (0F;/0s;). Similarly, let Fs =
(0Fi/0s;) and Fy = (0F;/0t;). Differentiating both sides of the equation
E(s+t) = F(E(s), E(t)) with respect to t, and then evaluating at t = O, gives:

E'(s) = R(E(9),0) - E'(0) = K(E(s),0),

since E'(0) is the identity matrix. Now, taking derivatives with respect to s and
evaluating at s = 0 gives, by induction onr, that 9" Ey. /0s;9s} € Z andisOwhen
r iseven. A similar argument on the equation L(E(s)) = s gives the same result
on Ly, L». O

Note that the above proof provides an inductive technique for deriving coefficients
of sis}in E, L for all 4,5 up to any any desired value of i + 5. For the rest of
this section, we assume that the curve C of equation (1) is defined over a number
field K. Without loss of generality, we also assume that the coefficients of the
sextic F'(X) are algebraic integers. Let v denote a place of good reduction of C,
lying above the rational prime p (so that |p|, = p~1). Let K, be the completion of
K with respect to v. The following standard theorem follows from the theory of
Newton polygons, as described on p. 62 of [3].

THEOREM 2.3 (Strassman). Let 0(X) = co+c1X +cp X2+ - - € K,[[X]] satisfy
¢, — 0in K. Define k uniquely by: |cx|, > |cil, for all ¢ > O and |ckly > |cily
for all i > k. Then there are at most & values of = € K, such that #(z) = 0 and
|z], < 1. O

Notethat, when ¢;, hasbeenidentified, it isafinite amount of work to determine
the exact number of such solutions (which may belessthan &), using the Weierstrass
Preparation Theorem [3], p. 107. The following definition will help to keep track
of bounds on the valuations of the coefficients of the subsequent power series.

DEFINITION 2.4.

PRI =S b= bysish € K,[]) : [byyly < plH—m/0=D 4
i+j>m

EXAMPLE 25. By, By, Ly, Ly € P\V(s) since, for i + j = r, [iljl], > |rl], >

p-—D/(-1),

LEMMA 26.Let € PS¢ € P Thengod! € PU™) g € pLenlmn’)

unn(m m )

and ¢’ € P, 0

m~+m/

When sisthevector of local parametersfor somea € 7 (K, ), welet N -sdenote
the vector of local parametersfor NV -a. Wearenow in apositionto develop N - sas
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apower seriesin N, with a sharp bound on the v-adic effect of the denominators.
Thefollowing is an immediate application.

LEMMA 2.7. Define [N, §] = E(N - L(S)) = 71(S)N + 13(S)N3 + - - -, whereeach
7; representsa 2 x 1 vector whose entries are power seriesin s1, s» over K, and
only odd powersof NV occur. Then, for all 4, each component of 7;(s) liesin Pi(l) (s),
and contains only terms of odd degreein s. O

Thefirst few terms of 71 and 3 are as follows.

_ 2 3_|_l 3_|_... 2 3_1 3+...
71(3)2(81 afasit 3hes >,rs(s>=( afen = 5o ) @

1 2 1 2
$2+ 5583 — Sfosa+ - —3fss3+ 3fos3+ -

In general, a divisor in Pic% (C) has the special form {P, P} precisely when
k3 — 4kiks = 0, where k1, k», k3 are asin equation (5). Let A, B € Pic%(C) and
a,b € J(K) be the images of A, B respectively, under the embedding J into
PR (K) described in Definition 1.1. By Theorem 1.4, if the divisor A + B hasthis
special formthen ¢;2(a, b)%—4¢;1(a, b)piz(a, b) = Oforany valuefori = 1,...4.
We shall only make useto the case i = 4, but it is worth bearing in mind that one
obtains a variation of the following for each choice of i. We are now in a position
to compose these power series to obtain the #(/V') mentioned in the introduction.

DEFINITION 2.8, For t — (g ) let o (t) denote (o: (t)) € P5(z([t]]), where the

o; areasdescribed in equation (2). Let A € Pic% (C), with associated a € PP(K).
Define a(t) = daz(a, o(t))? — 4par(a, o(t))paz(a, o(t)), and let m be the degree
of the lowest degree term in t with a non-vanishing coefficient. Define:

605 (N) = ¢a([N.9) = n(N™ + e (N + - € K[F[[N]].

For the motivation for definining the power series N (N), the reader can look
ahead to Proposition 2.10. In the special casewhen A = O, we havem = 6, and
only terms of even degreein N and s occurring. The initial term of ¢g(s) then has
the simple form:

co(S) = A(fosS + -+ + fos3) + - = 4s3F (s1/82) + -+ -, (8)

where F' isthe sextic of equation (1).

In general, we wish to ensure that the evaluation of each coefficient c;(s) for a
specifica € J(K) at apair of local parameters, convergesto some c; € K, and
that |c;|, — O. Itisclearly sufficient for the extension [ K, Q, ] to be unramified (so
that we merely have to avoid an additional finite set of placesin addition to those
of bad reduction). In fact, this condition can be slightly relaxed to the following
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bound on the ramification index.

THEOREM 2.9. Let A, 8, m and 6 (N) = ¥, ¢;(S) N7 beasin Definition 2.8.
Then ¢;(s) € 79](-’”) (s), for all j. Suppose that the ramification index e of the
extension [K,,Q,] satisfiese < p — 1. Let D’ € Pic%(C) lie in the kernel of

reduction, with its associated pair of local parameters denoted by s”' = ( zi ) ,
2

and with ¢ denoting max(|sf’|,, |s5'|,). Then each c;(s”") converges to some
¢; € Ky, and [¢j|, < dj, whered; = §7pli—m/P=1 0
Proof. The fact that c;(s) € 7?](-”1> (s) follows from Lemma 2.6. Since D’ liesin

the kernel of reduction, it follows that |s9'|,, |s2' |, < p~Y¢. Hence any term in
c;(s”") of degreer ins”" must have valuation at most d, < p~"/ep(r=m)/(P=1)
0, sincee < p — 1. It follows that each ¢;(s”') convergesin K, and that the limit
has valuation at most d;, as required. 0

The proposed strategy to try to determine C(K) may therefore be described as
follows. Suppose that 7 (K') has been shown to have rank 1, and that the torsion
group and infinite generator D have been found (using the methods in [1], [8],
[16]). Suppose aso that all of the Weierstrass points (z,0) in C(K) have been
found by factorising F' over K, which is straightforward. It remains to try to find
all of the non-Weierstrass points, and to prove that they have al been found.

Sep 1. Choose a place v, lying above some rational prime p, which is of good
reduction for C, and for which the ramification index of [K, : Q,] islessthanp — 1.
Note that this only excludes a finite number of choices of v.

Sep 2. Find M suchthat D' = M - D liesin the kernel of the reduction map
from K, to theresiduefield k. Let S bethefiniteset {B +i- D: B € Jirs(K)
and0<i< M—1}.

Sep 3. For each A € S, let a bethe corresponding member of P (K') under the
embedding of Definition 1.1. Determine m, the degree of the lowest degree term
int for the power series),(t) of Definition 2.8.

At this point, we can appeal to the following proposition which follows from
the discussion in this section.

PROPOSITION 2.10. Let S, D', A, abeasin steps 1, 2, 3 above, and s” be the
vector of local parameters corresponding to D’. Let T(K) denote the image of
C(K') under the map which takes P € C(K) to {P, P} € J(K). Then the set of

(s”)

N € K,,|N|, < 1suchthat 5 ’(IN) = O contains the set of N € Z such that
A+ N-D'e T(K). 0
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Step 4. Approximatethe coefficientsc; = ¢;(s”") of thepower serieseésD )(N ) €
K, [[N]] uptosufficiently high degreein ssothat k isdetermined, where k isdefined
by: |cklv > |cily foral i > 0, and |ck|, > |c;|, for al i > k. Apply Strassman’s
Theorem (Theorem 2.3) to find the number of N € K, with |N|, < 1 which
satisfy the power series. This gives an upper bound for the number of such N for
which N € Z. Thisin turn is precisely the number of valuesof N € Z for which
thedivisor A+ N - D' either satisfieska(A — N - D') = Oorisof theform { P, P}
(orisQinthespecia case A = O, N = 0).

Sep 5. Thesum of theseboundsover all A € S givesabound onthetotal number
of non-WeierstrasspointsinC(K). If thisislarger than the number of known points,
then one can repeat the above steps with new places . If the resulting bounds are
persistently too high, and one suspects the existence of a further member of C(K)
then one can search to seewhether A + N - D' is of the form { P, P}, assisted by
v-adic information of step 4, which will give congruence conditionson N.

Therearetwo possibleenhancementsto the abovestrategy. Thefirstisto takethe

product eésD )9(_5: ) , Which can be described entirely onthe Kummer surface (being

invariant under negation), and allows both a and —ato bedealt with simultaneously.
In practice, we have not found that this significantly reducesthe computations, and
we shall not refer to it in the worked examples. The second enhancement is more
significant. Suppose that only 7 (K') /27 (K') and the torsion group of 7 (K') have
been determined, with therank shownto be 1. Thisisthe situation after asuccessful
2-descent, for which recent methods are becoming quite fast [1], [8], [10], [16].
In this case, adivisor D of infinite order will be known, but it will not be known
whether D and the torsion group give a set of generators. There is an effective
procedure for deducing a set of generators for 7 (K '), which has even been made
workable in practice [9], but is very slow. Let v,p, D' = M - D, S be asin steps
1 and 2. Then there must exist aW € Z and divisor Dg suchthat D = W - Dg
and Dy is the missing generator. The value of W will not be known, but it may be
that one can show by a finite field argument in &, that M - Dy lies in the kernel
of reduction. We further try to show that W is not divisible by p; this can be done
either by afurther finite field argument, or by looking at the valuations of the local
parametersin s”’. It then follows that any K -rational divisor can still be writtenin
theform A + N - D', but where N is now in Q, with denominator 7. It remains
truethat N € K, and |N|, < 1, and so the remaining steps are as usual with the
Strassman bounds still applicable.

3. Worked examples

We shall illustrate the ideas of Section 2 by computing C(Q) completely for two
specific curves, giving a more direct proof of Coleman’s result (Proposition 0.3),
and deriving a conditional result for afurther family of curves,
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EXAMPLE3.1. LetC bethecurveY? = (X2 + 1)(X?+ 2)(X? 42X +2). Then
C(Q) consistsonly of the six points: oo™, oo, (0, +2) and (—1/2, +15/8).
Proof. It has already been shown in [9] that 7 (Q) hasrank 1 and is generated
by the torsion group (which consists of © and the 3 elements of order 2), and
the divisor D = {oo™, 00" }. There are no Q-rational Weierstrass points, since
the 3 quadratic factors are irreducible. We take v = p = 3 as our place of good
reduction, since 3 does not divide the discriminant of C. Then D' = 5. D =
{(—1/2,15/8), (—1/2,15/8)} liesin the kernel of the reduction map from 7 (Qs)
to J(F3). The local parameters associated to D' are: s¥' = 6225/22472 and
5P = —555/11236. Let S bethefiniteset { B+i-D: B € Jiors(Q) and0 < i < 4},
which has20 members. For each A € S wewishtofindall N suchthat A+ N-D'is
adivisor of the special form { P, P}. But we can immediately discard any A whose
reduction A isnot of thistypein 7 (F3). Thisleavesonly the 5 divisors: {co™, 0o},
{007,007}, {(0,2),(0,2)}, {(0,-2), (0,—2)} and O asthe possibilitiesfor A.
For A = {oo™, 00™}, we have that the lowest degree term of )4(t) has degree
m = 1. From Theorem 2.9, it follows that 65 (N) = c1(S)N + (SN2 +--- €
K[[S][[N]}, wherec;(s) € P\"(s), forall j > 1. Thecoefficient c1(s) = —128s2+
termsof degree > 1ins. Evaluating at s = s’, Theorem 2.9 gives that terms
of degree j > 1in sall have valuation < 3~ +1/2 < 3-1, Working modulo 9
(which only requires the evaluation of the single linear term —128s, above) gives
that: 65 )(N) = 3N (mod 9). In summary, |c|s = 3~ and |¢;|s < 3~ for all
j > 1 sothat, by Strassman’s Theorem N = O isthe only solutionin Zzand sois
the only solution in Z. Therefore, the only case when A + N - D' is of the form
{P,P}isN = 0. Similarly, when A isthe divisor {co™, 00}, {(0, 2), (0,2)}, or

{(0,-2),(0,—2)}, then 65" ) (N) is congruent (mod 9) to —3N, 3N and —3N,
respectively. In each caseit followsthat N = 0 isthe only solution.
Finally, inthe case A = O, the lowest degree term has degree 6 with only even

powersof N occurring, so that: 059 (N) = cg(S) N8+ cg(S) N8+ - - € KI[S]][[N]],
where ¢;j(s) € PJ@ (s), for al j > 6. Evaluating at s = s”’, up to terms of

(s

degree 8 in s, gives that: 0y ’(NV) = 2187N°® + 4372N8mod 38). Therfore,
|cs|s = |csls = 377 and |¢j|3 < 377 forall j > 8, sothat N = 0,1, -1 are the
only solutions.

The only possible divisors in J(Q) of the form {P, P} are therefore those
where P is one of the known six Q-rational points, and so these must give all of
the Q-rational non-Weierstrass points, as required. i

COMMENT 3.2. Let C, D, D" and S be as in Example 3.1, and suppose that
we initially only know that J:ors(Q) consists of O and the 3 points of order 2, that
J(Q) hasrank 1, and that D has infinite order, but do not know whether Jiors(Q)
and D actually generate 7 (Q). This s the situation after performing the descent
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viaisogeny in [8], but before the time consuming height computation in [9]. Then
theremust existaW € 7z and Do suchthat D = W - Do and Jiors(Q), Do generate
J(Q). We now pursue the strategy described at the end of Section 2. In 7 (IF3),
whatever isthe value of W, itisawaystruethat 5- Do = O, so that Dy = 5- Dg
is in the kernel of reduction. Furthermore, if 3| W then (5W/3) - Do would lie
in the kernel of reduction and D’ = 3(5W/3) - Do; this would force the local
parameters of D' to have valuation < 32, contradicting the fact that they in fact
have valuation 3~1. Therefore, 3 f/ W (a fact which we might also have tried to
show by considering 7 (F, ) for some other prime p of good reduction). It follows
that everything in 7 (Q) may be expressedas A + Ny - D, where A € S, Ng € Z,
as usual, which can formally be writtenas A + N - D', where N = No/W. The
proof of Example 3.1 now carries through unchanged, even without knowing Dy,
since it found all possible solutions of N € Z3, which includesany N = No/W,
with3 fW.

The above strategy also alows us to deal easily with quadratic fields which
embed into Q3.

COROLLARY 3.3. Let C be as in Example 3.1 and let K = Q(v/d), where
d =1(mod 3),d # —2. If J(K) hasrank 1 then C(K) consists only of the six
Q-rational points described in Example 3.1.

Proof. If d is a quadratic residue mod 7, then #Jios(Q) divides the gcd of
#J(F3) = 20, #J (F7) = 96, and so consists only of O and the 3 divisors of
degree 2. If d is a quadratic non-residue mod 7, then #Jiors(Q) divides the gcd
of #7 (F3) = 20,#(Fa9) = 3072, giving the same result. Embedding K into Qs,
whichis possible since d is asguare in Qs, the proof as described in comment 3.2
now carries through unchanged, to show that the 6 known pointsin C(Q) are also
the only non-Weierstrass pointsin C(K'). There are also no new Weierstrass points,
since the 3 quadratic factors remain irreducible. In the omitted case d = —2, there
are the 2 new Weierstrass points (+v/—2, 0). O

The same strategy gives a more direct proof of Coleman’s result, Proposition
0.3, asfollows. LetC, A, a, b beasin Proposition 0.3, sothat A = 3% 11, wherer > 0
and 3 / . Then C is Q-birationally equivalent to: Y2 = X (X2 — 1)(3% u°X —
1) (X?+aX +b). Wecantake D' = {oot, 0o}, whichisinthekernel of reduction
from J7(Qs) to J(F3). Assume for the moment that D' ¢ 37(Q). Arguing asin
comment 3.2 gives that we need only find what values of N make N - D' adivisor
of thetype { P, P}. Thelocal parameters of D’ have valuations: |SP'|3 = 37" and
|s8'|3 = 3=%. Working modulo 3% all terms disappear except:

08 (N) = 4(sP)%u2N® — §(sP")Bu2N®

so that |cs|s = |cg|ls = 378+, whereas |c|3 < 3% for all j > 8. Therefore,
N = 0,+1 are the only solutions, giving that the only non-Weierstrass points on
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C are oot and oo™, as required. Finaly, if D' € 37(Q) then let ¢ be the largest
integer, 1 < ¢ < r, such that D' € 3'7(Q) and let D" be such that D' = 3'D" .

Then |31D” |3 =3t and |32D” |3 = 373+, The above argument can be applied to
D", but working modulo 38"*) to show that N = 0, +3' are the only solutions

to 9?;’ (N), asrequired.
A similar argument applies to the following family of curves.

EXAMPLE 3.4. Let C be the curve: Y? = (X — a)(X* 4 b), where a,b € Q,
a,b = 1 (mod 3). If 7(Q) hasrank 1 then C(Q) contains only oo, (1,0) and at
most 1 pair of non-Weierstrass points: (z,y) and (z, —y).

Proof. If thereis a pair of non-Weierstrass Q-rational points, then by aQs argu-
ment it must be of one of the forms: (1 + 3%k, +37¢), where r > 0,k,1 € Q,
and k|3 = |[¢]3 = 1or ((L+3m)/3%,+(1+ 3n)/3"), wherer > 0, m,n € Zs.
In the first case, take D’ = {(1+ 3%k, 3"¢), (1 + 3%k, 3¢)}, and in the second
case D' = {((1+3m)/3%,(14+3n)/3"), (L +3m)/3%,+(1+3n)/3")}. Either
of theseisin the kernel of reduction from 7 (Qs) to J(F3), and one can show in
the usual way that V- D’ isadivisor of thetype{ P, P} exactlywhen N = 0,+1. O

All of the above examples were shown using 3-adic arguments, which are
somewhat special in that denominators of 3 can occur in coefficients of (V) as
early as terms of degree 2 higher than the lowest degreeterm in N. This fact was
relevant in all of the above examples. For variety, we give a final example which
has 3 as a prime of bad reduction, but for which a 5-adic argument is sufficient to
resolve C(Q).

EXAMPLE 3.5. Let C be the curve: Y2 = X (X — 1)(X? — 3)(X2 — 9). Then
C(Q) consists of the 4 Weierstrass points: (0, 0), (1, 0), (3,0), (—3,0) and the pair
of non-Weierstrass points: oo™, oo .

Proof. A Q-birationally equivalent curve (the curve C®@ in Example 3.3 of
[8]) was shown to have Jacobian of rank 1, with Jios(Q) consisting only of the
2-torsion group of size 8, and so the same istrue of C. Take D = {(0,0),00"} +
{(1,0),(—3,0)} and D' = 3D, whichliesin the kernel of the reduction map from
J(Qs) to J (Fs). Thelocal parameters corresponding to D' both have 5-adic valu-
ation 5~ 1. Asusual, we can ignore those divisors A for which A is not of the form
{P, P} in J(Fs). Thisleavesonly {oo™, 00}, {c0™, 00} and A = O to be con-
sidered. Inthecase A = {cot, 0o}, wemay work modulo 52 which only requires
the computation of the linear termsin s. This gives: 9gD' (N) = 20N (mod5?, so
that N = Oisthe only case where A + N - D' is of the type { P, P}. Similarly
for A = {oo™, 00" }. Inthefinal case A = O, we can work modulo 58 to see that
63" (N) = 57 - N®(mod58), so that N' = 0 is again the only solution. Note that
thisis an easier computation than in the previous examples, since only the terms
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of degree 6 in s (that is, the expression given in equation (8)) were required; the
earliest non-integral denominators can only occur at terms of degree 10 in s, and
all term of degree > 8 in s are guaranteed to be 0 (mod 58). We finally conclude
that co™ and oo~ are the only non-Weierstrass pointsin C(Q), as required. O

So far, the recent techniques available for finding ranks by 2-descent have not
been applied to compute ranks over number fields. This is the only reason why
we have not included an example which completely resolves C(K) where K isa
number field (since we must first know that 7 (K') has rank 1). However, we have
taken the trouble in Section 2 to work through our Chabauty method for a general
number field on the grounds that such ranks should soon be forthcoming (for
example, the approach to 2-descent in [10], [16] looks easily applicable to number
fields), at which time the material of Section 2 will beimmediately availableto try
to compute C(K') when 7 (K') has been shown to have rank 1. Corollary 3.3 gives
an advanceindication of this.

For hyperelliptic curves of higher genus there are already techniques available
for computing the rank of the Jacobian; there is a genus 3 example in [16]. In
principle, the mechanical details of Section 2 will also carry over, but with ¢ local
parameters, and with an embedding of the Jacobian into P*~1. In practice, it
would be well worth bypassing the computation of the complete bilinear forms
¢i;(a,b), which will become large as the genus increases. We observe, however,
that in computing the above examples only a small portion of these expressions
were reguired to compute the final power seriesto the required degree of accuracy.
The main step of Example 3.5 only used the initial (degree 6) terms of QEQSD ),
which required only substitution into equation (8), an equation which looks highly
amenableto generalisation to higher genus.
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