A FAMILLY OF BALAACED TERNARY DESIGNS

HITH BLOCK SIZE FOUR

Diane Donoyan

This paper shows the existence of an infinite family of cyclic balanced ternary designs where the block size is 4 , the index 2 and each block contains precisely one repeated element.

A balanced ternary design (BTD) is a collection of B multisets, called blocks, of size K, chosen from a set of V elements where any element may occur 0,1 or 2 times in any one block. Furthermore each of the $\left(\frac{V}{2}\right)$ pairs of distinct elements must occur a constant number of times, Λ, (the index). Balanced ternary designs first arose in a paper by Tocher in 1952 [6]. In addition to the above restrictions each element must occur a constant number of times throughout the design. It follows that

$$
\begin{equation*}
V R=B K \tag{1}
\end{equation*}
$$

Let ρ_{ℓ} denote the number of blocks in which an element occurs ℓ times ($\ell=1$ or 2) . Then

$$
\begin{equation*}
R=\rho_{1}+2 \rho_{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda(V-1)=R(K-1)-2 \rho_{2} \tag{3}
\end{equation*}
$$

Received 12 July 1985. I wish to thank my supervisor Dr. Elizabeth J. Billington for suggesting the problem and for her comments.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 $\$ 22.00+0.00$.

Moreover ρ_{1} and ρ_{2} are constant and the parameters of a BTD can be written $\left(V, B ; \rho_{1}, \rho_{2}, R ; K, \Lambda\right)$.

Since 1952 a number of papers have been written on the existence of BTDs. In particular Saha and Dey [4], Saha [3], Billington [1] and Chandak [2] have produced papers on the existence of cyclic BTDs. Cyclic BTDs arise from a set of initial blocks which when developed modulo V yield all blocks of the design. These initial blocks may be derived from a family of supplementary difference sets. (For a definition, see wallis, Street and Wallis [7], page 280.)

In this paper we prove the existence of an infinite family of cyclic BTDs with parameters $K=4, \Lambda=2$ and $B=V \rho_{2}$. In general, when $K=4$ and $\Lambda=2$ it is not possible to have blocks of the form $x x y y$, thus $B \geq V \rho_{2}$. By taking equation (1) and substituting $R=\frac{B K}{V}$ into equation (3), for $\Lambda=2$ and $K=4$ we obtain

$$
2 V-2=12 \frac{B}{V}-2 \rho_{2}
$$

but $\frac{B}{V} \geq \rho_{2}$ implies $V \geq 5 \rho_{2}+1$. Therefore when considering the case $B=V \rho_{2}$ and fixing ρ_{2} we prove the existence of a BTD with $K=4$, $\Lambda=2$ and minimal V, that is $V=5 \rho_{2}+1$.

The proof of this result uses a concept of paixing (see for example Stanton and Goulden [5].) We take $3 \rho_{2}$ dots which represent the numbers $\rho_{2}+1$ to $V-\left(\rho_{2}+1\right)$. We draw an edge from the point, say y, to the point $y-x$ and write down the triple $\{x, y-x, y\}$. From this we obtain the initial block $[0,0, x, y]$ which gives rise to the differences $\pm x, \pm y$ (each twice) and $\pm(y-x)$. The following example illustrates this method. Consider a BTD with parameters $(46,394 ; 18,9,34 ; 4,2)$. In Figure 1 the 27 dots represent the numbers 10 to 36 :

Figure 1.

From Figure l we can write down the nine triples and their corresponding initial blocks.

TRIPLES	INITIAL BLOCKS	TRIPLES	INITIAL BLOCKS
$1,19,20$	$[0,0,1,20]$	$9,27,36$	$[0,0,9,36]$
$2,30,32$	$[0,0,2,32]$	$3,30,33$	$[0,0,3,33]$
$4,17,21$	$[0,0,4,21]$	5,1722	$[0,0,5,22]$
$6,28,34$	$[0,0,6,34]$	$7,28,35$	$[0,0,7,35]$
$8,23,31$	$[0,0,8,31]$		

It is easily checked that each of the numbers 1 to 45 occurs twice as a difference arising from the nine initial blocks, and so these blocks when taken modulo 46 generate a BTD with the above parameters.

We now state our main result.
THEOREM. There exists an infinite family of cyclic BTDs with parameters $\left(5 \rho_{2}+1, \rho_{2}\left(5 \rho_{2}+1\right) ; 2 \rho_{2}, \rho_{2}, 4 \rho_{2} ; 4,2\right)$.

Proof. We consider four separate cases.
Case 1: Let $\rho_{2} \equiv 0(\bmod 4)$, so say $\rho_{2}=4 m$ and $V=20 m+1$ for any positive integer m. Consider the pairing diagram in Figure 2; from it we can write down $4 m$ sets of triples and from these $4 m$ initial blocks.

TRIPLES	INITIAL BLOCKS
$1,10 m+1,10 m+2$	$[0,0,1,10 m+2]$
$4 m, 10 m+1,14 m+1$	$[0,0,4 m, 14 m+1]$
$4 \ell, 14 m-2 \ell+1,14 m+2 \ell+1$	$[0,0,4 \ell, 14 m+2 \ell+1]$ for $1 \leq \ell \leq m-1$
$4 \ell+1,14 m-2 \ell+1,14 m+2 \ell+2$	$[0,0,4 \ell+1,14 m+2 \ell+2]$ for $1 \leq \ell \leq m-1$
$4 \ell+2,8 m-2 \ell-3,8 m+2 \ell-1$	$[0,0,4 \ell+2,8 m+2 \ell-1]$ for $0 \leq \ell \leq m-1$
$4 \ell+3,8 m-2 \ell-3,8 m-2 \ell$	$[0,0,4 \ell+3,8 m+2 \ell]$ for $0 \leq \ell \leq m-1$

It can easily be checked that the numbers 1 to 20 m occur twice as differences arising from the above initial blocks and so these blocks generate a cyclic BTD with parameters $\left(20 m+1,80 m^{2}+4 m ; 8 m, 4 m, 16 m ; 4,2\right)$.

Similar pairing diagrams, which have been omitted for brevity, yield the initial blocks stated in cases 2,3 and 4.

Case 2: Let $\rho_{2} \equiv 1(\bmod 4)$ so that $\rho_{2}=4 m+1$ and $V=20 m+6$ for any non-negative integer m. The initial blocks

$$
\begin{aligned}
& {[0,0,4 m+1,16 m+4] ;[0,0,1,8 m+4] ;} \\
& {[0,0,4 \ell, 8 m+2 \ell+3], \text { for } 1 \leq \ell \leq m-1 ;} \\
& {[0,0,4 \ell+1,8 m+2 \ell+4], \text { for } 1 \leq \ell \leq m-1 ;} \\
& {[0,0,4 \ell+2,14 m+2 \ell+4], \text { for } 0 \leq \ell \leq m-1 ;} \\
& {[0,0,4 \ell+3,14 m+2 \ell+5], \text { for } 0 \leq \ell \leq m-1 ;} \\
& {[0,0,4 m, 14 m+3] ;}
\end{aligned}
$$

generate a cyclic BTD with parameters
$\left(20 m+6,80 m^{2}+44 m+6 ; 8 m+2,4 m+1,16 m+4 ; 4,2\right)$ for all non-negative integers m •

Case 3: Let $\rho_{2} \equiv 2(\bmod 4)$ so that $\rho_{2}=4 m+2$ and $V=20 m+11$ for any non-negative integer m. If $m=0$ the initial blocks $[0,0,1,7]$ and $[0,0,2,8]$ generate a cyclic BTD with parameters (11,22; 4,2,8; 4,2). If $m=1$ the initial blocks $[0,0,1,17]$, $[0,0,2,20],[0,0,3,21]$, $[0,0,4,23],[0,0,5,24]$ and $[0,0,6,22]$ generate a cyclic BTD with parameters $(31,186 ; 12,6,24 ; 4,2)$. If $m \geq 2$ the initial blocks
$4 m+1$.

$$
\begin{aligned}
& {[0,0,4 m+2,14 m+8] ;[0,0,1,10 m+7] ;} \\
& {[0,0,4 \ell, 14 m+2 \ell+7], \text { for } 1 \leq \ell \leq m ;} \\
& {[0,0,4 \ell+1,14 m+2 \ell+8], \text { for } 1 \leq \ell \leq m ;} \\
& {[0,0,4 \ell+2,8 m+2 \ell+5], \text { for } 0 \leq \ell \leq m-2 ;} \\
& {[0,0,4 \ell+3,8 m+2 \ell+6], \text { for } 0 \leq \ell \leq m-2 ;} \\
& {[0,0,4 m-2,14 m+6] ;[0,0,4 m-1,14 m+7] ;}
\end{aligned}
$$

generate a cyclic BTD with parameters $\left(20 m+11,80 m^{2}+84 m+22 ; 8 m+4,4 m+2,16 m+8 ; 4,2\right)$ for $m \geq 2$.

Case 4: Let $\rho_{2} \equiv 3(\bmod 4)$ and so $\rho_{2}=4 m+3$ and $V=20 m+16$ for any non-negative integer m. The initial blocks

generate a cyclic BTD with parameters

$$
\left(20 m+16,80 m^{2}+124 m+48 ; \quad 8 m+6,4 m+3,16 m+12 ; 4,2\right)
$$

This completes the proof.

References

[1] Elizabeth J. Billington, "Balanced n-ary designs: A combinatorial survey and some new results" Ars Combinatoria 17A (1984), 37-72.
[2] M.L. Chandak, "On construction of balanced n-ary designs", Acta Ciencia Indica VII(m) No 3 (1981), 205-208.
[3] G.M. Saha, "On construction of balanced ternary designs", Sonkhya 37 (B) (1975), 220-227.
[4] G.M. Saha and A. Dey, "On construction and uses of balanced n-ary designs", Ann. Inst. Statist. Math. 25 (1973), 439-445.
[5] R.G. Stanton and I.P. Goulden, "Graph factorization, general triple systems and cyclic triple systems", Aequationes Math. 22 (1981), 1-28.
[6] K.D. Tocher, "The design and analysis of block experiments", J. Roy. Statist. Soc. Ser. B 14 (1952), 45-100.
[7] W.D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadomard matrices (Lecture Notes in Mathematics, 292. Springer-Verlag, Berlin, Heidelberg, New York, 1972).

Department of Mathematics
University of Queensland
St. Lucia, Q. 4067,
Australia.

