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BOUNDS FOR OWEN’S
MULTILINEAR EXTENSION
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Abstract

Owen’s multilinear extension (MLE) of a game is a very important tool in game theory and
particularly in the field of simple games. Among other applications it serves to efficiently
compute several solution concepts. In this paper we provide bounds for the MLE. Apart
from its self-contained theoretical interest, the bounds offer the means in voting system
studies of approximating the probability that a proposal is approved in a particular simple
game having a complex component arrangement. The practical interest of the bounds is
that they can be useful for simple games having a tedious MLE to evaluate exactly, but
whose minimal winning coalitions and minimal blocking coalitions can be determined
by inspection. Such simple games are quite numerous.
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1. Introduction

In this paper some bounds for the MLE introduced by Owen [16] are gathered. We consider
the MLE function in the context of a binary decision rule (simple game) and an external
prediction, which estimates the independent probability that each voter votes in favor of a
certain proposal. Using the MLE, we can evaluate the probability of the proposal being
approved.

A simple model for a voting system is a pair (N,W), where N = {1, 2, . . . , n} denotes the
set of players or voters, subsets ofN are coalitions, and W denotes the set of winning coalitions.
Subsets ofN that are not in W are called losing coalitions; the set of losing coalitions is denoted
by L. A simple game is defined to be monotonic: subsets of losing coalitions are again losing.
A winning coalition S is minimal if each proper subcoalition in S is losing. We denote by Wm

the set of minimal winning coalitions. A coalition S is blocking if its complement N \ S is
losing. We denote by B the set of blocking coalitions, and we denote by Bm the set of minimal
blocking coalitions. The complement of each minimal blocking coalition is a maximal losing
coalition. A simple game is proper if S ∈ W implies that N \ S ∈ L. A simple game is strong
if S ∈ L implies that N \ S ∈ W . A simple game is decisive if it is proper and strong. The
unanimity game associated to coalition S �= ∅ is the game (N,WS), where S is the unique
minimal winning coalition.

The dual game (N,W∗) of the game (N,W) is defined by S ∈ W∗ if and only if S ∈ B. In
particular, (N,W) is proper if and only if (N,W∗) is strong, and (N,W) is strong if and only
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if (N,W∗) is proper. Thus, W = W∗ if and only if (N,W) is decisive. Furthermore, the dual
game is idempotent, i.e. (W∗)∗ = W .

One natural way to construct a simple game is to assign a (nonnegative) real number weight
to each voter, and declare a coalition winning precisely when its total weight meets or exceeds
some predetermined quota. Formally, (N,W) is weighted if there exists a vector of nonnegative
numbers w = (w1, w2, . . . , wn) and a quota q such that

∑
i∈S

wi ≥ q ⇐⇒ S ∈ W .

For additional material on simple games, the reader is referred to [3], [6], [8], [18], [19], and
[21] among others.

Given a simple game (N,W), assume that a proposalPr has to be submitted to the members
of an assembly N . An outsider interested in the approval or the rejection of proposal Pr
estimates the expectation of the proposal being approved according to his or her viewpoint. The
outsider considers that each player ‘i’ has an independent a priori probability pi (or prediction
of voter i for proposal Pr) of voting in favor of the proposal. The proposal is approved if
and only if the set S of members that vote for Pr is a winning coalition i.e. S ∈ W , so that
abstention or absence is allowed but it does not count for approving proposal Pr . Then the
probability of Pr being approved is

f (p) =
∑
S∈W

∏
i∈S
pi

∏
i /∈S
(1 − pi), (1)

where p = (p1, . . . , pn) ∈ [0, 1]n. In other words, given a vector of probabilities p associated
toPr , f (p) gives the a priori probability of proposalPr being approved or the game expectation
of the proposal being approved. The MLE of a simple game (N,W), (1), was introduced by
Owen [16] in the more general context of cooperative games. The function f , when the domain
is restricted to p ∈ {0, 1}n, is a pseudo-Boolean function; this class of functions is studied and
related to game theory in [12]. The minimum possible value of f (p) is 0 and the maximum
possible value is 1. For proper decisions, the minimum and maximum possible values of f (p)
can be attained. From an observer viewpoint with prediction p, f (p)measures the compliance
of a decision rule, i.e. the ease with which the proposal can be approved. See [14] or [9] and
[10] about this interpretation for f (p). Moreover, if f ∗ is the MLE of (N,W∗) then

f ∗(p) = 1 − f (1 − p). (2)

The number of terms in (1) can be extremely large, up to 2n − 1, which is the number of
addends if each nonempty coalition is winning. This number does not reduce greatly if the
game is proper, in fact, there are then up to 2n−1 addends. The complexity of calculations
grows exponentially with the number of voters. Even with a small assembly the necessary
computation time easily exceeds the bounds of a possible realization: in the case of n voters
we face an exponential complexity of order 2n. Despite the technical advances and enormous
progress in computer power, this cannot solve the fundamental nature of the problem at hand,
so that many voting games have not yet been evaluated exactly. One of the main motivations
for using approximations for the MLE is that they significantly reduce the computation time
and give conditions for which the bounds provided can give reasonably good approximations
for f .
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Owen related the MLE with the Shapley–Shubik index φ [16] and the Penrose–Banzhaf–
Coleman index β [17], where

φi =
∫ 1

0
fi(p, p, . . . , p) dp, (3)

βi = fi
( 1

2 ,
1
2 , . . . ,

1
2

)
, (4)

for all i ∈ N . The notation fi stands for the partial derivative of f with respect to component i.
Straffin [20] derived the following expression to compute βi by considering multiple integration
on the unit cube [0, 1]n and using Fubini’s theorem for all i:

βi =
∫

[0,1]n
fi(p1, p2, . . . , pn) dp1 dp2 · · · dpn. (5)

Coleman [5] suggested the ‘power of a collectivity to act’—in his own terms—as a real
number to be assigned to each simple game. Coleman’s measure essentially leads to the
structural decisiveness index studied in [2], f ( 1

2 ), where 1
2 = ( 1

2 , . . . ,
1
2 ). Carreras and Freixas

(see [4, Theorem 10]) extended (4) for a large class of semivalues (see [7]), ψp for 0 ≤ p ≤ 1,
those with binomial weighting coefficients pk = pk(1 − p)n−1−k for 0 ≤ k ≤ n− 1, so that

ψ
p
i = fi(p, p, . . . , p). (6)

Freixas and Puente (see [11, Proposition 3.2]) considered multibinary probabilistic values ϕ, a
large class of probabilistic values (see [22]) defined by the weighting coefficients

piS =
∏
j∈S

pj
∏
j /∈S
j �=i

(1 − pj ) for S ⊆ N \ {i},

which have the form
ϕi = fi(p1, p2, . . . , pn). (7)

Expression (7) has also been used in different contexts by Carreras [1], Freixas and Pons [9],
[10], and Laruelle et al. [15].

In summary, formulae (3)–(7) show that there is a strong relationship between values for
games and Owen’s MLE. The approach on bounds proposed here can also be applied to obtain
bounds for the values considered in formulae (3)–(7).

The rest of the paper is organized as follows. Prior to introducing the bounds, in Section 2
we discuss two forms of simplification for the proposed problem: the Boolean subgame, which
sometimes allows us to reduce the number of components for the MLE; and complete simple
games for which the sets of minimal winning coalitions and minimal blocking coalitions are
easily derived. Section 3 is devoted to finding bounds based on the sets of minimal winning
coalitions and minimal winning blocking coalitions. In Section 4 we deal with bounds based
on the inclusion–exclusion principle. Conditional probability is used to find some alternative
bounds in Section 5. In Section 6 we conclude the paper by the restriction to the homogeneous
case in which all components are equal.

2. The Boolean subgame

Computation of the MLE for complex voting systems might be a formidable task (in fact,
impracticable in some cases) unless an efficient method is used. Developing such methods is
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therefore of interest, and thus, it would be useful if we had a simple way of obtaining bounds.
In this section we consider two significant cases that might considerably reduce the problem of
finding bounds.

Given a simple game (N,W) and the two disjoint subsets Y and Z of N , we can always
consider N ′ = N \ (Y ∪ Z) and the game (N ′,W ′) defined, for S ⊆ N ′, by

S ∈ W ′ ⇐⇒ S ∪ Z ∈ W .

This game is the Boolean subgame of (N,W) determined by Y and Z; see [21, pp. 21–22] for
further details.

The notion of a Boolean subgame includes the known concepts of a subgame (Y ⊆ N and
Z = ∅) and a reduced game (Y = ∅ andZ ⊆ N ). Intuitively a subgame results from assuming
that everyone not in N ′ votes no, while the reduced game results from assuming that everyone
not inN ′ votes yes. In general, a Boolean subgame corresponds to having a group of voters that
always vote yes, together with a disjoint group of voters who will always vote no, and asking
about the voting system induced on the remaining players.

It is clear that a general Boolean subgame can verify that ∅ ∈ W ′ (if Z ∈ W ) or N ′ /∈ W ′
(ifN \Y /∈ W). In both cases the vote of elements in Y ∪Z determines whether the proposal is
accepted or rejected, and so there is no reason to analyze the behavior of the remaining voters.
This is why we will assume that Y ⊆ N (the set of voters completely decided against the
proposal) is such that N \ Y ∈ W , and Z ⊆ N (the set of voters completely decided in favor
of the proposal) is such that Z /∈ W .

Observe that if f is the multilinear function of the game (N,W) and f ′ is the multilinear
function of the Boolean subgame determined by Y and Z (with the supposition mentioned
above), then

f ′(p) = f (0Z, 1Y ,p),

where the vector (0Z, 1Y ,p) denotes the state vector in which the states of the components
in Z ⊂ N \ Y are all 0, the states of the components in Y ⊂ N \ Z are all 1, and the state
of component i, with i /∈ Y ∪ Z, equals pi ; whereas p denotes the restriction of p to the
components in N ′.

In voting systems, prior to the submission of a particular proposal, it is common for some
voters to show their willingness to vote in favor of the proposal and others to show their
willingness to vote against the proposal. In these situations we may considerably reduce the
calculation of f by considering the Boolean subgame.

As we shall see in the following sections, the proposed bounds are derived from the sets of
minimal winning coalitions and minimal blocking coalitions. Thus, it is possible to calculate
bounds computationally whenever it is possible to list these two sets for any game. Although
some games have large sets Wm and Bm, there are subclasses of simple games for which
it is easy to generate these sets. Indeed, a classification theorem by Carreras and Freixas
[3, Theorem 4.1], allows us to generate these lists and count all complete (or linear) simple
games up to isomorphism. Complete simple games are those for which the desirability relation,

i �D j if and only if S ∪ {j} ∈ W �⇒ S ∪ {i} ∈ W for all S ⊆ N \ {i, j},
introduced by Isbell [13], is complete (or total). Using linear programming, we can obtain
within the set of complete simple games the set of those which are weighted simple games. See
the data of Table 1.
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Table 1: Number of complete games (CG), number of weighted games (WG), and the CPU time
(in seconds) needed to compute all complete simple games with n voters.

n 1 2 3 4 5 6 7 8

CG 1 3 8 25 117 1 171 44 313 16 175 188
WG 1 3 8 25 117 1 111 29 373 2 730 164

CPU time < 1 < 1 < 1 < 1 < 1 < 1 3 66 532 (≈ 18.5 hours )

The numbers of complete and weighted games exhibit an exponential growth. However, the
classification theorem in [3] allows for each complete simple game to generate the sets Wm and
Bm by providing only a vector with less than or equal to n components and a matrix fulfilling
some simple conditions. In other words, for any complete simple game and whenever n is not
too large, it is always possible to introduce a brief list of numbers into the computational program
in order to generate the sets Wm and Bm and, subsequently, to compute the bounds provided in
Sections 3, 4, 5, and 6.

3. Bounds based on the sets of minimal winning coalitions and minimal blocking
coalitions

In Sections 3, 4, and 5 we outline some methods to approximate f , which are based on
standard probability techniques. Some initial recommendable bounds for a voting system with
a high number of voters are given by the following inequalities.

Proposition 1. Let f be the MLE of a game (N,W), and p be a predictions’ vector. Then

max
S∈Wm

∏
i∈S
pi ≤ f ≤ 1 − max

T ∈Bm

∏
i∈T

qi, (8)

∏
i∈S′

pi +
∑
S∈Wm

S �=S′

∏
i∈S
pi

∏
i /∈S
qi ≤ f ≤ 1 −

(∏
i∈T ′

qi +
∑
T ∈Bm

T �=T ′

∏
i∈T

qi
∏
i /∈T

pi

)
, (9)

where qi = 1 − pi for each 1 ≤ i ≤ n, and S′ and T ′ are the coalitions which respectively
attain

max
S∈Wm

∏
i∈S
pi and max

T ∈Bm

∏
i∈T

qi .

Proof. The left bound in (8) is obtained by observing that W = WS1 ∪ · · · ∪ WSm , where
S1, . . . , Sm are the minimal winning coalitions of game (N,W), and that f associated to the
unanimity game WSj has 2|N\Sj | addends in (1) with total sum

∏
i∈Sj pi . Thus, the term on the

left-hand side of (8) is derived by taking the maximum of these products on S1, . . . , Sm. The
right bound in (8) is derived using the left bound and the dual expression for the MLE, (2).

The two bounds in (8) are improved in (9) by incorporating the addends in (1) corresponding
to the remaining minimal winning coalitions and minimal blocking coalitions, respectively.

Approximation (8) usually leads to very wide intervals for the probability to approve proposal
Pr . However, some particular cases suggest making use of it. For example, if the game has only
a single winning coalition then the left bound becomes an equality. Alternatively, if the game
has only a single minimal blocking coalition then the right bound becomes an equality. Thus,
in these two cases the exact value for f is attained. In general, if |Wm|/|W | and |Bm|/|B| are
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small enough then the left bound and the right bound, respectively, provide quite good initial
approximations for f . Let us consider an elementary example, which becomes even simpler
upon using the Boolean subgame.

Example 1. Consider the simple game with five voters and weighted representation [9; 5, 4, 3,
2, 1]. This game has four minimal winning coalitions, four minimal blocking coalitions,
13 winning coalitions, and 19 losing coalitions. If p = ( 4

4 ,
3
4 ,

2
4 ,

1
4 ,

0
4 ) is a predictions’ vector

for an outsider, the bounds in (8) for the associated Boolean subgame yield

24
32 ≤ f ≤ 26

32 .

The bounds in (9) yield
25
32 ≤ f ≤ 26

32 .

Note that the exact value for f is 25
32 .

4. Inclusion–exclusion bounds

Often it is more efficient to let the starting point of the calculation be the complement of
the predictions. Let Bj be the event that all players in the minimal blocking coalition Tj vote
against proposal Pr , j = 1, 2, . . . , k, where k is the number of minimal blocking coalitions.
Then clearly

P(Bj ) =
∏
i∈Tj

qi

and

1 − f (p) = P

( k⋃
j=1

Bj

)
.

Furthermore, let

b1 =
k∑
j=1

P(Bj ),

b2 =
k∑

1≤i<j≤k
P(Bi ∩ Bj ),

...

br =
∑

1≤i1<i2<···<ir≤k
P

( r⋂
j=1

Bij

)
.

Then the well-known inclusion–exclusion formula states that

1 − f (p) = b1 − b2 + · · · + (−1)k+1bk. (10)

Equality (10) can be proven by induction on the number of events Bj . The following result is
interesting for our purposes.
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Proposition 2. Let (N,W) be a simple game with f as an MLE, let p be a predictions’vector,
and let b1, . . . , br be defined as above with r ≤ k. Then

1 − f (p) ≤ b1 − b2 + · · · + br if r is odd,

1 − f (p) ≥ b1 − b2 + · · · − br if r is even.
(11)

Proof. Consider the indicator variables Ij , j = 1, . . . , k, defined as

Ij =
{

1 if Bj occurs,

0 otherwise.

Letting M = ∑k
j=1 Ij , then M denotes the number of Bj , 1 ≤ j ≤ k, that occur. Also, let

I =
{

1 if M > 0,

0 if M = 0.

Then, as 1− I = (1−1)M (here 00 = 1), we obtain, upon application of the binomial theorem,

1 − I =
M∑
i=0

(
M

i

)
(−1)i = 1 −M +

(
M

2

)
−

(
M

3

)
+ · · · ±

(
M

M

)
. (12)

We now make use of the following combinatorial identity (which is easily established by
induction on i): (

k

i

)
−

(
k

i + 1

)
+ · · · ±

(
k

k

)
=

(
k − 1

i − 1

)
≥ 0, i ≤ k.

The preceding thus implies that(
M

i

)
−

(
M

i + 1

)
+ · · · ±

(
M

M

)
≥ 0. (13)

From (12) and (13), we obtain

I ≤ M, by letting i = 2 in (13),

I ≥ M −
(
M

2

)
, by letting i = 3 in (13),

I ≤ M −
(
M

2

)
+

(
M

3

)
, (14)

...

and so on. Now, since M ≤ k and
(
k
i

) = 0 whenever i > k, we can simplify (12) as

I =
k∑
i=1

(
M

i

)
(−1)i+1. (15)

https://doi.org/10.1239/jap/1197908809 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1197908809


Bounds for Owen’s multilinear extension 859

Equality (10) and inequalities (11) now follow upon taking expectations of (14) and (15). This
is the case since

E[I ] = P{M > 0} = P{at least one of the Bj occurs} = P

( k⋃
j=1

Bj

)
,

E[M] = E

[ k∑
j=1

Ij

]
=

k∑
j=1

P(Bj ).

Also,

E

[(
M

i

)]
= E[number of sets of size i that occur]

= E

[ ∑
1≤i1<i2<···<ir≤k

Ii1Ii2 · · · Iir
]

=
∑

1≤i1<i2<···<ir≤k
P

( r⋂
j=1

Bij

)
.

Although in general it is not true that the upper bounds decrease and the lower bounds
increase, in practice it may be necessary to calculate only a few br terms to obtain a close
approximation. If each qi is small, i.e. the predictions for each voter are large, then the b2 term
will be negligible compared to b1; thus, 1 − f ≈ b1. Note that b1 is an upper bound for 1 − f ,
so the approximation f ≈ 1 − b1 produces an underestimation of f . The number of terms in
the sum br equals

(
k
r

)
. Thus, the total number of terms in the expression of 1 − f equals 2k − 1

(k is the number of minimal blocking coalitions).
Alternatively, if each pi is small then we may repeat the same argument considering Wj ,

the event that all the players in the minimal winning coalition Sj vote for proposal Pr , j =
1, 2, . . . , m, where m is the number of minimal winning coalitions. Then,

P(Wj ) =
∏
i∈Sj

pi

and

f (p) = P

( m⋃
j=1

Wj

)
.

Furthermore, let

w1 =
k∑
j=1

P(Wj ),

w2 =
k∑

1≤i<j≤m
P(Wi ∩Wj),

...

wr =
∑

1≤i1<i2<···<ir≤m
P

( r⋂
j=1

Wij

)
.
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Then the inclusion–exclusion formula states that

f (p) = w1 − w2 + · · · + (−1)k+1wm,

and, for r ≤ m,

f (p) ≤ w1 − w2 + · · · + wr if r is odd,

f (p) ≥ w1 − w2 + · · · − wr if r is even.

If eachpi is small, i.e. the predictions for each voter are small, then thew2 term will be negligible
compared to w1; thus, f ≈ w1. Note that w1 is an upper bound for f , so the approximation
f ≈ w1 produces an overestimation of f .

5. Bounds based on conditional probability

An alternative way to approximate f is now presented.

Proposition 3. Let S1, . . . , Sm denote the minimal winning coalitions of the game (N,W),
and let T1, . . . , Tk denote the minimal blocking coalitions, then

k∏
j=1

(
1 −

∏
i∈Tj

qi

)
≤ f ≤ 1 −

m∏
j=1

(
1 −

∏
i∈Sj

pi

)
. (16)

Proof. Let S1, S2, . . . , Sm denote the minimal winning coalitions of the game (N,W), and
define the events A1, . . . , Am by Aj ‘at least one voter in Sj votes against proposal Pr’. Now

1 − f (p) = P(A1 ∩ A2 ∩ · · · ∩ Am)
= P(A1)P(A2 | A1) · · · P(Am | A1 ∩ A2 ∩ · · · ∩ Am−1).

Now we are going to show that P(A2 | A1) ≥ P(A2). To prove this inequality, we make use of
the conditional probability

P(A2) = P(A2 | A1)P(A1)+ P(A2 | Ac1)P(Ac1),

and note that

P(A2 | Ac1) = 1 −
∏

i∈S2∩Sc1
pi

≤ 1 −
∏
i∈S2

pi

= P(A2).

Hence,

P(A2) ≤ P(A2 | A1)P(A1)+ P(A2)(1 − P(A1)),

or, equivalently,

P(A2 | A1) ≥ P(A2).
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Table 2: Lower and upper bounds for some symmetric games.

Game Bounds

n d (8) (9) (16)

Lower bounds

4 3 0.931 095 0 0.995 519 3 0.995 406 9

8 6 0.807 201 5 0.811 210 2 0.999 693 9

16 12 0.751 581 3 0.752 460 3 0.999 923 7

Upper bounds

4 3 0.997 500 0 0.995 528 8 0.999 946 1

8 6 0.999 993 8 0.999 748 5 ≈ 1

16 12 0.999 999 7 0.999 942 3 ≈ 1

Using the same argument, it also follows that

P(Aj | A1 ∩ A2 ∩ · · · ∩ Aj−1) ≥ P(Aj ),

and so we have

1 − f (p) ≥
m∏
j=1

P(Aj ),

or, equivalently,

f (p) ≤ 1 −
m∏
j=1

(
1 −

∏
i∈Sj

pi

)
. (17)

The bound in the other direction follows upon applying duality, (2), to the right-hand side
bound in (17). Thus, (16) is proved.

It is to be expected that the upper bound should be close to the actual value of f (p) if
there is not too much overlap in the minimal winning coalitions (for example, minimal winning
coalitions in improper games do not overlap much), and the lower bound should be close to the
exact value of f (p) if there is not too much overlap in the minimal blocking coalitions. The
bounds obtained are also good approximations for either small values or large values of the pis.

Example 2. Consider symmetric games (that is, weighted games with the same weight assigned
to each voter) with n players and a demand of 75% of the membership. The winning coalitions
are those having at least 75% of the members in N . We consider the cases in which n = 4, 8,
and 16 with respective demands d = 3, 6, and 12. For instance, if p1 = · · · = pn/2 = 0.99
and pn/2+1 = · · · = pn = 0.95 for n = 4, 8, and 16, the bounds provided by (8), (9), and (16)
are given in Table 2. The figures in the boxes represent the best lower and upper bounds found.

However, since each qi is small, the best bounds are obtained using (11). For instance, if
we take r = 1 and r = 2, we obtain 0.999 938 5 ≤ f ≤ 0.999 94 for n = 4 and d = 3, which
is a better approximation for f than those given in Table 2.
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6. Bounds for the homogeneous case

If pi = p for every voter i, the MLE given in (1) may be simplified to obtain a function of
the type

f (p) =
n∑
i=0

Aip
i(1 − p)n−i ,

where n denotes the number of voters, and Ai denotes the number of winning coalitions with i
members which satisfies Ai ≤ (

n
i

)
with i = 0, 1, . . . , n. This last inequality simply reflects the

fact that there are at most
(
n
i

)
coalitions of size i. For the homogeneous case and when p ranges

between 0 and 1, the lower and upper bounds define functions fL(p) and fU(p), respectively.
Many real-world voting systems are d-out-of-n games, i.e. voting systems in which the

proposal at hand passes if at least d of its n members vote in favor of it. A d-out-of-n game
is proper if and only if d > n/2 and strong if and only if d < 1 + n/2, and, therefore,
decisive if and only if n is odd and d = (n + 1)/2. For d-out-of-n games, the calculation
of f still becomes a complex task if n is large enough. Let us provide some bounds for
d-out-of-n games using the results derived in Section 5. The bounds provided in (8) yield
fL(p) = pd and fU(p) = 1 − (1 − p)n−d+1. The bounds given in (9) yield

fL(p) = pd +
((
n

d

)
− 1

)
pd(1 − p)n−d and

fU(p) = 1 −
(
(1 − p)n−d+1 +

(
n

n− d + 1

)
(1 − p)n−d+1pd−1

)
.

The bounds given in (16) yield the following expressions, which are easy to evaluate:

fL(p) = (1 − (1 − p)n−d+1)(
n

n−d+1) and fU(p) = 1 − (1 − pd)
(nd). (18)

See Figure 1 for d = 3 and n = 4, where we observe that fL(p) ≤ f (p) ≤ fU(p) for all
p ∈ [0, 1].

0.0
0.0

1.0

0.5

0.2 0.4 0.6 0.8 1.0
p

Figure 1: Bounds (18) for the 3-out-of-4 simple game.
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Table 3: The bounds fL(p) and fU(p) given by (16) for all simple games with n ≤ 4 players.

Game Wm Bm fL(p) fU(p)

1 {1} {1} (1 − q) 1 − (1 − p)

2 {1; 2} {12} (1 − q2) 1 − (1 − p)2

3 {1; 2; 3} {123} (1 − q3) 1 − (1 − p)3

4 {1; 2; 3; 4} {1234} (1 − q4) 1 − (1 − p)4

5 {1; 2; 34} {123; 124} (1 − q3)2 1 − (1 − p)2(1 − p2)

6 {1; 23} {12; 13} (1 − q2)2 1 − (1 − p)(1 − p2)

7 {1; 23; 24} {12; 134} (1 − q2)(1 − q3) 1 − (1 − p)(1 − p2)2

8 {1; 23; 24; 34} {123; 124; 134} (1 − q3)3 1 − (1 − p)(1 − p2)3

9 {1; 234} {12; 34} (1 − q2)2 1 − (1 − p)(1 − p3)

10 {12} {1; 2} (1 − q)2 1 − (1 − p2)

11 {12; 13} {1; 23} (1 − q)(1 − q2) 1 − (1 − p2)2

12 {12; 13; 14} {12; 13; 24; 34} (1 − q2)4 1 − (1 − p2)3

13 {12; 13; 14; 23} {12; 13; 234} (1 − q2)2(1 − q3) 1 − (1 − p2)4

14 {12; 13; 14; 23; 24} {12; 134; 234} (1 − q2)(1 − q3)2 1 − (1 − p2)5

15 {12; 13; 14; 23; 24; 34} {123; 124; 134; 234} (1 − q3)4 1 − (1 − p2)6

16 {12; 13; 14; 234} {12; 13; 14; 234} (1 − q2)3(1 − q3) 1 − (1 − p2)3(1 − p3)

17 {12; 13; 23} {12; 13; 23} (1 − q2)3 1 − (1 − p2)3

18 {12; 13; 24} {12; 13; 24} (1 − q2)3 1 − (1 − p2)3

19 {12; 13; 24; 34} {12; 13; 14} (1 − q2)3 1 − (1 − p2)4

20 {12; 13; 234} {12; 13; 14; 23} (1 − q2)4 1 − (1 − p2)2(1 − p3)

21 {12; 34} {1; 234} (1 − q)(1 − q3) 1 − (1 − p2)2

22 {12; 134} {1; 23; 24} (1 − q)(1 − q2)2 1 − (1 − p2)(1 − p3)

23 {12; 134; 234} {12; 13; 14; 23; 24} (1 − q2)5 1 − (1 − p2)(1 − p3)2

24 {123} {1; 2; 3} (1 − q)3 1 − (1 − p3)

25 {123; 124} {1; 2; 34} (1 − q)2(1 − q2) 1 − (1 − p3)2

26 {123; 124; 134} {1; 23; 24; 34} (1 − q)(1 − q2)3 1 − (1 − p3)3

27 {123; 124; 134; 234} {12; 13; 14; 23; 24; 34} (1 − q2)6 1 − (1 − p3)4

28 {1234} {1; 2; 3; 4} (1 − q)4 1 − (1 − p4)

Table 3 contains data on all simple games with n ≤ 4 players, where the lower bound, fL(p),
and the upper bound, fU(p), are given by (16) for the homogeneous case. It is important to note
that these functions defined on the respective sets Wm and Bm depend only on the numbers of
coalitions for each size in their respective sets. For instance, games 17 and 18 both have three
coalitions of size 2 in sets Wm and Bm, so their respective bounds coincide.

Also note that the four symmetric games (or d-out-of-n games) are games 4, 15, 27, and 28,
which respectively follow from formulae (18). The lower and the upper bounds coincide for
games with a single element either in Wm or in Bm; this is the case for games 1, 2, 3, 4, 10,
24, and 28. Hence, for these games we have the exact value of f .
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