K-SPHERICAL FUNCTIONS ON ABELIAN SEMIGROUPS

RADOSŁAW ŁUKASIK

(Received 28 February 2017; accepted 16 March 2017; first published online 13 June 2017)

Abstract

We present the form of the solutions $f: S \to \mathbb{C}$ of the functional equation

$$\sum_{\lambda \in K} f(x + \lambda y) = |K| f(x) f(y) \text{ for } x, y \in S,$$

where *f* satisfies the condition $f(\sum_{\lambda \in K} \lambda x) \neq 0$ for all $x \in S$, (S, +) is an abelian semigroup and *K* is a subgroup of the automorphism group of *S*.

2010 *Mathematics subject classification*: primary 39B52; secondary 43A90. *Keywords and phrases: K-spherical function, homomorphism, abelian semigroup.*

1. Introduction

The functional equation

$$\int_{K} f(x + \lambda y) \, d\mu(\lambda) = f(x)f(y) \quad \text{for } x, y \in G, \tag{1.1}$$

where (G, +) is a locally compact group, $f : G \to \mathbb{C}$ and K is a compact subgroup of the automorphism group of G with the normalised Haar measure μ , is a generalisation of the cosine equation and it arises in the theory of group representations, being the relation defining K-spherical functions (for the terminology, see [3, page 88]). For accounts of (1.1), see, for example, [4, 12, 15, 16].

D'Alembert's functional equation is a particular case of (1.1), corresponding to the group $K = \mathbb{Z}_2$, namely,

$$f(xy) + f(x\sigma(y)) = 2f(x)f(y) \quad \text{for } x, y \in S, \tag{1.2}$$

where (S, +) is an abelian group, $\sigma \in Aut(S)$ is an involution and $f : S \to \mathbb{C}$. Equation (1.2) has been studied in many contexts: groups [9, 11], nilpotent groups [5], metabelian groups [6, 14], abelian semigroups [13], topological groups [7], topological monoids [8] and Banach algebras [1, 2]. For nonabelian groups, the solutions of d'Alembert's functional equation are different from those for the abelian case.

Our work is based on the following results.

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

R. Łukasik

THEOREM 1.1 [12, Corollary 3.12], [4, Theorem 1.1]. Let (G, +) be a locally compact abelian Hausdorff topological group and let K be a compact Hausdorff topological transformation group of G acting by automorphisms on G. Let μ be the normalised Haar measure on K. If $\varphi \in C(G)$ is a nonzero solution of

$$\int_{K} \varphi(x + \lambda y) \, d\mu(\lambda) = \varphi(x)\varphi(y) \quad for \ x, y \in G,$$

then there exists a continuous homomorphism $\chi : G \to \mathbb{C}^*$ such that

$$\varphi(x) = \int_{K} \chi(\lambda x) \, d\mu(\lambda) \quad for \ x \in G$$

If φ is bounded, then χ may be taken as a unitary character.

If we take the discrete topology on the groups G and K and the normalised counting measure μ in the previous theorem, we obtain the following corollary.

COROLLARY 1.2. Let G be an abelian group and K be a finite subgroup of the automorphism group of G. Let $f: G \to \mathbb{C}$, $f \neq 0$, satisfy

$$\sum_{\lambda \in K} f(x + \lambda y) = |K| f(x) f(y) \quad for \ x, y \in G.$$

Then there exists a homomorphism $m: G \to \mathbb{C}^*$ such that

$$f(x) = \frac{1}{|K|} \sum_{\lambda \in K} m(\lambda x) \quad for \ x \in G.$$

THEOREM 1.3 [17, Theorem 3.18(d)]. Suppose that *S* is a topological semigroup, $n \in \mathbb{N}, \chi_1, \ldots, \chi_n : S \to \mathbb{C}$ are different multiplicative functions, $a_1, \ldots, a_n \in \mathbb{C}$ and $f = a_1\chi_1 + \cdots + a_n\chi_n : S \to \mathbb{C}$. If *f* is continuous, then each of the functions $a_1\chi_1, \ldots, a_n\chi_n$ is also continuous.

2. Main result

Throughout, (S, +) is an abelian semigroup, *K* is a subgroup of the automorphism group of *S* (where we write the action of $\lambda \in K$ on $x \in S$ as λx), $|K| \ge 2$, \mathbb{C}^* is the multiplicative group of complex numbers and the relation $\sim \subseteq S \times S$ is given by

$$\forall_{x,y\in S} (x \sim y \Leftrightarrow \exists_{z\in S} (x+z=y+z)).$$
(2.1)

First, we give an example of a semigroup that is not a group and admits a nontrivial finite group of automorphisms.

EXAMPLE 2.1. Let $S = \{(x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2} \le z\}$ and $K = \{O_k : k \in \{0, 1, ..., n\}\}$, where $O_k(r \cos \phi, r \sin \phi, z) = (r \cos(\phi + 2\pi k/n), r \sin(\phi + 2\pi k/n), z)$ for $\phi \in [0, 2\pi)$, $z \ge r \ge 0$. Then *S* is a convex cone, so it is a semigroup, *S* is not a group (for example, $(0, 0, -1) \notin S$) and *K* is a finite subgroup of the automorphism group of *S*.

481

The first lemma is an easy consequence of the definition of equivalence relation \sim .

LEMMA 2.2. The relation ~ given by (2.1) is an equivalence relation; $S/_{\sim}$ with the operation $+ : (S/_{\sim})^2 \rightarrow S/_{\sim}$ defined by

$$[x]_{\sim} + [y]_{\sim} := [x + y]_{\sim} \text{ for } x, y \in S$$

is a cancellative abelian semigroup, and the function $\varkappa : S \to S/_{\sim}$ given by

$$\varkappa(x) = [x]_{\sim} \quad for \ x \in S \tag{2.2}$$

is a semigroup epimorphism.

DEFINITION 2.3. For each $x \in S$, we define the element $\tilde{x} \in S$ by the formula

$$\widetilde{x} = \sum_{\lambda \in K \setminus \{\mathrm{Id}\}} \lambda x$$

LEMMA 2.4. For all $x, y \in S$ and $\lambda \in K$,

$$\widetilde{x + \lambda y} = \widetilde{x} + \lambda \widetilde{y},$$
$$\lambda(x + \widetilde{x}) = x + \widetilde{x}$$

Moreover, if the function $f : S \to \mathbb{C}$ *satisfies*

$$\sum_{\lambda \in K} f(x + \lambda y) = |K| f(x) f(y) \quad \text{for } x, y \in S,$$
(2.3)

then

$$f(x + (y + \widetilde{y})) = f(x)f(y + \widetilde{y}) \text{ for } x, y \in S$$

PROOF. Let $x, y \in S$, $\lambda \in K$. Then

$$\widetilde{x + \lambda y} = \sum_{\mu \in K \setminus \{\mathrm{Id}\}} \mu(x + \lambda y) = \sum_{\mu \in K \setminus \{\mathrm{Id}\}} \mu x + \sum_{\mu \in K \setminus \{\mathrm{Id}\}} (\mu \circ \lambda) y = \sum_{\mu \in K \setminus \{\mathrm{Id}\}} \mu x + \sum_{\mu \in K \setminus \{\lambda\}} \mu y$$
$$= \sum_{\mu \in K \setminus \{\mathrm{Id}\}} \mu x + \lambda \sum_{\mu \in K \setminus \{\mathrm{Id}\}} \mu y = \widetilde{x} + \lambda \widetilde{y}$$

and

$$\lambda(x+\widetilde{x}) = \lambda \sum_{\mu \in K} \mu x = \sum_{\mu \in K} \mu x = x + \widetilde{x}.$$

Let $f: S \to \mathbb{C}$ satisfy (2.3). We observe that

$$\begin{split} |K|f(x)f(y+\widetilde{y}) &= \sum_{\lambda \in K} f(x+\lambda(y+\widetilde{y})) \\ &= \sum_{\lambda \in K} f(x+y+\widetilde{y}) = |K|f(x+y+\widetilde{y}) \end{split}$$

for $x, y \in S$, which completes the proof.

R. Łukasik

LEMMA 2.5. Let G be an abelian group such that $S/_{\sim} \leq G$ and $G = S/_{\sim} - S/_{\sim}$. For every automorphism $\lambda \in Aut(S)$, there exists a unique $\lambda_G \in Aut(G)$ such that

$$\lambda_G \circ \varkappa = \varkappa \circ \lambda, \tag{2.4}$$

where \varkappa is defined by (2.2). Moreover,

$$(\lambda \circ \tau)_G = \lambda_G \circ \tau_G \quad for \ \lambda, \tau \in K_g$$

and the set

$$K_G := \{\lambda_G : \lambda \in K\}$$
(2.5)

is a subgroup of the automorphism group of G.

PROOF. Let $\lambda \in K$. We define $\lambda_G : G \to G$ by the formula

$$\lambda_G(\varkappa(x) - \varkappa(y)) := \varkappa(\lambda x) - \varkappa(\lambda y) \quad \text{for } x, y \in S.$$

Let $x, y, u, v \in S$ be such that $\varkappa(x) - \varkappa(y) = \varkappa(u) - \varkappa(v)$. Then $\varkappa(x + v) = \varkappa(y + u)$, so there exists $z \in S$ such that x + v + z = y + u + z. Hence $\lambda x + \lambda v + \lambda z = \lambda y + \lambda u + \lambda z$, which yields $\varkappa(\lambda x) + \varkappa(\lambda v) = \varkappa(\lambda y) + \varkappa(\lambda u)$. From this, $\lambda\varkappa(x) - \lambda\varkappa(y) = \lambda\varkappa(u) - \lambda\varkappa(v)$, so λ_G is well defined.

For $x, y, u, v \in S$,

$$\begin{split} \lambda_G(\varkappa(x) - \varkappa(y)) + \lambda_G(\varkappa(u) - \varkappa(v)) &= \varkappa(\lambda x) - \varkappa(\lambda y) + \varkappa(\lambda u) - \varkappa(\lambda v) \\ &= \varkappa(\lambda(x+u)) - \varkappa(\lambda(y+v)) \\ &= \lambda_G(\varkappa(x+u) - \varkappa(y+v)) \\ &= \lambda_G(\varkappa(x) - \varkappa(y) + \varkappa(u) - \varkappa(v)) \end{split}$$

and

$$\varkappa(x) - \varkappa(y) = \varkappa(\lambda(\lambda^{-1}x)) - \varkappa(\lambda(\lambda^{-1}y)) = \lambda_G(\varkappa(\lambda^{-1}x) + \varkappa(\lambda^{-1}y)).$$

Now if $\lambda_G(\varkappa(x) - \varkappa(y)) = \lambda_G(\varkappa(u) - \varkappa(v))$, then

$$\varkappa(\lambda(x+v)) - \varkappa(\lambda(y+u)) = \varkappa(\lambda x) - \varkappa(\lambda y) - (\varkappa(\lambda u) - \varkappa(\lambda v))$$
$$= \lambda_G(\varkappa(x) - \varkappa(y)) - \lambda_G(\varkappa(u) - \varkappa(v)) = 0.$$

Hence, there exists $z \in S$ such that $\lambda x + \lambda v + z = \lambda y + \lambda u + z$. Then $x + v + \lambda^{-1}z = y + u + \lambda^{-1}z$, so $\varkappa(x + v) = \varkappa(y + u)$, which means that $\varkappa(x) - \varkappa(y) = \varkappa(u) - \varkappa(v)$. Hence λ_G is an automorphism.

Observe that

$$\lambda_G(\varkappa(x)) = \lambda_G(\varkappa(x+x) - \varkappa(x)) = \varkappa(\lambda(x+x)) - \varkappa(\lambda x) = \varkappa(\lambda x) \quad \text{for } x \in S,$$

which proves (2.4). If the automorphism $\sigma : G \to G$ satisfies $\sigma \circ \varkappa = \varkappa \circ \lambda$ for some $\lambda \in Aut(S)$, then

$$\sigma(\varkappa(x) - \varkappa(y)) = \sigma(\varkappa(x)) - \sigma(\varkappa(y)) = \varkappa(\lambda x) - \varkappa(\lambda y) = \lambda_G(\varkappa(x) - \varkappa(y)) \quad \text{for } x, y \in S,$$

which shows the uniqueness of λ_G .

Finally,

$$(\lambda \circ \tau)_G \circ \varkappa = \varkappa \circ (\lambda \circ \tau) = \lambda_G \circ (\varkappa \circ \tau) = \lambda_G \circ (\tau_G \circ \varkappa) = (\lambda_G \circ \tau_G) \circ \varkappa$$
 for $\lambda, \tau \in K$.
In view of the above identity, it is easy to check that K_G is group.

THEOREM 2.6. If the function $f : S \to \mathbb{C}$ satisfies (2.3) and

$$f(x+\tilde{x}) \neq 0 \quad for \ x \in S, \tag{2.6}$$

then the function $h: G \to \mathbb{C}$ given by the formula

$$h(\varkappa(x) - \varkappa(y)) := \frac{f(x + \overline{y})}{f(y + \overline{y})} \quad \text{for } x, y \in S,$$

is well defined,

$$h(\varkappa(x)) = f(x) \quad \text{for } x \in S, \tag{2.7}$$

and h satisfies

$$\sum_{\lambda_G \in K_G} h(x + \lambda_G y) = |K_G| h(x) h(y) \quad for \ x, y \in G,$$
(2.8)

and \varkappa , λ_G , K_G are defined, respectively, by (2.2), (2.4) and (2.5), where G is an abelian group such that $S/_{\sim} \leq G$ and $G = S/_{\sim} - S/_{\sim}$.

PROOF. First, we observe that, for all $x, y \in S$,

$$\varkappa(x) = \varkappa(y) \Rightarrow f(x) = f(y). \tag{2.9}$$

Indeed, let $x, y \in S$ be such that $\varkappa(x) = \varkappa(y)$. Then there exists $z \in S$ such that x + z = y + z. Hence

$$\begin{split} |K|f(x)f(z+\widetilde{z}) &= \sum_{\lambda \in K} f(x+\lambda(z+\widetilde{z})) = \sum_{\lambda \in K} f(x+(z+\widetilde{z})) = |K|f(x+z+\widetilde{z}) \\ &= |K|f(y+z+\widetilde{z}) = \sum_{\lambda \in K} f(y+z+\widetilde{z}) \\ &= \sum_{\lambda \in K} f(y+\lambda(z+\widetilde{z})) = |K|f(y)f(z+\widetilde{z}), \end{split}$$

which means that f(x) = f(y).

Let $x, y, u, v \in S$ be such that $\varkappa(x) - \varkappa(y) = \varkappa(u) - \varkappa(v)$. Then $\varkappa(x + v) = \varkappa(y + u)$, so we obtain $\varkappa(x + \widetilde{y} + v + \widetilde{v}) = \varkappa(u + \widetilde{v} + y + \widetilde{y})$. In view of Lemma 2.4 and (2.9),

$$f(x+\widetilde{y})f(v+\widetilde{v}) = f(x+\widetilde{y}+v+\widetilde{v}) = f(u+\widetilde{v}+y+\widetilde{y}) = f(u+\widetilde{v})f(y+\widetilde{y}),$$

so

$$\frac{f(x+\widetilde{y})}{f(y+\widetilde{y})} = \frac{f(u+\widetilde{v})}{f(v+\widetilde{v})},$$

which shows that h is well defined.

Observe that

$$h(\varkappa(x)) = h(\varkappa(x+x) - \varkappa(x)) = \frac{f(x+x+\widetilde{x})}{f(x+\widetilde{x})} = \frac{f(x)f(x+\widetilde{x})}{f(x+\widetilde{x})} = f(x) \quad \text{for } x \in S.$$

Let $x, y, u, v \in S$. In view of Lemma 2.4,

$$\begin{aligned} \frac{1}{|K_G|} \sum_{\lambda_G \in K_G} h(\varkappa(x) - \varkappa(y) + \lambda_G(\varkappa(u) - \varkappa(v))) \\ &= \frac{1}{|K|} \sum_{\lambda \in K} h(\varkappa(x + \lambda u) - \varkappa(y + \lambda v))) \\ &= \frac{1}{|K|} \sum_{\lambda \in K} \frac{f(x + \lambda u + \widetilde{y + \lambda v})}{f(y + \lambda v + \widetilde{y + \lambda v})} = \frac{1}{|K|} \sum_{\lambda \in K} \frac{f(x + \widetilde{y} + \lambda(u + \widetilde{v}))}{f(y + \widetilde{y} + \lambda(v + \widetilde{v}))} \\ &= \frac{1}{|K|} \sum_{\lambda \in K} \frac{f(x + \widetilde{y} + \lambda(u + \widetilde{v}))}{f(y + \widetilde{y} + v + \widetilde{v})} = \frac{f(x + \widetilde{y})f(u + \widetilde{v})}{f(y + \widetilde{y})f(v + \widetilde{v})} \\ &= h(\varkappa(x) - \varkappa(y))h(\varkappa(u) - \varkappa(v)), \end{aligned}$$

which completes the proof.

REMARK 2.7. If S is a group and $f: S \to \mathbb{C}$ is a nonzero function which satisfies (2.3), then using Lemma 2.4 we easily see that f satisfies (2.6).

THEOREM 2.8. Let $f: S \to \mathbb{C}$. Then f satisfies (2.3) and (2.6) if and only if there exists a homomorphism $m: S \to \mathbb{C}^*$ such that

$$f(x) = \frac{1}{|K|} \sum_{\lambda \in K} m(\lambda x) \quad for \ x \in S.$$
(2.10)

PROOF. (\Rightarrow) In view of Theorem 2.6, there exists a function $h: G \to \mathbb{C}$ such that h satisfies (2.8) and (2.7), where G is an abelian group such that $S/_{\sim} \leq G$ and $G = S/_{\sim} - S/_{\sim}$. Hence, in view of Corollary 1.2, there exists a homomorphism $m_G: G \to \mathbb{C}^*$ such that

$$h(x) = \frac{1}{|K_G|} \sum_{\lambda_G \in K_G} m_G(\lambda_G x) \text{ for } x \in G.$$

We define the function $m: S \to \mathbb{C}^*$ by the formula

$$m(x) = m_G(\varkappa(x))$$
 for $x \in S$.

Then m is a homomorphism and

$$f(x) = h(\varkappa(x)) = \frac{1}{|K_G|} \sum_{\lambda_G \in K_G} m_G(\lambda_G \varkappa(x)) = \frac{1}{|K|} \sum_{\lambda \in K} m_G(\varkappa(\lambda x))$$
$$= \frac{1}{|K|} \sum_{\lambda \in K} m(\lambda x) \quad \text{for } x \in S.$$

(\Leftarrow) Assume that *f* has the form (2.8). Then

$$\sum_{\lambda \in K} f(x + \lambda y) = \frac{1}{|K|} \sum_{\lambda \in K} \sum_{\mu \in K} m(\mu(x + \lambda y)) = \frac{1}{|K|} \sum_{\lambda \in K} \sum_{\mu \in K} m(\mu x) m(\mu \lambda y)$$
$$= \frac{1}{|K|} \sum_{\mu \in K} \left(m(\mu x) \sum_{\lambda \in K} m(\mu \lambda y) \right) = \frac{1}{|K|} \sum_{\mu \in K} m(\mu x) \sum_{\lambda \in K} m(\lambda y)$$
$$= |K| f(x) f(y) \quad \text{for } x, y \in S.$$

484

[6]

Further,

$$f(x+\widetilde{x}) = \frac{1}{|K|} \sum_{\lambda \in K} m\left(\lambda \sum_{\mu \in K} \mu x\right) = m\left(\sum_{\mu \in K} \mu x\right) \neq 0 \quad \text{for } x \in S.$$

COROLLARY 2.9. Assume that S is a topological abelian semigroup and that automorphisms from K are continuous. Let $f: S \to \mathbb{C}$ be such that $f(x + \tilde{x}) \neq 0$ for all $x \in S$. Then f is continuous and satisfies (2.3) if and only if there exists a continuous homomorphism $m: S \to \mathbb{C}^*$ such that (2.10) holds.

PROOF. In view of Theorem 2.8, f has the form (2.10) so we only have to show the continuity. It is easy to see that if m is continuous and f is given by (2.10), then f is continuous.

Assume now that *f* is continuous. Combine the terms of $|K|f = \sum_{\lambda \in K} m \circ \lambda \in C(S)$ having the same multiplicative functions $m \circ \lambda$ and write

$$|K|f = c_0 m + \sum_{i=1}^N c_i m \circ \lambda_i, \qquad (2.11)$$

where $\lambda_1, \lambda_2, \ldots, \lambda_N \in K$ are such that $m, m \circ \lambda_1, \ldots, m \circ \lambda_N$ are different and where the c_0, c_1, \ldots, c_N are positive integers. The first term of (2.11) corresponds to $\lambda_0 = \text{Id} \in K$. Since |K|f is continuous, so are the individual terms in the sum (2.11) (by Theorem 1.3). In particular, $c_0m \in C(S)$, which implies that $m \in C(S)$.

The paper [10] contains many theorems which are based on solutions of (2.3) on groups. Using Theorem 2.8, we can obtain analogous results for semigroups (without changing proofs) provided that *K* is abelian. We give one example.

THEOREM 2.10 (see [10, Theorem 4]). Let X be a complex linear space. Assume that K is abelian. The functions $f : S \to X$, $f \neq 0$, $\varphi : S \to \mathbb{C}$, $\varphi(\sum_{\lambda \in K} \lambda x) \neq 0$ for all $x \in S$ satisfy

$$\sum_{\lambda \in K} f(x + \lambda y) = |K|\varphi(y)f(x) \quad for \ x, y \in S,$$

if and only if there exist a homomorphism $m: S \to \mathbb{C}^*$, $A_0^{\lambda} \in X$ and k-additive symmetric maps $A_k^{\lambda}: S^k \to X$, $1 \le i \le |K_0| - 1$, $\lambda \in K_1$, such that

$$\varphi(x) = \frac{1}{|K|} \sum_{\lambda \in K} m(\lambda x) \quad \text{for } x \in S,$$

$$f(x) = \sum_{\lambda \in K_1} m(\lambda x) [A_0^{\lambda} + \sum_{i=1}^{|K_0|-1} A_i^{\lambda}(x, \dots, x)] \quad \text{for } x \in S,$$

$$\sum_{u \in K_0} A_k^{\lambda}(x, \dots, x, \underbrace{\mu y, \dots, \mu y}_i) = 0 \quad \text{for } x, y \in S, \lambda \in K_1, 1 \le i \le k \le |K_0| - 1$$

where $K_0 := \{\lambda \in K : m \circ \lambda = m\}$ and K_1 is the set of representatives of cosets of the quotient group K/K_0 .

R. Łukasik

References

- [1] R. Badora, 'On the d'Alembert type functional equation in Hilbert algebras', *Funkcial. Ekvac.* **43** (2000), 405–418.
- [2] J. A. Baker, 'D'Alembert's functional equation in Banach algebras', *Acta Sci. Math. (Szeged)* **32** (1971), 225–234.
- [3] C. Benson, J. Jenkins and G. Ratcliff, 'On Gelfand pairs associated with solvable Lie groups', *Trans. Amer. Math. Soc.* **321** (1990), 85–116.
- [4] W. Chojnacki, 'On some functional equation generalizing Cauchy's and d'Alembert's functional equations', *Colloq. Math.* **55** (1988), 169–178.
- [5] I. Corovei, 'The cosine functional equation for nilpotent groups', *Aequationes Math.* **15** (1977), 99–106.
- [6] I. Corovei, 'The d'Alembert functional equation on metabelian groups', *Aequationes Math.* **57** (1999), 201–205.
- [7] T. M. K. Davison, 'D'Alembert's functional equation on topological groups', *Aequationes Math.* **76**(1–2) (2008), 33–53.
- [8] T. M. K. Davison, 'D'Alembert's functional equation on topological monoids', *Publ. Math. Debrecen* 75(1–2) (2009), 41–66.
- [9] P. Kannappan, 'The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups', *Proc. Amer. Math. Soc.* **19** (1968), 69–74.
- [10] R. Łukasik, 'Some generalization of the quadratic and Wilson's functional equation', *Aequationes Math.* 87 (2014), 105–123.
- [11] R. C. Penney and A. L. Rukhin, 'D'Alembert's functional equation on groups', *Proc. Amer. Math. Soc.* 77 (1979), 73–80.
- [12] H. Shin'ya, 'Spherical matrix functions and Banach representability for locally compact motion groups', Jpn. J. Math. 28 (2002), 163–201.
- [13] P. Sinopoulos, 'Functional equations on semigroups', Aequationes Math. 59 (2000), 255–261.
- [14] H. Stetkær, 'D'Alembert's functional equations on metabelian groups', *Aequationes Math.* 56(3) (2000), 306–320.
- [15] H. Stetkær, 'Functional equations and matrix-valued spherical functions', *Aequationes Math.* 69 (2005), 271–292.
- [16] H. Stetkær, 'On operator-valued spherical functions', J. Funct. Anal. 224 (2005), 338–351.
- [17] H. Stetkær, Functional Equations on Groups (World Scientific, Hackensack, NJ, 2013).

RADOSŁAW ŁUKASIK, Institute of Mathematics, University of Silesia, 40-007 Katowice, ul. Bankowa 14, Poland e-mail: rlukasik@math.us.edu.pl