CHARACTERIZATION OF CERTAIN BINARY RELATIONS
ON CONNECTED ORDERED SPACES

JAMES E. L'HEUREUX

1. Introduction. In an earlier paper (2) reflexive transitive binary rela-
tions were considered on a connected ordered space. These relations were
topologically restricted and their minimal sets were either an end point of
the space or empty. It was shown that these relations could be characterized
as one of the two orders of the space. Viewing the situation somewhat differ-
ently as suggested by I. S. Krule, one could say that this class of relations
was characterized in terms of the identity function on the space. In this case
the relations are considered in their natural setting, the product of the space
with itself,

Pursuing this viewpoint one might ask if a more general class of transitive
binary relations could be characterized in terms of suitably chosen continuous
functions on subsets of the space to itself.

This paper considers the class of all transitive binary relations that are
monotone, closed above, closed below, and continuous, and shows that these
relations can be characterized in this manner.

2. Notation and definitions. Throughout this paper it is assumed that
X is a set consisting of more than a single element. It is further assumed that
X is a connected topological space and R is a relation on X such that (X, R)
is an ordered set and the order topology induced by R is the topology on X.
The usual meaning regarding lower and upper bounds, infima, and suprema
with respect to R of subsets of X will be used. Topological closure will be
denoted by * throughout this paper.

If L (the dual of L is denoted by ¢L) is any relation on the topological
space X, then the following terminology and notation will be used:

(1) if x € X then L(x) = {y € X | (y,%) € L};

(2) if 4 CX then L(4) = U{L(a) |a € 4};

(3) L is continuous provided L(4*) C L(4)* for each 4 C X;

(4) L is monotone provided L(x) is connected for each x € X;

(5) if & € X, then & will be called L-minimal provided the following con-
dition is satisfied: whenever x € L(k) and x € X then k € L(x) (the set of
L-minimal elements is denoted by Kp);

(6) L is closed above provided o¢L(x) is closed for each x € X;

(7) L is closed below provided L(x) is closed for each x € X;
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(8) if BC X, then B will be called an L-ideal provided B 3§ and
L(B) C B;

9) if x € X, then L, = {y € X |x\UL(x) =y\UL(®)}.

If R is a relation on X such that (X, R) is an ordered set, then the following
additional terminology and notation will be used:

(10) if x € X, then x will be called R-minimal provided x € R(y) for each
yeX;

(11) if x € X, then x will be called R-maximal provided x € ¢R(y) for
each vy € X;

(12) ifx,y € X thenx <y (x > y) meansx € R(y) — v (x € aR(y) — ¥).

Throughout this paper ° will denote the interior of a set. The pair

[pal =fx€X|p<x<gl

where p and ¢ are elements of the space. The symbols — and <« indicate
convergence.

It is well known that if L is a transitive, closed-below relation on the
T1-space X and if 4 is a compact L-ideal, then 4 M K #= 0.

The notion of nets will be used frequently and the reader is referred to (1)
for the definitions and the general theory. In addition to nets, a notion of
convergence of sets will be used. If T'is a directed set and if {4, |a € T} is
a family of subsets of the space X, then the two following definitions of subsets
of X are made:

(1) lim sup 4, is defined as follows: x € lim sup 4, if and only if for each
open set U about x there exists a cofinal subset T\, C T' such that UM 4, = @
for each o € T';

(2) lim inf 4, is defined as follows: x € lim inf 4, if and only if for every
open set U about x there exists a residual subset I', C I' such that UM 4, # 0
for each a € T\,.

The following lemma will be used frequently without reference. 1t is con-
tained in more general form in (4).

LEMMA. Let L be a relation on the Hausdorff space X. Then L is continuous
if and only if for each net {x, | a € T'} converging to x, L(x) C lim inf L(x,).

For additional information and facts pertaining to relations similar to
those discussed in this paper, the reader is referred to (2; 3; and 5).

3. Preliminary lemmas. This section is a collection of lemmas, estab-
lishing certain properties of monotone, continuous, closed above and below,
transitive relations in terms of nets, continuous functions, and connected
subsets of the space. These lemmas are proved in general and should be most
helpful in studying one specific relation of this type.

Throughout this section it is assumed that (X, R) is a connected ordered
space and L is a monotone, continuous, closed above and below, transitive
relation on X.
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LeMMA 1. Either L, = {x} for each x € Ky or @ 5% L(x) = K # {x} for
each x € K.

Proof. Suppose L, # {x} for each x € K, and consider the case where
0§ # K, # X. Let a be an element of K such that L, # {a}. By definition
L(a) C Ky and for each x € L(a), L(x) = L(a). Without loss of generality
suppose sup L(a) = p and p is not R-maximal. Assume there exists a net
{x« | € T} in oR(p) — p converging to p such that x, € K. Continuity
of L implies that L(p) C liminf L(x,). It follows that for some « € T,
L(x.) M L(a) # B, a contradiction. Therefore there exists z > p such that
[pysl YKy =0. Let N = {x € K, |3 <} and if N < 0, let ¢ = inf N and
let H={y€ X|y¢K;and p <y < ¢}. The continuity of L and the con-
nectedness of H imply L(a) C L(y) for each y € H. Now establish that
N = @ by showing that the existence of ¢ = inf N leads to a contradiction.

(1) Suppose g € H and let {y, |« € T} be a net in K converging to ¢. The
continuity of L implies L(g) C liminf L(y,) and hence for some « € T,
L(y,) M L(a) # @, a contradiction.

(2) Suppose ¢ § H and let {y. |« € T'} be a net in H converging to g. Now
{y«} C oL (p) and since L is closed above, ¢ € cL(p), a contradiction. Hence
N = 0.

By a similar argument it can easily be shown that there does not exist
any element of K, less than L(a). Therefore {a} # K, = L(a) # 0. For
K, = 0 the lemma is obvious and in the case where K, = X the proof just
presented will suffice.

LeEMMA 2. The minimal set Ky, is closed.

Proof. Consider only the case where L, = {x} for each x € K;. Let
y € K;* — K, and let {y.|a € T} be a net in K, converging to y. For
y ¢ K, it follows that @ #= L(y) # {y}. Let ¢t € L(y)° — y and let U and V
be open connected sets such that y € V, t € UC L(y), and UNV = @.
Since L,, = {y.} it follows that either L(y.) = {y.} or L(y.) = 0. Therefore,
there exists@ € T such that L(yg) C Vfor 8 > «, which implies L (yg) M U#=@.
Hence ¢ ¢ lim inf L(y.), a contradiction.

LemMa 3. If x € X — Ky, then L,° = 0.

Proof. Suppose x € X — K such that L,° # @. Let y € L,°, where y = x.
Now y\U L(y) = x\U L(x) implies x € L(y) = L(x) and it follows that
L, C L(x). Clearly L, L(x), since x¢K;. Let 4 = L(x) — L,. Now
A* M L, 5 @ since L is monotone and L, is closed. The continuity of L implies

L(x) C L(L,) C L(4*) C L(4)* C 4%,
since clearly L(4) C A. But A C L(x) and L(x) is closed ; therefore 4* C L(x)
and hence L(x) = 4%, a contradiction since y € L,° C L(x) and

A*NL,S° = 0.
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LEmMA 4. If x € X — K and L(x) M (R(x) — x) # 0, then L(x) C R(x).

Proof. Suppose x € X — K such that L{x) N\ (R(x) —x) # 0 and
L(x) Z R(x). Clearly x € L(x). Let z¢€ L(x) N\ (¢R(x) —x) and let
{x.|a € T} be anetin (¢R(x) — x) M (R(2) — 2) converging to x such that
x § L(x,) for each o € T. Hence there exists a cofinal set T, C I such that
either L(x,) C R(x) for each o € T', or L(x,) € ¢R(x) for each o« € T,. If
L(x,) C R(x), then

L(x) C L({xa}™) C L({xa})* C R(x)

for each a € T',, a contradiction.
A similar argument suffices if L(x,) C oR(x).

CorOLLARY. If x € X — Ky, then either L(x) C R(x) and sup L(x) exists
or L(x) C oR(x) and inf L(x) exists.

LeEmMA 5. If M is a connected subset of X — Ky, then either L(x) C R(x) for
each x € M or L(x) C oR(x) for each x € M.

Proof. Let A ={x¢c M|L(kx) CRx)}, B={x€ M|Lkx) CoR(x)}.
Clearly M = 4 \J B. Suppose 4 # @ and B = @. If 4* N\ B = @, then let
x € A* N B and let {x. | @ € T'} be a net in A converging to x. Since x € B,
there exists vy € L(x) such that x <y. The continuity of L implies
L(x) C liminf L(x,). Let U be an open connected set about x and let V be
an open connected set about ysuch that VN U = 0. Forx, € 4, sup L(x,) < Xa-
Hence for some 8 € T, xo € U for a > 8. It follows that L(x,) NV = @ for
a > B and therefore y ¢ lim inf L(x,), a contradiction. A similar argument will
suffice for 4 M B* £ @. Therefore either 4 = @ or B = @ and the lemma is
proved.

Lumma 6. If M s a connected subset of X — K and L{(x) C R(x) for each
x € M, then the function f defined by f(x) = sup L(x) for each x € M 1s con-
tinuous.

Proof. Suppose f is not continuous at x € M. Let U be an open connected
set about f(x) and let {x. | @ € T} be a net converging to x such that f(x,) § U
for each « € T. The continuity of L implies that there exists a residual set
T, C T such that L(x,) N U # @ for « € T,. Let 2 = sup U, and it follows
that z € L(x,) for each « € I, and hence 3z € L(x), a contradiction.

LemMa 7. If M s an open connected subset of X — Ky, L(x) C R(x) for
each x € M, and G = {x € M |inf L(x) exists}, then G is open and the function
g defined by g(x) = inf L(x) for each x € G is continuous.

Proof. Let N = M — G and suppose N is not closed relative to M. Let
x € N* — N so that x € G and let {x, |« € T} be a net in N converging to
x. Let ¥y = inf L(x) and let U be a connected set about y which is bounded
below. The continuity of L implies that there exists a residual set T, C T
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such that L(x,) N U 5~ @ for a € T,. Let t € X such that ¢ is less than the
greatest lower bound of U. It follows that ¢ € L(x,) for @ € T, and therefore
t € L(x), a contradiction.

An argument similar to that given in the preceding lemma will suffice to
prove that g is continuous.

In the following three lemmas it will be assumed that p € K; N (X — K)¥,
{xo | € T} is a net in a connected subset M of X — K converging to p
and L(x,) C R(x.) for each a € T.

Lemma 8. If 8 = L(p) = Ky # {p}, then {sup L(x.)} converges to p.

Proof. Let U be an open connected set about y € L(p)° such that
U C L(p) — p. The continuity of L implies that there exists a residual set
I', C T such that UN L(x,) # @ for a € T,. Since L(z) = L(p) for each
z € L(p) = Ky, it follows that L(p) C L(x.) for each « € T,. Hence
p < sup L(x,) for each a € T, and since L(x.) C R(x,) it follows that
p < sup L(x,) < xo for each a € T',. Therefore {sup L(x,)} converges to p
since {x.} converges to p.

LemMa 9. If L, = {p} and L(p) = {p}, then {sup L(x.)} converges to p.

Proof. Suppose {sup L(x,)} does not converge to p. Let U be an open con-
nected set about p and let T, C T be a cofinal set such that sup L(x,) § U
for each @ € T,. Since sup L(x,) < X, it follows that there exists a residual
set I,/ C T, such that sup L(x,) < u for each u € U and « € T,’. Hence

L({xa}*)  L({xa})*

for a € T/, a contradiction.

Lemma 10. If L, = {p} and L(p) = 0, then either {sup L(x.)} converges to
—o or {sup L(x.)} converges to z € Ky — p.

Proof. Suppose {sup L(x,)} does not converge to —o. Then there exists
t € X and a cofinal set I', C T' such that ¢ < sup L(x,) for each « € T,.
Clearly ¢t < p. Let 4 = {x € R(p) — p| there exists a cofinal set T, C T'
such that sup L(x.) < x for each a € T,} and let z = sup 4. Suppose
{sup L(x,)} does not converge to z. Then there exists an open connected set
U about z and a cofinal set T, C I' such that sup L(x,) § U for a € T\,.
Clearly z is not R-minimal. Since gz = sup 4, there exists a residual set
I,/ C Ty such that f(x,) < u for each # € U and each a € T,/. Also there
exists a cofinal set 'y C T such that f(x.) € U for @ € T,. For each « € T,
there exists at least one 8 € T,/ such that x;s € R(x,) — x.. Choose one such
xg for each a € T, and consider the set {oR(x5) M R(x,)}, where xz is the
chosen one for x, It follows that sup L(aR(x5) M R(x,)) is connected and
y € sup L(cR(xg) M R(x.)), where y = inf U. Hence there exists at least one
Vo € aR(x5) M R(x,) for each a € T, such that sup L(y.) = y. Choose one y,
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for each a € T, and it follows that the net {y. | @ € T} converges to p. Hence
L is closed above implies y € L(p), a contradiction. Therefore {sup L(x.)}
converges to z.

Clearly if z is R-minimal, z € K. Suppose z ¢ K. There exists an open
connected set U about y which is bounded below and a residual set T, C T
such that U M K, = @and sup L(x,) € Uforeach a € T,. Clearly inf L(x,) ¢ U.
Let y = inf U and it follows that {x,} C ¢L(y) and hence y € L(p), a con-
tradiction. Therefore z € K.

LemMma 11. If L, = {x} for each x € K, then L(K.) is contained in and
open relative to K.

Proof. Clearly L(K.) C K and the continuity of L implies that the com-
plement of L(K,) is closed.

LemMA 12. If M is an open connected subset of X — K, and
0 # L(x) = K; # {x}
for each x € K, then Ky, C L(x) for each x € M.

Proof. The argument presented in Lemma 8 showed the existence of an
element of X — K that contained K. Using the connectedness of M and
the continuity of L, it can be shown that K, C L(x) for each x € M.

It should be noted that duals of lemmas are omitted. References will be
made to the duals and the meaning will be clear from the context.

4. General results. This section contains two general theorems which
completely characterize monotone, continuous, closed above and below,
transitive binary relations on connected ordered spaces. Lemma 1 is used to
divide these relations into two large classes. Theorem 1 considers the class
where @ # L(x) = K # {x} for each x € K; and Theorem 2 characterizes
the class of relations where L, = {x} for each x € K. The special case where
K; = 0 is understood to be in the latter class.

TureoreM 1. Let (X, R) be a connected ordered space and let L be a relation
on X. A necessary and sufficient condition that L be monotone, continuous, closed
above and below, and transitive with {x} % K, = L(x) # @ for each x € Ky,
K, # @, is that there exist open connected sets N and M, open sets G and F,
G C M, FC N, a closed connected non-empty set H, and continuous functions
f:M\JF\UH—M*and g : N\JG\J H— N* such that

(@) NUH\UM =X, NC R(h) for every h € HZ H C R(m) for every
m € M, NN\ M* =@, H M, and N are pairwise disjoint, and p = sup N
and g = inf M are interior points of F\J H and H \J G respectively if N # 0
and M # 0;

(b) f(x) < x for each x € M and f(x) = q for each x € H;

(b)) x < glx) for each x € N and g(x) = p for each x € H;
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() fx€GUF,ye MUN, and g(x) <y < f(x), then y € G\J F and
glx) < gly) <fly) <fx);
d) fx€M—Gandy€ N, theny€ F and f(y) < f(x);
d)dfxe€N—Fandy € M, then y € G and g(x) < g(v);
(e) if {xu|a € T} is a net in G converging to x € M — G, then {g(x.)}
converges to — o,
(€) if {xa|a € T} is a net in F converging to x € N — F, then {f(x,)}
converges to -+ ;
B L={xy)€cXXGUF) gy <x<f}
Ui,y € X X (M =G)|x <fn)}
Ui,y e XX (N = F) gy <}
U i(x,y) € HX Hj.

Proof of necessity. Define H = K, and it follows that H is closed, connected,
and non-empty. Let

N={x€X—-K;|K,CoR(x)}, M={x¢cX —K,|K;,CR()},
G = {x € M |inf L(x) exists}, F = {x € N |sup L(x) exists}.

It follows that M and N are open and connected, and G and F are open. Define
fby f(x) = sup L(x) and g by g(x) = inf L(x). By the definition and structure
of Ky, (b) and (b’) are true. The transitivity of L implies (c), (d), and (d’).

Let {x,|a € T} be a net in G converging to x € M — G. The continuity
of L implies L(x) C lim inf L(x,). For any ¢ € X it follows that there exists
y € L(x) and an open connected set U about y such that ¢4 U and y € R(¢).
Now v € lim inf L(x,) so that there exists a residual set T', C T such that
UN L(x,) # 0 for « € T,. Hence g(x,) < ¢ for o € T, and it follows that
{g(x,)} converges to —o. This establishes (e¢) and by a similar argument
(e') is true.

Let {x, |« € T} be a net in M converging to ¢ = inf M and suppose that
there exists a cofinal set T', C T such that {x,} C M — G for « € T,. Let
t € N. It follows that {x.} C ¢L(t) for « € T,; hence ¢ € ¢L(¢) or t € L(q),
a contradiction since ¢ < g(q) and ¢ € K. This implies ¢ € (H \U G)° and
P ¢ (FUH)° by a similar argument, and hence (a) is established. The
definitions imply (f).

Lemmas 6 and 7 and their corresponding duals imply the continuity of f
and g over M and N. Lemma 8 and its dual establishes continuity at
g =HMN M*and p = HN\ N*. Clearly f and g are continuous on H°. This
concludes the proof of necessity.

Proof of sufficiency. Clearly from condition (a), F = @ only if N = @, and
G = @ only if M = @. Therefore, we assume M and N to be non-empty sets
leaving special cases to the remarks. From (a) and (f) it follows that L is
monotone and closed below, and where K; = H and {x} = K, = L(x) = 0
for each x € K.
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Let (x, ) and (y, z) be elements of L and consider all possible cases to show
that L is transitive.

Case 1. If either 2 € K, or vy € K, then x € K, and (a), (b), (b'), and
(f) imply KL C L(x) for each x € X.

Case2. 1fz€ G\U Fandy € M \J N, then (f) implies g(s) < ¥ < f(z) and
hence (c) and (f) implies ¥y € G\U F and g(3) < g(y) < x < f(y) < f(2);
therefore (x,2) € L.

Case3.1fz € M — Gandy € M, then (b) and (f) imply x < f(y) <y <f(3)
and (x,2) € L.

Case 4. If z€ M — G and y € N, then (d) and (f) imply y € F and
¢(y) < <f() <J() and (x,2) € L.

Case5. 1fz € N — Fandy € N, then (b’) and (f) imply g(z) < ¥ < g(¥) <%
and (x,z) € L.

Case 6. If € N — F and vy € M, then (d’) and (f) imply y € G and
2(2) < gly) <x <f(y) and (x,2) € L. Therefore L is transitive.

Now to show that L is continuous. Clearly K, C L(x) for each x € X,
hence for ¥ € Kz and {y, |« € T} a net converging to y, L(y) = K, C lim
inf L(y,) and L is continuous over K.

Case 1. Suppose L is not continuous at x € G. Then there exists a net
{x« | @ € T} in G converging to x such that L(x) ¢ lim inf L(x,). Hence there
exist ¢ € L(x), an open set U about a, and a cofinal set I', C I' such that
UN L(x,) =0 for a € T,. Clearly a # f(x) and a 5 g(x) since f and g are
continuous functions. Thus, there exists an open connected set V about f(x)
and an open connected set 7’ about g(x) such that a ¢ V'\U V’. It follows
that there exists 8 € T such that g(x,) € V' and f(x.) € V for a > 8. Since
L is monotone, a € L(x,) for a > f—a contradiction since L(x,) N\ U =0
for « € T, and a € U. Therefore L is continuous on G.

Case 2. Suppose L is not continuous at x € M — G. Since M is open, there
exists a net {x, |« € T'} in M converging to x such that L(x) ¢ lim inf L(x.).
Hence there exists a € L(x), an open connected set U about a, and a cofinal
set T, CT such that UN L(x,) =@ for a € Ty,. Clearly {x,|a € T} is
cofinal in either M — G or G. Since f is continuous, a # f(z). Let V be an
open connected set about f(x) such that a ¢V. If {x.|« € T,} is cofinal in
M — G, then there exists 8 € T, such that f(xz) € V, x5 € M — G. Hence
a € L(xg), a contradiction since L(xg) N\ U’ = @. If {x,|a € T} is cofinal
in G, then there exists 8 € T, such that f(xs) € V, x5 € G, and a € L(xs)
by (e), a contradiction. Therefore L is continuous on M — G.

By arguments similar to those given in cases 1 and 2 it follows that L is
continuous over N, hence L is continuous.

Now to show that L is closed above. For every x € K;, oL(x) = X, so
that oL (x) is closed.

Suppose oL (x) is not closed for some x € M. Lety € oL (x)* — oL(x). Now
x ¢ L(y) implies y € F\U M \U H and f(y) < x since L(y) is connected and
contains K. Let {x, |« € T'} be a net in ¢L(x) converging to y. From (a) it
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follows that there exists 8 € T such that x, € F\U M \U H for « > 8. Let U
be an open connected set about f(y) such that x ¢ U. The continuity of f
implies that there exists 8/ € T' such that f(x,) € U for a« > 8. Hence
flx,) < x for @« > B/, a contradiction. By a similar argument it follows that
oL (x) is closed for x € N; hence L is closed above and this concludes the
proof of Theorem 1.

Remarks. In considering the class of relations where @ # L(x) = K, # {x}
for each x € L;, K, ## 0, it is clear that there exist three cases since L is
monotone.

Case 1. Suppose a < b and K = oR(a) M R(b) assuming a non-R-minimal
and b non-R-maximal. Therefore M # @ and N # @ and this case was con-
sidered in Theorem 1.

Case 2. Suppose K = R(a) for some non R-minimal ¢ € X. In this case
it is clear that N = @, FF = ) and either G = @ or G = M depending on the
existence or non-existence of an R-minimal element. Consequently, N, F,
and G can be deleted from the theorem and the conditions involving these
sets are vacuous and can be omitted. In this case Theorem 1 becomes:

Let (X, R) be a connected ordered space and let L be a relation on X. A necessary
and sufficient condition that L be monotone, continuous, closed above and below,
and transitive with K, = R(a) for some non R-minimal a € X and

0% Lx) = Ky # {x}

for each x € K is that there exist an open connected set M, a closed connected
non-empty set, H, and a continuous function f: M \J H — M* such that

(@) HUM = X, HC R(m) for every m € M and H N\ M = @,

(b) f(x) < x for every x € M and f(x) = q = inf M for every x € H;

(© L={x9ycXXX|x<f)}

Case 3. Suppose K, = oR(b) for some non R-maximal & € X, the obvious
dual of case 2.

For this class of relations if L is given the additional property of being
reflexive, Theorem 1 will apply with only the following two slight modifica-
tions. Condition (b) becomes: f(x) = x for every x € M and f(x) = q for every
x € H and (b’) becomes: g(x) = x for every x € N and g(x) = p for every
x € H.

THEOREM 2. Let (X, R) be a connected ordered space and let L be a relation
on X. A necessary and sufficient condition that L is monotone, continuous, closed
above and below, and transitive with L, = {x} for each x € K, is that there
exist open sets N, M, G, and F, a set H contained in and open relative to
X — (M\JN), and continuous functions f :G—X, g . M - X, h: N —> X,
and k: F— X such that

(a) FCN, GC M, M and N are mutually separated, and H, N, and M
are patrwise disjoint;
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(b) (1) x < glx) for each x € M; (ii) x < g(x) < f(x) for each x € G;
(iii) h(x) < x for each x € N; (iv) k(x) < h(x) < x for each x € F; and (v)
there exists no x € X such that x = g(x) = f(x) or x = h(x) = k(x);

() of {xa| @ € T} is a net in G converging to x € M — G, then {f(x.)} con-
verges to +o ;

(c") if {%«|a € T} is a net in F converging to x € N — F, then {k(x.)} con-
verges 1o — ;

(d) if {xa|@ € T} is @ net in G converging to x € X and there exists y € X
such that g(x.) <y < f(x2) for each o € T, then (y,x) € L (see (k));

(d") if {xa| @ € T} is a net in M — G converging to x € X and there exists
y € X such that g(x.) < vy for each a € T, then (y,x) € L (see (k));

() if {xa|a € T} is a net in F converging to x € X and there exists y € X
such that k(x,) <y < h(x,) for each o € T, then (y,x) € L (see (k));

(e") if {xa|a € T} is @ net in N — F converging to x € X and there exists
y € X such that y < h(xa) for each a € T, then (y,x) € L (see (k));

() o {xa | € T} is @ net in M converging to x € H, then {xa|a € T} is
eventually in G and {g(x.)} — x — {f(x.)};

(") of {x«|a € T} is a@ net in N converging to x € H, then {x,|a € T} s
eventually in F and {k(x.)} — x «— {h(x)};

(g ifx€G, ye M, and gx) <y < f(x), then y € G and

g(x) < gly) < f(y) < flx);

g ifx€G, y€EN, and gx) <y < f(x), then y € F and
glx) < k(y) h(y) < fx);

(h) ifx € F,y€ N, and k(x) <y < h(x), then y € F and
k(x) < k(y) < k() < hix);

(W) ifx € F,y€ M,and k(x) <y < h(x), then y € G and

k(x) < g(y) F@) < h(x);
(i) fx€M—G,ye M, and g(x) <y, then g(x) < g(¥);
i) ifx € M — G,y € Nyand g(x) < y,theny € Fand g(x) < k(y) < k(y)
G) if x €E N—F, y€ N, and y < h(x), then h(y) < h(x);
GY) f x€e N—F,ye M, and y < h(x), then y € G and

g(y) < f(y) < h(x);

k) L= {(x,9) e XXGlgly) <x<f}
(xy)EXX(M G) | g(y) < x}
(x,9) € X X Flk(y) <x <h(y)}
(x,9) € X X (N = F) |x < h(x)}
(x,9) € HX H|y = x}.

—— o — —

\
\
)
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The proof is omitted since the methods of Theorem 1 apply with slight
modification.

Remarks. In considering relations in this class, special cases are too numerous
to discuss because of the many possibilities of the properties of K, such as
K, need not be connected as will be shown by an example. A few cases of
special interest will be considered and examples will be used to illustrate
others.

Case 1. Suppose K, = @ or K; = {a} where a is either R-minimal or R-
maximal. Lemma 5 restricts this case since X — K, is connected and Theorem
2 becomes:

Let (X, R) be a connected ordered space and let L be a relation on X. A necessary
and sufficient condition that L is monotone, continuous, closed above and below,
and transitive with K, = @ or K, = {a} where a is either R-minimal or R-
maximal is that there exists a continuous function f : X — X such that

(@) f(x) < x for all x € X;

(b) L=1{(x9 € XXX |x<f}
or

@) f(x) > x for all x € X;

(b)) L=1{(xy€cXXX|x>f}

Case 2. Suppose K; = R(a) for some non R-minimal ¢ € X. Then by
Lemma 5 only two cases could arise which are illustrated in Examples 4 and 5.

Case 3. Suppose ¢ < band K, = dR(a) N R(b) assuming ¢ non R-minimal
and b non R-maximal. The properties of L and Lemma 5, 9, and 10 imply
six possibilities in this case. Examples 6 and 7, illustrate two possibilities and
it is clear that their duals would illustrate two others. Example 10 considers
another while 8 and 9 show characteristics of the remaining possibility.

Case 4. Suppose K, is not connected. Example 11 illustrates this together
with the special case where M = @, G = @, and F = 0.

Examples 12 and 13 illustrate further the complexity of a possible relation
that is characterized by Theorem 2.

Consider now the relations of this class if L is given the additional property
of being reflexive. It can easily be shown that K is connected in this case,
since x € L(x) for each x € X and {x} = L(x) for each x € K . In this case
Theorem 2 becomes:

Let (X, R) be a connected ordered space and let L be a relation on X. A necessary
and sufficient condition that L 1is reflexive, monotone, continuous, closed above
and below, and transitive with L(x) = {x} for each x € K;, K, # @, and
K, # {a}, where a is either R-minimal or R-maximal is that there exist open
connected sets M and N, open sets G and F, G C M, F C N, a closed set H, and
continuous functions f M IV FUH—-M\JH and g: NUVGUH—->NUH
such that
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(a) NOUMVUH=X, NCR() for each h ¢ H, H C R(m) for each
m € M, H, M, and N are pairwise disjoint, and p = sup N and q = inf M
are interior points of I'\J H and G \J H respectively;

(b) f(x) = x for each x € M \J H,

b") glx) = x for each x € N\U H,;

) fx € GUF,ye M\UN,and glx) <y < f(x), then y € G\JU F and
g(x) < g <fy) <f);

d) f x€ M —G and y € N, then y € F and f(y) < f(x);

d)Yisf x€ N—FandyC M, then y € G and g(x) < g(y);

(e) of {¥a|a € T} is a net in G converging to x € M — G, then {g(x.)}
converges t0 — ® ;

(€) if {xa| € T} s a net in F converging to x € N — F, then {f(x.)}
converges to ~+o ;

(H L={kyecXXGUF |zl <x<f}

Ui,y € X X (M —G) |x <fy)}
Ui, y) € X X (N = F)[g(y) <
U {(x,x) € H X H}.

If K, =0 or K; = {a} where a is either R-minimal or R-maximal the

theorem will be very similar to the theorem stated in case 1. It will become:

Let (X, R) be a connected ordered space and let L be a relation on X. A necessary
and sufficient condition that L be reflexive, monotone, continuous, closed above
and below, and transitive with Ky, = @ or K, = {a} where a is either R-minimal
or R-maximalisthat L = {(x,y) = X X X |x < ylorL = {(x,y) € X|y < x}.
Note that L = R or L = ¢R and this theorem is equivalent to the theorem
in (2).

It should be noted that the relation L is closed for the class characterized
in Theorem 1. Also for the class of relations characterized in Theorem 2, L
is necessarily closed if K is at most a single point.

5. Examples. The first three examples correspond to Theorem 1 and the
remaining ones illustrate Theorem 2.

In each of the following examples X is a connected subset of the real num-
bers R, and the usual meaning of less than and greater than applies.

Example 1. Let X = {x € R|0 < x < 3} and let
L={(y e XXX[x<1} Uy X XX|x<3iy+ D}
Example 2. Let X = {x € R|0 < x < 3} and let
L={xy)ecXXX|2<x<3}
Uf(x,y) € X XX[3<x<35(+3))
Ull,y) € X XX 300 +2) <x <2},
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Example 3. Let X = {x € R|0 < x < 5} and let
={(x,7) € X XX|2<x<3}
Uflr,y) € X XX|3<x<iy+3)}
Ullny) € X XX[300+2) <z <2
Ufl(ny) EXXX|2y—4>x> —2y + 8.
Example 4. Let X = {x € R|0 < x < 3} and let
L={xyecXXX|y=x<}}
Ui,y € X X X[3002 —4y+9) <x <3}
Example 5. Let X = {x € R|0 < x < 3} and let
={xy cXXX|y=x<1]
Ullx,y) € X XX |y<3and 3(—y+3) <x <3+ 1)}

Example 6. Let X = {x € R|0 < x < 5} and let
={(x,9) € X XX |9/4 <x =1y <11/4}
U f{(x,y) € X X X |3y =2y +10) < x < 5}
U {(x,y) € X X X |3y — 8y 4+ 25) < x < 5}.

Example 7. Let X = {x € R|0 < x < 5} and let
=H&w€XXXWM x =y < 11/4]
Ui,y € X XX [302—2y) >x > 0}
Ui, y) € X X X |30 — 8y +25) <x < 5.

Example 8. Let X = {x € R|0 < x < 5} and let
={(x,y) EXXX|2<x=9y<3}

U,y E XXX |3y +2) <x

Uiy €EX XX ]| -1y —9 <2

Example 9. Let X = {x € R|0 < x < 5} and let
={(x,y) EXXX|2<x=y<3}

Ul € XXX |3y +2) <«

Ufy) EXXX|-3y+12<

Example 10. Let X = {x € R|0 < x < 5} and let
={(x,y) EXXX|2<x=y<5/2}
U,y € XXX |3 +2) < -3y — 6)}
{@wEXXbe—&+%)x<&

Example 11. Let X = {x € R|0 < x < 4} and let
={(xy) EXXX|y=x<3
Ul EX XX |y=x>7/2}
Uf(r,y) € X X X |30 — 4y +11) < x < 4}.

< —3(y — 6)}
x < 3(y +3)}.

https://doi.org/10.4153/CJM-1963-043-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1963-043-9

JAMES E. L'HEUREUX

410

Examples 12 and 13. The last two examples are only suggestions of possible
relations where K, neither is connected nor has but a finite number of com-

ponents. Because of the structure of K, diagrams will be used.
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ExampLE 12
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