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Abstract. Let W denote the intersection with the pseudovariety of completely
regular semigroups of the Mal’cev product of the pseudovariety of bands with a
pseudovariety V of completely regular semigroups. It is shown that the (pseudo)-
word problem for W is reduced to that for V in such a way that decidability is pre-
served in the case in which terms involving only multiplication and weak inversion
are considered. It is also shown that, if V is a hyperdecidable (respectively canoni-
cally reducible) pseudovariety of groups, then so is W.
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1. Introduction. Motivated by the Krohn-Rhodes complexity problem [24], the
search for uniform algorithms for computing semidirect products of pseudovarieties
has led to substantial research in the theory of finite semigroups. Even though there
is no universal solution, since the semidirect product of decidable pseudovarieties is
not necessarily decidable [1], under suitable assumptions on the factors, the semi-
direct product might be decidable. The notions of hyperdecidability [3] and o-redu-
cibility [8] have been devised in connection with this question and provide key links
with the known proofs of the Rhodes type II conjecture [12, 33, 21] (cf. [3, 7, 8]). The
paper [8] also brings forth a crucial role played by word problems for relatively free
semigroups with extra operations, the unary operation of taking the weak inverse (in
the subsemigroup generated by the argument) being of special interest.

Word problems, on the other hand, have long been central to the theory of
varieties of completely regular semigroups. The free completely regular semigroup
has been described as a relatively free unary semigroup [17, 35] and its word problem
has been solved [23]. The successes in the study of varieties of completely regular
semigroups and of hyperdecidability and canonical reducibility for pseudovarieties
of groups prompted the authors to study word problems, hyperdecidability, and
canonical reducibility for pseudovarieties of completely regular semigroups. In the
present paper, pseudovarieties of orthogroups (orthodox completely regular
semigroups) are considered, while in future papers we plan to deal with the non-
orthodox case.
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2. Preliminaries. This paper assumes some familiarity with the theory of finite
semigroups. The reader is referred to [27, 2] for general background and motivation.
A good knowledge of the basic literature on the free band ([18], or see [22, Section
IV.4]) is also recommended, although not required. In this section we gather the
essential basic notions and notation for the rest of the paper.

For an element s of a finite semigroup S, we denote by s® the unique element of
S that is an idempotent power s” of s with n positive. The inverse of ss* (also natu-
rally denoted s“*') in the maximal subgroup containing s is denoted by s“~'. Hence
s“~!is a weak inverse of s in the sense that s lss®~! = s*~! and in fact it is the only
weak inverse of s in the subsemigroup generated by s. The operations si—s® and
si—>s®~! (henceforth called simply weak inversion) are examples of unary “implicit
operations” on finite semigroups.

More generally, for a set 4, an A-ary (or |A|-ary) implicit operation on a class ¢
of semigroups is a family (ws)g., of functions ms: S — S such that, for any
homomorphism ¢ : S — T between elements of the class ¢ o mg = 77 0 ¢, where the
mapping ¢ : S* — T is ¢ on each component. In particular, the basic operation
defining a semigroup is an example of a (binary) implicit operation on the class of all
semigroups. For each a € A, the projection on the a-component of S into S also
defines an implicit operation on the class of all semigroups which we usually identify
with a.

By pseudovarieties we mean classes of finite semigroups which are closed under
taking homomorphic images, subsemigroups, and finite direct products. For a
pseudovariety V, the set of all 4-ary implicit operations on V is denoted Q4V. If 7 is
an n-ary implicit operation on V and py, ..., p, € Q4V, then the composite opera-
tion (o1, ..., pa) given by ((pr, ..., pa))s(f) = ws(P15(f). .., pas(f)), for f€ 4,
is again an A-ary implicit operation on V. Considering in particular for 7 the basic
semigroup operation, we see that Q,V is itself a semigroup on which implicit
operations on V have a natural interpretation. Under the initial topology for the
homomorphisms into semigroups from V, which are themselves viewed as discrete
topological spaces, the set 4V becomes a compact zero-dimensional space. With
respect to this space the interpretation of any implicit operation on V is continuous
and such that (continuous) homomorphisms into members of V suffice to separate
distinct points; i.e., Q4V is residually in V [2]. In general, a compact semigroup
which, as a topological semigroup, is residually in V, is said to be a pro-V semigroup.
The topological semigroup Q4V is then characterized as the free pro-V semigroup
on the set A4 in the sense that, for any mapping ¢ : A — S into a pro-V semigroup,
there is a unique continuous homomorphism ¢ : Q,V — S whose restriction to 4 is
o [11]. Pro-S semigroups are also called profinite semigroups, where S is the pseu-
dovariety of all finite semigroups. The unique continuous homomorphism
Q4S — 4V that fixes the members of A4 is denoted py.

By a pseudoidentity for finite semigroups we mean a formal equality u=v
between two implicit operations of the same arity on the class S. The pseudoidentity
u = v is said to hold in a finite semigroup S if us = vs. We write © | u = v for a class
¢~ of finite semigroups if the pseudoidentity u = v holds in every member of #. For a
set X of pseudoidentities, we denote by [X] the class of all finite semigroups in which
all pseudoidentities from X hold. By a well-known theorem of Reiterman [32], the
classes of this form are precisely the pseudovarieties of finite semigroups.

The following pseudovaricties will be used later in this paper. See for instance [2]
for their significance.
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Ab = [x* =1, xy = yx] (Abelian groups).
B = [x* =] (bands).
CR = [x“*!' = 4] (completely regular).
DA = [(x0)°(rx)°(xy)® = (xy)®, x°*! = x] (regular 7-classes are aperiodic
subsemigroups).
DG = [(xy)” = (»x)“] (regular o-classes are groups).
DO = [(x»)*(yx)“(xy)” = (x»)”] (regular o-classes are orthodox
subsemigroups ).
DS = [((xp)°(rx)’(xp)*)” = (x)“] (regular 7-classes are
subsemigroups ).
G =[x=1] (groups).
J = [(xp)? = (x)*, x*H = x¢] ( _s-trivial).
OCR = [x“t! = x, (x*»?)* = x*1] (orthogroups).
Sl = [x* = x, xy = yx] (semilattices).

Let o be a set of implicit operations over finite semigroups containing the basic
semigroup operation ‘-’. Such a set is called an implicit signature. We view o as an
algebraic type for which every profinite semigroup has a natural structure as a
o-algebra, namely interpreting each implicit operation from o as described above. A
o-algebra is said to be a o-semigroup if it is a semigroup under the interpretation of
the binary operation ‘. We denote by Q%V the o-subsemigroup of Q4V generated
by a given set 4. It is well known that Q9S is the free o-semigroup on the set 4.

An important example of an implicit signature is that of the signature
k={-, "}, also called the canonical signature, consisting of the basic semigroup
operation and weak inversion. The reason for the word “‘canonical” in this context
is to emphasize that its use pervades most of semigroup theory, in one form or
another, from inverse semigroups and completely regular semigroups to finite semi-
groups and, more generally, epigroups and compact semigroups. There is in its
choice no technical connotation in the sense of category theory. For example, the «-
semigroups QG and QCR are respectively the free group and the free completely
regular semigroup on the set 4 since these algebras are residually finite [25,26]. By «-
terms in general, which we shall also call weak terms, we mean elements of a suitable
free k-semigroup QS. We shall refrain however from using ambiguous terminology
like “free weak semigroup” and “weak reducibility”’ (which already appears in [8]
with a different meaning), preferring to retain the more formal but more precise
reference to the signature «.

For a pseudovariety H of groups, let H denote the pseudovariety consisting of
all finite semigroups all of whose subgroups lic in H. Let V and W be pseudovari-
eties of semigroups. Their Mal’cev product V@W consists of all divisors of semi-
groups S such that there is a homomorphism ¢: S — T into T € W for which
¢~ '(e) € W, for every idempotent e € T.

By a graph we mean what is sometimes called in the literature a directed multi-
graph. More formally, a graph Y is the union of two disjoint sets V' = F(T) and
E = E(Y), respectively of vertices and edges, together with two functions
a, w: E— V describing respectively the beginning and the end vertices of each edge.
An undirected path in the graph Y is a path from one specified vertex to another in
the graph obtained from Y by forgetting directions of edges, which could be descri-
bed as the union of Y with the dual graph obtained by exchanging the functions «
and w. In such an undirected path, we say that an edge in the path appears in the
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opposite direction of the path if it comes from the dual of YT and otherwise that it
appears in the direction of the path.

3. The Rhodes and Birget expansions. In his proof of the “fundamental lemma of
complexity”, J. Rhodes introduced what came to be known as the Rhodes expan-
sions (cf. [15, Chapter XII by B. Tilson]). By iterating left and right Rhodes expan-
sions (which are idempotent functors on the category of semigroups on a fixed
generating set), Birget [13] obtained another expansion which we will call the Birget
expansion and which is used later in the paper. We review in this subsection the
necessary definitions and properties of these expansions.

Let S be a semigroup and denote by >, and > , respectively the strict and the
non-strict Green ~orderings of S. Let S” denote the semigroup of all finite > -
chains (s; >, so >, --- >, s,) of S under the following operation:

G1=, 0=, =) 1=, >, =, 1)

=(51=,85>, =, 8m =, Sl =, Sty = -+ =, Splty).

Consider the reduction operation Red on S” that replaces, in a > ,-chain, each
maximal consecutive section in which all elements are .~equivalent by the rightmost
element. Then the set S of all reduced (i.e., strict) > ,-chains is a semigroup under
the operation s - 1 = Red (s), where the operation on the right hand side is the one
defined above for the semigroup S”.

Assume next that S is an A-generated semigroup; i.e., a semigroup S endowed
with a function ¢: 4 — S whose image generates S. We define an associated map-
ping v: 4 — S by letting va be the singleton chain (a), for each a € A. Then the
image of v generates an A-generated subsemigroup, which we denote by S/, and
which we call the right Rhodes expansion of the A-generated semigroup S. Note that
the mapping sending each finite reduced > ,-chain to its lowest element defines an
onto homomorphism n¢ : §; — S that maps (a) to a. Usually, for an 4-generated
semigroup S, we shall use indiscriminately a symbol a to denote an element of 4 and
the corresponding generator of S. This is justified whenever the associated mapping
t: A — S is injective which is often the case.

Let S be an A-generated semigroup. We say that S has a content function c if
there is a monoid homomorphism ¢ : S' — /(4) into the semilattice of all subsets of
A under union such that c¢(ta) = {a}, for every a € A. In particular, there is at most
one content function on the A-generated semigroup S. As no confusion should
result from it, we shall adopt the convention that all content functions, irrespective
of the semigroup, are denoted by c. In case S has a content function, for each s € S
and each X C c(s), we let Ox(s) denote the set of all so € S' such that there is a fac-
torization s = soas; with @ € X and X is the disjoint union of ¢(so) N X and {a}; we
also denote by 0x(s) the set of all such a € X. In case X = c(s), we write simply 0(s)
and 0(s) respectively for Oy(s) and Ox(s). The sets 1x(s), 1x(s), 1(s), and 1(s) are
defined dually. Note that 0(s) and 0(s) are always nonempty sets but each may have
more than one element. We say that S has 0 (respectively 0, 1, 1) function if 0(s)
(respectively 0(s), 1(s), 1(s)) is a singleton for every s € S. For instance, the free
semigroup A" and the free band on 4 have 0, 0, 1, 1 functions. The following gen-
eralization is essentially part of the proof of [31, Theorem 4.4] and was probably
well known in 1990.
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ProproSITION 3.1. Let S be an A-generated semigroup with a content function.
Then S| has content, 0, and 0 functions.

Proof. Composing the mapping ng with a content function for S, we obtain a
content function for S ;. .

Suppose next that s¢, s, € 0(s) for a given > ,-chain s € S/. By definition of 0(s),
there are factorizations s = soas; = sybs| such that a, b € A4, c(so) # c(s) = c(s0) U {a},
and c(sp) # c(s) = c(sp) U {b}. We must show that sy = s, and a = b. Since the con-
tent function is a homomorphism, we have the relations s <, spa <, 5o and
s <., sob <., 5. By [15, Proposition XII.12.1] (or [13, Fact 2.8]), the elements sy, soa,
sg> and spb are all comparable under the relation < ,. But, in the presence of a con-
tent function, if the elements are < ,-comparable, then their contents are C-com-
parable. It follows that c(so) = c(s;) and a = b. Without loss of generality, we may
assume that spa <, sya. Then, since soa < , 5o and sya <, s, from the definition of the
Rhodes expansion and [15, Proposition XII.12.1] it follows easily that sp = s;. [

The left Rhodes expansion S 4 of the A-generated semigroup S is defined dually
to the right Rhodes expansion and naturally enjoys dual properties.

The Birget expansion S of the A-generated semigroup S is defined to be the
projective limit of the successive alternating right and left Rhodes expansions S/,

(S’ /;’)/;, and so on. Birget [13] showed that S‘j coincides with its own right and left
Rhodes expansions. We thus have the following result.

 COROLLARY 3.2. Let S be an A-generated semigroup with a content function. Then
Sj has content, 0, 0, 1, and 1 functions. OJ

Another important property of the Birget expansion is that its value on a finite
semigroup is again a finite semigroup which can be effectively computed from the
given semigroup [13].

We say that a pseudovariety V is closed under right Rhodes expansions if, for
every A-generated semigroup S eV, S € V. Similar definitions may be given for
the left Rhodes expansion and the Birget expansion. Note that a pseudovariety is
closed under Birget expansions if and only if it is closed under both left and right
Rhodes expansions.

For example, by [31, Lemma 4.3] and [15, Property XI1.(9.4)] respectively, the
pseudovarieties CR and H are closed under Birget expansions for any pseudovariety
H of groups. Of course, the intersection of a nonempty family of pseudovarieties
closed under Birget expansions is still closed under Birget expansions. It is an easy
exercise to verify that DS is also closed under Birget expansions. Further examples
may be derived from the following result.

PROPOSITION 3.3. For any pseudovariety V of semigroups, B@V is closed under
Birget expansions.

Proof. Let S be an A-generated semigroup in B@ V. Then S is a homomorphic
image of some finite 4-generated semigroup " such that there is a homomorphism
¢:8 — Twith TeVand ¢~ 'e € B, for every idempotent e in 7. Since S, is then a
homomorphic image of &, we may as well assume that §' = S. Let ng : S; — Sbe
the natural projection. Then gong :S; — T is a homomorphism and, for an
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arbitrary idempotent e € 7 and x = (s; >, - -+ >, s,,) such that ¢ng(x) = e, we have
s, = e, and so s, is idempotent by the assumption on ¢, which implies that

X =Red(s) >, o> 8, > 5,851 > > S8 >, 50 = X.

Hence S " € B@V, which shows that B@V is closed under right Rhodes expan-
sions. Similarly, B@V is closed under left Rhodes expansions and therefore it is
closed under Birget expansions. OJ

Note that the converse of Proposition 3.3, namely “‘the closure under Mal’cev
product on the left by B” for a pseudovariety closed under Birget expansions, fails
for instance for CR since B@)CR 2 B@G Z CR. See [14].

For the following corollary, we recall that, as a particular case of [28, Theorem
4.1], if V is a pseudovariety of semigroups, then

B@V =[=u:VEu=u], (1)
where u stands for an arbitrary implicit operation.

COROLLARY 3.4. The pseudovarieties OCR, DA, and DO are closed under Birget
expansions.

Proof. For OCR, it suffices to observe that OCR = CR N (B@G). See [30].
Hence OCR is closed under Birget expansions, by Proposition 3.3, and since that
property is preserved by intersection.

For DA, we have the decomposition DA = B@J: by definition of DA and J, an
implicit operation is idempotent in one of the pseudovarieties if and only if it is
idempotent in both and so the equality follows from (1).

Similarly, we have DO = DS N (B@DG): by [6, Theorem 4.11], an implicit
operation is idempotent in DO if and only if it is idempotent in DG and so again the
equality follows from (1). O

The significance of closure under Birget expansions comes from the following
simple observation.

PROPOSITION 3.5. If a pseudovariety V is closed under right Rhodes expansions
and V contains S, then Q4V has content, 0 and 0 functions.

Proof. The content function is just the canonical projection 2,V — 4SI.
Suppose next that u € Q4V, a,d € A, and ug, uy, uy, 1} € (QAV)l are such that

u = wpau; = uya'vy with agc(ug), a'¢c(uy), and c(upa) = c(u) = c(upd).  (2)

Suppose further that 1y # u;. Then there is a semigroup S in V and there is an onto
homomorphism ¢ : Q4V — S such that guy # guj. Notice that, since SI C V and
Q,Slis the free (finite) semilattice on 4, the subsemigroup S’ of S x €SI generdted
by {(ga, c(a)) : a € A} is such that the projection of 4V onto S separates uy and u;,
and has a content function. By Proposition 3.1, S 4 also has these properties and has
a O-function. We may therefore assume that S S”

Since S has a content function, the conditions (2) are preserved under the
application of ¢ in the sense that ou = (guo)alpu)) = (uy)d'(eu)), a¢cleu),
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a'¢c(ouy), and c((guo)a) = c(gu) = c((guy)d’). Since S has a 0 function, we reach the
contradiction ¢uy = 0(¢u) = ¢u;. Hence 1y = u;, and the equality a = ' follows from

(2), since {a} = c(u) \ c(up). ]

COROLLARY 3.6. If a pseudovariety V is closed under Birget expansions and V
contains Sl, then Q4V has content, 0, 0, 1, and 1 functions. O

We do not know whether the converses of Proposition 3.5 and Corollary 3.6 are
also valid.

4. Pseudovarieties of the form B@.,V. For a pseudovariety V, denote by
B @)V the intersection (B@V) N CR. The aim of this section is to show that if V is
a hyperdecidable pseudovariety of groups then so is B@. V.

4.1. The word problem. The following result provides a relatively easy theore-
tical solution of the word problem for pseudovarieties of the form B@., V.

THEOREM 4.1. Let u, v € 4S and V C CR. Then B@xV = u = v if and only if
the following conditions hold:

(1) e(u) = c(v);

(i) B@cg V = 0(u) = 000

(ii)) B@ce V F 100) = 100):

ivyVEu=v.

Proof. Let W = B@ V.

Assuming that the pseudoidentity u = v is valid in W, we obtain (i) and (iv),
since W contains Sl and V, respectively. By Corollary 3.6 and Proposition 3.3, since
CR is closed under Birget expansions, we also obtain (ii) and (iii).

Conversely, suppose that conditions (i)-(iv) hold. We also view elements of S
as being members of QW by restriction. Since W € DS, by (i) and [2, Theorem
8.1.7] we deduce that u ~ v. Since W C CR, letting x = 0(x) (= 0(v) by (i) and (ii)),
we have u. 0(u)x = 0(v)x .~ v and, dually, u ~ v. Hence u » v.

Let S be an element of W. Then there are semigroups R and 7 and there are
onto homomorphisms ¢ : R — T and ¥ : R — S such that T e V and ¢~ 'e € B for
every idempotent e € T. Consider an evaluation homomorphism ¢ : Q24S — S. Since
Y is onto, ¢ lifts to a homomorphism § such that ¢ o § = ¢ as depicted in the fol-
lowing diagram.

QuS-->R

| N
v

S T

Since VEu=v, the equality @du= ¢Sy holds in 7. Now the element
e = ¢((6u)*~" 8v) = (¢du)” is an idempotent. Since ¢~'e € B, it follows that (8u)”~'8v
is idempotent and therefore so is its image under v; that is (su)®~'ev. Hence su = ev,
since the two elements lie in the same group, by the preceding paragraph. This shows
that W |= u = v, as desired. O
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Note that, if V € CR and a “‘solution” of the word problem (not necessarily in
an algorithmic sense) is known for V, then an inductive “solution” (on the content)
of the word problem for B @),V follows from Theorem 4.1. If we restrict attention
to implicit operations which are given by weak terms, then we get a solution of the
corresponding word problem by applying Theorem 4.1. In order to explain how the
solution works, we just need to describe how to compute the operations 0 and 1 on
weak terms. By the “usual way of representing” a weak term w € QS we mean the
sequence p(w) of symbols that describe it defined recursively as follows:

e for a € A, p(a) is the singleton sequence (a),
e forw=u-v, p(w) = p(u) p(v),
o for w= """, p(w) = (() pu) )",

where we are representing by juxtaposition the usual operation of concatenation of
sequences. Note that a sequence in the alphabet A4 U {(, )*~'} represents a «-term if
and only if it has no consecutive entries and ()~ and the subsequence obtained
by erasing the entries from 4 is a Dyck word (i.e., parentheses match). The following
lemma is easily proved.

LEMMA 4.2. Let w be an element of the free k-semigroup QXS. Then

(a) O(w) is the k-term obtained from w by taking in p(w) the shortest prefix which
contains among its entries all but one member of c¢(w) and deleting unmatched
parentheses,

(b) 1(w) is obtained dually.

In particular, Q58S is closed under the operations 0 and 1. O

This immediately yields the following result [29, Theorem 1] which extends the
case of V = G found in [16].

COROLLARY 4.3. Let V C CR. The word problem for the relatively free k-semi-
group QL2B @ V) is decidable if it is decidable for Q4 V. O

4.2. Some geometric constructions. Let S be a finite 4-generated semigroup with
content, 0 and 1 functions. We denote by ¢ and ¢ respectively the homomorphisms
At — Sand Q4S — S determined by the choice of generators.

Let s € S. In a factorization s = 0(s) sy 1(s) with s; € S, we say that 0 and 1 do
not overlap while, in a factorization s = s5 1,(0(s)) s3 with 55 1,(0(s)) = 0(s), a = 1(s),
b = 0(s), 1,(0(s)) = 05(1(s)), and 0x(1(s)) s3 = 1(s), we say that 0 and 1 overlap. Note
that for any choice of u € Q4S such that ¢u = s, a factorization of u yields a fac-
torization of s satisfying one of the two conditions and every such factorization of s
can be obtained in this way. On such factorizations, we may further

o take s1 to be of one of the forms s; = 0(s) 54 1(s), with s4 € S*, or sy = 0(s) = 1(s),
o take 57 of the form s, = s51(s),
e and take s3 of the form s3 = 0(s) 5. (See Figure 1.)

In general, for each s € S, there are several ways of factorizing it in the above
forms but, as a problem involving just the computation of products, contents, 0 and
1 function values, we may effectively find all such factorizations.

We define recursively a set of S-edge-labeled chains I'(s) associated with s € S!
as follows. A graph y in I'(s) is generically represented by __ 7. At the basis of
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0(s) S3
S5 [ a 1,(0(s)) = 0p(1(s)) | b | S6
S92 1(3)

Figure 1: A possible overlapping factorization of s.

this recursive definition, take I'(1) = {e}, the trivial graph reduced to one vertex. For
s # 1, each element of I'(s) is associated with an expression for s, according to three
cases of overlap between the prefix 0(s)0(s) and the suffix 1(s)1(s) in the sense above,
as follows: B B

(a) to the factorization s = 0(s) 0(s) s41(s) 1(s) associate any of the graphs

where __ Y0 ( respectively __ 71 ) stands for an element of I'(0(s)) (respectively

I'(1(s))); }
(b) to the factorization s = 0(s) 0(s) 1(s) associate any of the graphs

O— 0 ———> O —~ >0

Yo 0(s) 04!

with ¥y and y; as in the preceding case; B
(c) to the factorization s = s5 1(s) 1,(0(s)) 0(s) s¢ associate any of the graphs

O~ >0 —— > O~ >0 ——> O —~ >0

Vs 1(s) g 0(s) Y6
1(s)

where ¢ 13 o 7. ._,\’Z\,,. is an element of I'(0(s)), the distinguished arrow

being the last labeled with 1(s), and ¢_~~_.e 0Cs o168 g is an element of
I'(1(s)), the distinguished arrow being the first labeled with 0(s).

The letters 0(s) and 1(s) are called the top markers of s. Each element s of S
determines a labeled tree 7(s) called the tree of markers, which is defined recursively
as follows:

e T(1) is the one-vertex tree;

e T(s) =

By the well-known solution of the word problem for bands [22], the set of all
such trees of markers constitutes a free band on the set 4 under the multiplication
T(s)T(t) = T(st), and so the function si— T(s) may be viewed as a homomorphism
S — §AB

For the remainder of this subsection, we fix a pseudovaricty H of groups and we
let W =B@)-zH.
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Let Y be a finite graph and let f: T — S' be a labeling in which edges are
labeled by elements of S. The labeling f is consistent if, for every edge x in Y,
Slax)f(x) = flwx). Recall that the labeling f'is said to be inevitable with respect to a
pseudovariety W if there is a lifting of f to a labeling g: T — (€24S)' such that
pog=fandh=pwog: Y — (Q4W)'is consistent. The pseudovariety W is said to
be hyperdecidable if there is an algorithm to test W-inevitability of labelings of finite
graphs by finite semigroups. For the source and motivation for these notions, see [3].

Sometimes only the labels of edges are considered. A function f: E(Y) — S is
said to be an edge-labeling of the graph Y by S. By the label of an undirected path p
in T we mean the product, in order, of either the label f{e) of each edge e if it
appears in the direction of the path, or (f(e))®~' otherwise. We say that the edge-
labeling f commutes if the label of every undirected path in Y depends only on where
it starts and where it ends. If S is a group, the edge-labeling f: E(Y) — S commutes
if and only if the label of every circuit is the identity element of S. A pseudovariety
H of groups is hyperdecidable if and only if there is an algorithm to test whether an
edge-labeling of a finite graph by an 4-generated finite semigroup may be lifted to
an edge-labeling by 4S whose composite with py commutes, in which case we also
say that the initial edge-labeling is H-inevitable [3].

Let o be an implicit signature. A pseudovariety W is said to be o-reducible [8, 9]
if every W-inevitable labeling of a finite graph by a finite A-generated semigroup has
a lifting to a labeling by Q%S whose composite with pyw is consistent. Again, in the
case of a pseudovariety W of groups, this condition is equivalent to the following:
every W-inevitable edge-labeling of a finite graph by a finite 4A-generated semigroup
has a lifting to an edge-labeling by Q%S whose composite with py commutes. A «-
reducible pseudovariety is also said to be canonically reducible. By [12, 8], the pseu-
dovariety of all finite groups is canonically reducible. By [8], a canonically reducible
pseudovariety W such that the word problem for relatively free k-semigroups QW
is decidable is hyperdecidable.

Let S be a finite semigroup with a content, 0 and 1 functions and let s € S. In
the following, we shall construct from the graphs in the sets I'(s) certain S-labeled
graphs for which we shall be interested in testing H-inevitability. In these graphs,
some edges, corresponding to markers, are to be labeled with generators, and we
want to lift such labels to the same generators of ©4S. But, it may happen that a
generator has in S a nontrivial expression in terms of generators. This difficulty may
be overcome in an elementary way by ensuring from the start, before constructing
the Birget expansion, that ¢| 4+ : AT — S recognizes each of the languages {a} with
a € A, which can be easily achieved by replacing S by an effectively constructible
semigroup that S divides.

If a labeled graph y € I'(s) is relabeled by elements of Q,4S such that, for each
edge —L 5, the new label belongs to ¢~ 'z, then the product of the new labels in the
order they appear in the chain y produces some u € Q4S such that gu = 5. More-
over, the successive 0, 1, 0, 1 factorization of u, projected via ¢, defines precisely the
graph y.

Since B € W, a necessary condition for W-inevitability of f is that it be B-
inevitable. Since Q4B is finite and effectively constructible, this condition may be
effectively tested. From here on, we assume that f'is B-inevitable.

For each x € T, let y, € ['(f{x)). We build up an edge-labeled graph I'(y,; x € Y)
as follows. For each edge x of Y, we first build a “triangle” A, from the chains Yy,
vx, and v, by identifying endpoints, as in the following picture.
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°
'Yax/ \'{z
@ —~ >0

’YLUI

Each edge in the triangle A, corresponds to either a vertex (ax or wx) or the
edge x of the graph Y. Denote by I'(yy; x € T) the underlying unlabeled graph of the
labeled graph I'(yy; x € Y) and by /7 : Iv*(yx; x € T) — S the label itself.

Since a vertex may be an endpoint of several edges, or even both endpoints of
the same edge, the triangles A, (x € E(T)) share their edges corresponding to ver-
tices and the “triangle” A, will be somewhat degenerated in case wx = wx.

We define a gluing procedure which is meant to deal with consistency of the
labeling f at the edge x; it comes from comparing the trees of markers for the labeled
chain y,,, and the concatenated chain _;Yg}\» _,\7/’96\», which we denote by Yy vx,
for each edge x of Y. Observe that the markers in the concatenated chain y,yy, are
already distinguished as markers in one of the chains y,, or y,, although some of the
markers in each of y,, and y, may not be markers in y,.yx. Since, by the hypothesis
that f is B-inevitable, the trees corresponding to y,.y. and y,, are equal, we may
identify edges which, in the “triangulated” graph previously constructed, belong to
edges in the sides of the same triangle that correspond to the same markers in these
trees.

ExaMPLE 4.4. Suppose that a, b, ¢, d are distinct elements of A. Then, from the
factorizations of elements of S associated with the words ab*chbcabc’a and abc*bea?,
we obtain the same tree of markers

the respective graphs, (where the label words are to be viewed as their values in S
under ¢), being

a b b> b c bea b c c c a

a b c c? b C a a

Observe that 1(0(ab*cbcabc®a)) = b* and the factorization is
0(1(0(ab*cbeabc® a))) b* 1(1(0(ab*cbeabc’a))) = b - b* - b,
as shown. Consider the S-labeled graph

41 .2
le abebea e ab*chbcabcla.
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The corresponding glued graph is the following:

bca

a/\c/\b/\Q
\/\/\/

Notice that l(O(abc“bcgz)) = b, so that the next factorization is overlapping with
0(0(1(abc*bea?))) and 1(0(1(abc*bea?))) being identical (of value b). Hence these
markers, as well as the markers 0(0(1(ab*cbcabc’a))) and 1(0(1(ab*cbcabc’a))), are
all glued together as shown. Similarly, the final two glued sections of the graph can
be explained.

Each edge in the graph I'(y,; x € Y) is either obtained from gluing markers, and
thus may come from markers in edges of several of the triangles A, (x edge of Y), or
else it can be traced to a specific edge in a unique chain y, (x € Y).

PROPOSITION 4.5. Let H be a pseudovariety of groups and let W = B@) - H
Then, with the above notation and hypotheses, the following are equivalent.

(i) There is a labeling g : Y — (24S)" such that gog =f, pwog: T — (Q4W)'
is consistent, and, for each x € Y, the successive 0, 1, 0, 1 factorization of g(x) defines
the chain yy.

T--"> (—Q—AS)1
St (QaW)!

(ii) There is an edge-labeling h of f‘(yx; x € Y) by elements of QS such that g o h
is the corresponding edge-labeling " and py o h commutes.

’yz,:EGT ——>‘QAS

Proof. (1)=(ii). Consider a labeling g as in (i). As was observed above, each edge
of T'(yy; x € T) comes from an edge of a chain y, and in a unique way if it is a non-
marking edge. Since we are assuming that the values in S of the generators do not
admit any other expressions in terms of the generators, it is only the non-marking
edges that are to be relabeled. We relabel such an edge, coming from a specific edge
of y, by the corresponding factor of g(x). This clearly defines a relabeling /& of
[C(yy; x € T) which projects under ¢ to the original labeling. We must show that
pu o h commutes. For this purpose, it is convenient to localize the problem by fur-
ther labeling the vertices of I'(yy; x € T) and showing that the extended labeling 7 is
such that py o & is consistent.
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Note that # may also be viewed as a labeling of each individual chain y,. To
label the vertices of I'(yy; x € T), we first label each vertex of the chains y, by taking
the product of the labels of the path from the initial vertex to the vertex in question,
the empty product being taken to be 1. If x is an edge, we then further multiply on
the left the labels of all the vertices of y, by g(ax).

We claim that, if the vertices p from y, and ¢ from y. are identified in
['(yy; x € Y), then their labels are equal in H. Without loss of generality, we may
assume that y and z are vertices in chains making up the sides of the same triangle
Ay, for the global identification of vertices is just the transitive closure of this local
identification. This observation brings the claim down to showing that in the basic
gluing process of two chains labeled in ($24S)!, with initial vertices labeled 1, and
with the same tree of markers, if two vertices ¢ and r are identified, then their labels
are equal in H. We may use the additional hypothesis, which results in our case from
consistency of the labeling pw o g, that the final vertices of the two chains have
matching labels in W, say m, and 7. We next prove this localized claim by induction
on the size of the content, the case of empty content being trivial.

Since the two vertices ¢ and r are identified, they must be either both beginnings
or both endings of edges corresponding to the same marker when markers in the two
chains are glued together. Clearly the beginnings of two marker edges which are
identified have labels which are equal in H if and only if the same happens with their
endings, the labels for the latter being obtained from those for the former by multi-
plying by the same element of 4. Note also that every vertex in a chain y, is either a
beginning or an ending of a marker edge. This is not true for chains of the form
YaxVy, DUt the remaining vertices do not get identified in the gluing process within
the triangle A,. Moreover, for such concatenated chains, replacing maximal paths
whose intermediate vertices are not ends of marker edges in the concatenated chain
by single edges whose label is the product of the labels in the path, we obtain a 0, 1,
0, 1 factorization of the product g(ax)g(x). Hence it suffices to show that the claim
holds if ¢ and r appear both in the 0 or both in the 1 portions of their chains. Now,
by the solution of the word problem for W given by Theorem 4.1, W satisfies the
pseudoidentities 0(rr,) = 0(r,) and 1(;r,) = 1(7.), which reduces the claim to a smaller
content case, for which the induction hypothesis applies. This establishes the claim.

In view of the claim, we label each vertex v of I'(yy; x € Y) with the label of any
of the vertices which are glued to produce v. Since each chain was labeled con-
sistently over S, from the claim it follows that / is consistent over H. Hence the
edge-labeling & commutes over H.

(i))=(i). We shall construct a labeling g as in (i) from a labeling / as in (ii).

Let x € Y. If y, is a trivial chain, then let g(x) = 1. Otherwise, retain the labels
of the marker edges of y, and replace the label of each non-marker edge by its label
under /; we let g(x) be the product of the resulting labels. From the hypothesis that
@ o h is the edge-labeling of T'(y,; x € T) constructed above and the choice of y,, it
follows that ¢ o g = fand the 0, 1, 0, 1 factorization of each g(x) defines the chain
yx. Hence it remains to verify that pw o g is consistent.

Let x be an edge of Y. We claim that W satisfies the pseudoidentity
g(ax)g(x) = g(wx). This corresponds to the gluing of chains associated with the tri-
angle A,. Again, we prove by induction on the content a simplified version of the
claim that we now formulate. Suppose y and § are two chains associated with 0, 1, 0,
1 factorizations of the elements « and v of 48, respectively. Suppose further that u
and v have the same tree of markers and that the edge-labeled graph y LI § resulting
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from gluing the two chains by identification of corresponding marker edges com-
mutes in H. Then we claim that W | u = v. Here, if ¢(u) (which is equal to ¢(v) by
the assumption on the trees of markers) is a singleton set, then the claim is obvious.
Assume the claim holds for smaller content cases.

Now, by Theorem 4.1, since certainly H = u = v, it suffices to show that W
satisfies the pseudoidentities 0(«) = 0(v) and 1(u) = 1(v). Since the two pseudoiden-
tities may be treated dually, we only consider 0(x) = 0(v). Consider the maximal
subchains of y and § that end at the beginning vertices of the marker edges
corresponding to 0(u) (= 0(v)). Denote these subchains respectively by 0(y) and 0(8)
and note that they also have the same tree of markers. Note also that there is a
natural homomorphism from the graph 0(y) LI 0(8) into y LI § that respects labels: an
element of say 0O(y) is also an element of y which determines an element of y L1 §;
if two elements of 0(y) U 0(8) are identified in 0(y) LI 0(8), then they are elements
of markers and the identification comes from the gluing of markers at corre-
sponding positions, and so they are also identified in y LI 8. It follows that the edge-
labeled graph 0(y) LI 0(8) commutes over H, since cycles in this graph map to cycles
in the graph y LI § under the natural homomorphism. Hence W = 0(x) = 0(v) by
the induction hypothesis. This proves the claim and completes the proof of the
proposition. O

We may now establish one of the main results of this paper.

TueOREM 4.6. Let H be a hyperdecidable pseudovariety of groups. Then B@ -z H
is also hyperdecidable.

Proof. Let f: T — S' be a labeling of a finite graph by a finite semigroup S. Let
A be a finite set such that S is 4-generated say via the mapping ¢ : 4 — S. As
argued above, we may assume that each generator has no nontrivial expression in
terms of the generators and that S has content, 0 and 1 functions. Moreover, since
each label f(x) has a finite number of possible overlap patterns in the successive 0, 1,
0, 1 factorization, it suffices to show that it is decidable whether there is a labeling g
as in condition (i) of Proposition 4.5 for a given choice of chains y, € I'(f(x))
(x € T). But, by the proposition, the existence of such a labeling is equivalent to H-
inevitability of the effectively constructible edge-labeled graph I'(y,; x € Y). Since H
is assumed to be hyperdecidable, the result follows. O

Examples of (non-locally finite) hyperdecidable pseudovarieties of groups are
the pseudovariety G of all finite groups [12, 3] and the pseudovariety G, of all finite
p-groups [34]. Hence as a particular case of Theorem 4.6, we have the following
result.

COROLLARY 4.7. The pseudovariety OCR of all finite orthogroups is hyper-
decidable. O

4.3. Canonical reducibility. Our next aim is to show that the word ‘“hyper-
decidable” may be replaced by “canonically reducible” in the statement of Theorem

4.6. We start with a result complementary to Lemma 4.2.

LEMMA 4.8 Each w € $4S has a unique 0, 0, 1, 1 factorization.
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Proof. Tt suffices to show that, if w = 0(w)0(w)w' = 0(w)0(w)w” with
w,w" € (Q24S)!, then w = w”. The result then follows from Proposition 3.5 and
duality. To establish the claim, the shortest proof seems to be to consider the double
semidirect product equality S =Sl* S and to represent $2,4S as a closed sub-
semigroup of a double semidirect product of a free profinite semilattice F, freely
generated by the infinite profinite set (24S)! x 4 x (24S)", by ©24S. We only sketch
here the argument, leaving the details to the reader together with the reference [10,
Theorem 5.1] for the representation in question. The two factorizations of w give rise
to two representations of the image of w in FxxQ4S. Looking at the first compo-
nents in these two representations, we find respectively the free profinite semilattice
generators (0(w), 0(w), w') and (0(w), 0(w), w”), which can be found nowhere else in
either of these representations. This implies that these free generators must be the
same and so w = w". OJ

LeEMMA 4.9. Let w be an element of the free k-semigroup QS.

(@) If w = 0(w)0(w)w' 1(w)1(w) with w' € (Q4S)!, then w' (Q’;S)l. B

() If w=w1(w)1,(0w)O(w)w” with w,w" € (QuS)' and a=1(w), then
w,w" e (QQS)I.

Hence QXS has 0 and 1 functions.

Proof. In view of Lemma 4.8, it suffices to show that the 0, 0, 1, 1 factorization
can be made in (Q’;S)l. Now, we already observed in Lemma 4.2 that /S is closed
under the operations 0 and 1. Moreover, say to compute O(w), Lemma 4.2 indicates
how to fetch O(w) from a factor term u®~' of w, should it be found in there. Such a
factor u®~! should then be replaced by the 0, 0 factorization of u followed by
u“~'u®~!. The result then follows by induction on the depth of application of the
unary operation of weak inversion. O

We may now prove the second main result in this paper.

THEOREM 4.10. Let H be a canonically reducible pseudovariety of groups. Then
B @) g H is also canonically reducible.

Proof. Let W =B@- H. Let /: T — S! be a labeling of a finite graph by a
finite semigroup S and suppose that it is W-inevitable. Let 4 be a finite set such that
S is A-generated and let ¢ : A — S be a mapping describing S as an A4-generated
semigroup. Then there is a lifting of f to a labeling g: T — (24S)' such that
@ og = fand pw o g is consistent. B B

For each x € Y, let the chain y, be defined by the successive 0, 0, I, 1
factorization of g(x) as in subsection 4.2. Then, by Proposition 4.5, there is an
edge-labeling i of the glued graph I'(y,; x € Y) by elements of Q4S such that
@oh is the natural edge-labeling f” of this graph by S and py o &2 commutes. In
particular, the edge labeling f” is H-inevitable and so, since H is canonically
reducible, there is an edge-labeling ¢ of Y by Q%S such that ¢ o £ =" and pyg o ¢
commutes. In view of Lemmas 4.2 and 4.9, the argument given in subsection 4.2
for the proof of (i))=>(i) in Proposition 4.5 shows that, multiplying the labels in
each chain y, as attributed by ¢ (after gluing) gives rise to a labeling {of T by
Q4S that also lifts / and such that pw o/ is consistent. This shows that W is
canonically reducible. O
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In particular, we have the following result.

COROLLARY 4.11. The pseudovariety OCR of all finite orthogroups is canonically
reducible. O

Note that the crucial additional ingredient in Theorem 4.10, besides Proposition
4.5, is the fact that Q%S admits 0, 0, 1, 1 factorizations and so, Theorem 4.10
remains valid for other implicit signatures that share this property. At present, to the
best of our knowledge, the only non-locally finite canonically reducible pseudovari-
ety of groups that is known is the pseudovariety G of all finite groups. The pseudo-
variety G,, of all finite p-groups is known not to be canonically reducible [8].

5. Final comments. We conclude with a few remarks.

The arguments in Section 4 may be adapted to show that V@) H is hyperde-
cidable (respectively canonically reducible) for every pseudovariety V of bands and
every hyperdecidable (respectively canonically reducible) pseudovariety H of groups.

By tracing the kinds of graphs that come up when trying to establish that
B @)x H has computable pointlikes [19, 20, 4], one can use the arguments in Section
4 to show that, if the pseudovariety of groups H is such that H-inevitability of
labelings of graphs whose underlying undirected graphs are circuits, then B@.zH
has computable pointlikes.

The first author has shown recently that the pseudovariety G, is o-reducible for
a suitable enlarged (infinite) signature o [S]. We have not checked whether QS
admits 0, 0, 1, 1 factorizations and thus, while Theorem 4.6 applies to show that
B @)z G, is hyperdecidable, we do not know whether the argument in the proof of
Theorem 4.10 also applies to show that B@) -G, is still o-reducible and for that
matter whether Theorem 4.1 yields from a solution of the word problem for Q%G,
[5] a solution of the word problem for Q% (B @)z G),). B B

From the results of Section 3 it follows that the functions 0, 0, 1, and 1 are
continuous on the free profinite semigroup. This does not however help in estab-
lishing the uniqueness of 0, 0, 1, 1 factorizations (Lemma 4.8) but just the existence
of such factorizations. That the factors involved stay within the o-subsemigroup
Q%S is very much dependent on the signature o (cf. Lemma 4.9). For instance, for
the signature o consisting of multiplication together with the unary operation given
by w-power, this property fails.
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