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Abstract. Bochvar algebras consist of the quasivariety BCA playing the role of equivalent
algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4]
in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the
structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka
sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has
only one proper extension (apart from classical logic), algebraized by the subquasivarietyNBCA
of BCA. Furthermore, we address the problem of (passive) structural completeness ((P)SC) for
each of them, showing that NBCA is SC, while BCA is not even PSC. Finally, we prove that both
BCA and NBCA enjoy the amalgamation property (AP).

§1. Introduction. The recent years have seen a renaissance of interests and studies
around weak Kleene logics, logical formalisms that were considered, in the past, not
particularly attractive in the panorama of three-valued logics, due to reputed “odd”
behavior of the third-value. The late (re)discovery of weak Kleene logic regards, almost
exclusively, internal rather than external logics: the latter, in essence, consisting of
linguistic expansions of the former. More precisely, here, for external Kleene logics we
understand the external version of Bochvar logic (introduced by Bochvar himself [4])
and of Paraconsistent weak Kleene logic (introduced by Segerberg [35]).

The idea of considering the external connectives, thus enriching the (internal) logical
vocabulary, is originally due to Russian logician D. Bochvar [4]. His aim was, from the
one side, to adopt a non-classical base to get rid of set-theoretic and semantic paradoxes
(by interpreting them to 1/2) and, from the other, to preserve the expressiveness of
classical logic. Although his attempt failed in reaching the former purpose (as it can
be shown that paradoxes resurface [37]), the work of Bochvar has left us with a
logic extremely rich in expressivity and whose potential has yet to be discovered and
applied in its full capacity. Indeed, external weak Kleene logics have the advantage of
limiting the infectious behavior of the third value—the feature making them apparently
little attractive—which is confined to internal formulas only, and to recover all the
consequences of classical logic in the purely external part of the language (this holding
true for Bochvar external logic only). We believe that these features may turn out to
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be very useful in computer science and AI, providing new tools for modeling errors,
concurrence, and debugging.

From a mathematical viewpoint, internal weak Kleene logics show quite a weak
connection with respect to their algebraic counterparts, as they are examples of the
so-called non-protoalgebraic logics. On the other hand, a recent work [6] has shown
that Bochvar external logic is algebraizable with the quasivariety of Bochvar algebras
(introduced in [17]) as its equivalent algebraic semantics. This observation gives a
justified starting point for a deeper, intertwined, investigation of Bochvar external
logic and Bochvar algebras, which is the main scope of the present work.

The flourishing trend of algebraic research around weak Kleene logics has strongly
connected them with the algebraic theory of Płonka sums (see, e.g., [9]). Recently, the
tools offered by Płonka sums have fruitfully been extended to the structural analysis of
residuated structures, establishing a natural connection with substructural logics (see
[19, 22]). In line with this trend, we will further extend the application of the method.
Not surprisingly, since Bochvar external logic is a linguistic expansion of Bochvar
logic, we will show that the construction of the Płonka sum will play an important role
in characterizing the structure of Bochvar algebras.

The paper is organized into five sections: in Section 2, we present Bochvar external
logic as the logic induced by a single matrix, and we recall the axiomatization due to
Finn and Grigolia. In Section 3, we first introduce the quasivariety of Bochvar algebras
and prove some basic facts, including that any Bochvar algebra has an involutive
bisemilattice reduct. We then proceed by describing the structure of Bochvar algebras:
the main result is a representation theorem in terms of Płonka sums of Boolean algebras
plus some additional operations. Section 4 is concerned with the study of the lattice of
subquasivarieties of the quasivariety of Bochvar algebras, which is dually isomorphic
to the lattice of extension of Bochvar external logic. We show that there are only
three nontrivial quasivarieties of Bochvar algebras and we address the problem of
(passive) structural completeness for each of them. Finally, in Section 5, we show that
every quasivariety of Bochvar algebras has the amalgamation property. We conclude
the paper with Appendix A, where we provide a new (quasi)equational basis for the
quasivariety of Bochvar algebras. The proposed axiomatization significantly simplifies
the traditional one introduced by Finn and Grigolia [17].

§2. Bochvar external logic. Kleene’s three-valued logics—introduced by Kleene in
his Introduction to Metamathematics [23]—are traditionally divided into two families,
depending on the meaning given to the connectives: strong Kleene logics—counting
strong Kleene and the logic of paradox—and weak Kleene logics, namely Bochvar logic
[4] and paraconsistent weak Kleene logic (sometimes referred to as Hallden’s logic [21]).
Kleene logics are traditionally defined over the (algebraic) language of classical logic.
However, the intent of one of the first developers of these formalisms, D. Bochvar,
was to work within an enriched language allowing to express all classical “two-valued”
formulas—which he referred to as external formulas—beside the genuinely “three-
valued” ones.

The result of this choice is the language L : 〈¬,∨,∧, J0 , J1 , J2 , 0, 1〉 (of type
(1, 2, 2, 1, 1, 1, 0, 0)), which is obtained by enriching the classical language by three
unary connectives J0 , J1 , J2 (and the constants 0, 1). The language L can be referred
to as external language, in contrast with the traditional language upon which Kleene
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Figure 1. The algebra WKe.

logics are defined. Let Fm refer to the formula algebra over the language L, and to Fm
as its universe.

The intended algebraic interpretation of the language L is traditionally given via the
three-elements algebra WKe = 〈{0, 1, 1/2},¬,∨,∧, J0 , J1 , J2 , 0, 1〉 displayed in Figure 1.

The value 1/2 is traditionally read as “meaningless” (see, e.g., [15, 36]) due to its
infectious behavior. It is immediate to check that the ∨,∧-reduct of WKe is not a lattice
(it is an involutive bisemilattice), as it fails to satisfy absorption, hence the operations
∨ and ∧ induce two (different) partial orders. In the following, we will refer to ≤ as
the one induced by ∨ (i.e., x ≤ y iff x ∨ y = y). With reference to such order, it holds
0 < 1 < 1/2.

The language L allows to define the so-called external formulas (see Definition 2.3),
namely those that are evaluated into {0, 1} only (which is the universe of a Boolean
subalgebra of WKe), for any homomorphism h : Fm → WKe (J

k
ϕ, for any ϕ ∈ Fm

and k ∈ {0, 1, 2}, are examples of external formulas).

Definition 2.1. Bochvar external logic B
e is the logic induced by the matrix 〈WKe, {1}〉.

In words, B
e is the logic with the only distinguished value 1.1 B

e is a linguistic
expansion of Bochvar logic B, which is defined by the matrix 〈WK, {1}〉, where WK
is the J

k
-free reduct of WKe. Since B

e is defined by a finite set of finite matrices, it is
a finitary logic, in the sense that Γ 	B

e ϕ entails Δ 	B
e ϕ for some finite Δ ⊆ Γ (the

relation among B
e and other three-valued logics can be found in [12]).

The following technicalities are needed to introduce a Hilbert-style axiomatization
of B

e.

Definition 2.2. An occurrence of a variable x in a formula ϕ is open if it does not fall
under the scope of J

k
, for every k ∈ {0, 1, 2}. A variable x in ϕ is covered if all of its

occurrences are not open, namely if every occurrence of x in ϕ falls under the scope of
J
k
, for some k ∈ {0, 1, 2}.

The intuition behind the notion of external formulas is made precise by the following.

Definition 2.3. A formula ϕ ∈ Fm is called external if all its variables are covered.

1 The different choice (on the same formula algebra) of the truth set {1, 1/2} defines the logic
H0 studied by Segerberg [35].
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A Hilbert-style axiomatization of B
e has been introduced by Finn and Grigolia [17].

In order to present it, let

ϕ ≡ � :=
2∧
i=0

J
i
ϕ ↔ J

i
�,

and α, �, � denote external formulas.
Axioms

(A1) (ϕ ∨ ϕ) ≡ ϕ;
(A2) (ϕ ∨ �) ≡ (� ∨ ϕ);
(A3) ((ϕ ∨ �) ∨ �) ≡ (ϕ ∨ (� ∨ �));
(A4) (ϕ ∧ (� ∨ �) ≡ ((ϕ ∧ �) ∨ (ϕ ∧ �));
(A5) ¬(¬ϕ) ≡ ϕ;
(A6) ¬1 ≡ 0;
(A7) ¬(ϕ ∨ �) ≡ (¬ϕ ∧ ¬�);
(A8) 0 ∨ ϕ ≡ ϕ;
(A9) J2α ≡ α;
(A10) J0α ≡ ¬α;
(A11) J1α ≡ 0;
(A12) J

i
¬ϕ ≡ J2–i ϕ, for any i ∈ {0, 1, 2};

(A13) J
i
ϕ ≡ ¬(J

j
ϕ ∨ J

k
ϕ), with i 
= j 
= k 
= i ;

(A14) (J
i
ϕ ∨ ¬J

i
ϕ) ≡ 1, with i ∈ {0, 1, 2};

(A15) ((J
i
ϕ ∨ J

k
�) ∧ J

i
ϕ) ≡ J

i
ϕ, with i, k ∈ {0, 1, 2};

(A16) (ϕ ∨ J
i
ϕ) ≡ ϕ, with i ∈ {1, 2};

(A17) J0(ϕ ∨ �) ≡ J0ϕ ∧ J0�;
(A18) J2(ϕ ∨ �) ≡ (J2ϕ ∧ J2�) ∨ (J2ϕ ∧ J2¬�) ∨ (J2¬ϕ ∧ J2�);
(A19) α → (� → α);
(A20) (α → (� → �)) → ((α → �) → (α → �));
(A21) α ∧ � → α;
(A22) α ∧ � → � ;
(A23) (α → �) → ((α → �) → (α → � ∧ �));
(A24) α → α ∨ � ;
(A25) � → α ∨ � ;
(A26) (α → �) → ((� → �) → (α ∨ � → �));
(A27) (α → �) → ((α → ¬�) → ¬α);
(A28) α → (¬α → �);
(A29) ¬¬α → α.

Deductive rule
ϕ ϕ → �

[MP]
�

Observe that the axiomatization contains a set of axioms (A19–A29), which, together
with the rule of modus ponens, yields a complete axiomatization for classical logic
(relative to external formulas).

The fact that B
e coincides with the logic induced by the above introduced Hilbert-

style axiomatization has been proved in [6] (Finn and Grigolia [17, theorem 3.4] only
proved a weak completeness theorem for B

e). We will henceforth indicate by (Fm,	B
e )
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both the consequence relation induced by the matrix 〈WKe, {1}〉 and the one induced
by the above Hilbert-style axiomatization.

The logic B
e is algebraizable with the quasivariety of Bochvar algebras (BCA)—

which will be properly introduced in the next section—as its equivalent algebraic
semantics. This means that there exists maps � : Fm → P(Eq), 	 : Eq → P(Fm) from
formulas to sets of equations and from equations to sets of formulas such that

�1, ... , �n 	Be ϕ ⇐⇒ �(�1), ... , �(�n) �BCA �(ϕ)

and

ϕ ≈ � ��BCA �	(ϕ ≈ �).

The above conditions are verified by setting �(ϕ) := {x ≈ 1} and 	(ϕ ≈ �) :=
{ϕ ≡ �} (see [6] for details). Moreover, Bochvar external logic enjoys the (global)
deduction theorem, which we recall here.

Theorem 2.4 (Deduction Theorem). Γ, � 	B
e ϕ if and only if Γ 	B

e J2� → J2ϕ.

§3. Bochvar algebras and Płonka sums. We assume the reader has some familiarity
with universal algebra and abstract algebraic logic (standard references are [3, 10] and
[18], respectively). In what follows, given a class of algebras K, the usual class-operator
symbols I (K), S(K), H (K), P(K), Pu(K) denote the closure of K under isomorphic
copies, subalgebras, homomorphic images, products, and ultraproducts. A class of
similar algebras K is a quasivariety if K = ISPPu(K). It is a variety if is also closed
under homomorphic images or, equivalently, if K = HSP(K).

The class of Bochvar algebras, BCA for short, is introduced by Finn and Grigolia
[17, pp. 233–234] as the algebraic counterpart for B

e.

Definition 3.1. A Bochvar algebra A = 〈A,∨,∧,¬, J0 , J1 , J2 , 0, 1〉 is an algebra of type
〈2, 2, 1, 1, 1, 1, 0, 0〉 satisfying the following identities and quasi-identities:

(1) ϕ ∨ ϕ ≈ ϕ;
(2) ϕ ∨ � ≈ � ∨ ϕ;
(3) (ϕ ∨ �) ∨ 
 ≈ ϕ ∨ (� ∨ 
);
(4) ϕ ∧ (� ∨ 
) ≈ (ϕ ∧ �) ∨ (ϕ ∧ 
);
(5) ¬(¬ϕ) ≈ ϕ;
(6) ¬1 ≈ 0;
(7) ¬(ϕ ∨ �) ≈ ¬ϕ ∧ ¬�;
(8) 0 ∨ ϕ ≈ ϕ;
(9) J2Jkϕ ≈ J

k
ϕ, for every k ∈ {0, 1, 2};

(10) J0Jkϕ ≈ ¬J
k
ϕ, for every k ∈ {0, 1, 2};

(11) J1Jkϕ ≈ 0, for every k ∈ {0, 1, 2};
(12) J

k
(¬ϕ) ≈ J2–kϕ, for every k ∈ {0, 1, 2};

(13) J
i
ϕ ≈ ¬(J

j
ϕ ∨ J

k
ϕ), for i 
= j 
= k 
= i ;

(14) J
k
ϕ ∨ ¬J

k
ϕ ≈ 1, for every k ∈ {0, 1, 2};

(15) (J
i
ϕ ∨ J

k
ϕ) ∧ J

i
ϕ ≈ J

i
ϕ, for i, k ∈ {0, 1, 2};

(16) ϕ ∨ J
k
ϕ ≈ ϕ, for k ∈ {1, 2};

(17) J0(ϕ ∨ �) ≈ J0ϕ ∧ J0�;
(18) J2(ϕ ∨ �) ≈ (J2ϕ ∧ J2�) ∨ (J2ϕ ∧ J2¬�) ∨ (J2¬ϕ ∧ J2�);
(19) J0ϕ ≈ J0� & J1ϕ ≈ J1� & J2ϕ ≈ J2� ⇒ ϕ ≈ �.
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BCA forms a quasivariety which is not a variety [16, 17], and it is generated by WKe,
i.e., BCA = ISP(WKe). This is true in virtue of [13, theorem 3.2.2], upon noticing
that BCA algebraizes the logic B

e, which is defined by the single matrix 〈WKe, {1}〉.
The fact that WKe generates BCA was firstly stated by Finn and Grigolia [16, 17].
Familiar examples of Bochvar algebras can be obtained by appropriately computing
the external functions over a Boolean algebra, as indicates the following example.

Example 3.2. Let A be a (non-trivial ) Boolean algebra. Setting the functions
J
k

: A→ A, with k ∈ {0, 1, 2} as J2 = id , J1 = 0 (the constant function onto 0) and
J0 = ¬, then A = 〈A,∧,∨,¬, 0, 1, J2 , J1 , J0〉 is a Bochvar algebra.

For this reason, by Bn we will safely denote both the n-elements Boolean algebra
and its BCA expansion obtained according to Example 3.2. Since WKe generates BCA,
a quasi-equation holds in WKe if and only if it holds in every A ∈ BCA.

The original quasi-equational basis for BCA, as provided in Definition 3.1, can
be significantly enhanced by reducing the number of axioms and improving their
intelligibility.2 It is known that the operations J0 , J1 can be defined as J2¬ϕ and
¬(J2ϕ ∨ J2¬ϕ), respectively. Thus, Bochvar algebras can be equivalently presented in
the restricted language 〈∨,∧,¬, J2 , 0, 1〉, and this is particularly convenient for our
next goal, namely to provide a new, simpler quasi-equational basis for BCA. This is
accomplished in the next theorem.

Theorem 3.3. The following is a quasi-equational basis for BCA.

(1) ϕ ∨ ϕ ≈ ϕ;
(2) ϕ ∨ � ≈ � ∨ ϕ;
(3) (ϕ ∨ �) ∨ 
 ≈ ϕ ∨ (� ∨ 
);
(4) ϕ ∧ (� ∨ 
) ≈ (ϕ ∧ �) ∨ (ϕ ∧ 
);
(5) ¬(¬ϕ) ≈ ϕ;
(6) ¬1 ≈ 0;
(7) ¬(ϕ ∨ �) ≈ ¬ϕ ∧ ¬�;
(8) 0 ∨ ϕ ≈ ϕ;
(9) J0J2ϕ ≈ ¬J2ϕ;
(10) J2ϕ ≈ ¬(J0ϕ ∨ J1ϕ);
(11) J2ϕ ∨ ¬J2ϕ ≈ 1;
(12) J2(ϕ ∨ �) ≈ (J2ϕ ∧ J2�) ∨ (J2ϕ ∧ J2¬�) ∨ (J2¬ϕ ∧ J2�);
(13) J0ϕ ≈ J0� & J2ϕ ≈ J2� ⇒ ϕ ≈ �,

where J0ϕ ≈ J2¬ϕ and J1ϕ ≈ ¬(J2ϕ ∨ J0ϕ).

The proof of the above Theorem 3.3 requires a significant amount of computations,
which are included in the Appendix. Notice that, although J0 , J1 are definable from
the remaining operations of BCA, a detailed investigation of the semantic properties
of the full language significantly improve the logical and algebraic understanding of
BCA: this is why in several subsequent parts of the paper we will explicitly refer to the
full stock of operations.

We now introduce the variety of involutive bisemilattices, which plays a key role to
understand the structure theory of Bochvar algebras.

2 We thank an anonymous referee for pointing this out.
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Definition 3.4. An involutive bisemilattice is an algebra B = 〈B,∧,∨,¬, 0, 1〉 of type
(2, 2, 1, 0, 0) satisfying:

I1. ϕ ∨ ϕ ≈ ϕ;
I2. ϕ ∨ � ≈ � ∨ ϕ;
I3. ϕ ∨ (� ∨ 
) ≈ (ϕ ∨ �) ∨ 
;
I4. ¬¬ϕ ≈ ϕ;
I5. ϕ ∧ � ≈ ¬(¬ϕ ∨ ¬�);
I6. ϕ ∧ (¬ϕ ∨ �) ≈ ϕ ∧ �;
I7. 0 ∨ ϕ ≈ ϕ;
I8. 1 ≈ ¬0.

The class of involutive bisemilattices forms a variety, which we denote by IBSL.
IBSL is the so-called regularization of the variety of Boolean algebras: this is the
variety satisfying all and only the regular identities that hold in Boolean algebras,
namely those identities where exactly the same variables occur on both sides of the
equality symbol. The variety IBSL is generated by the three element algebra WK,
i.e., IBSL = HSP(WK) (see [9, chap. 2], [7, 29]). It is not a direct consequence of
Definition 3.1 (nor of Theorem 3.3) that the J

k
-free reduct of any Bochvar algebra is an

involutive bisemilattice: indeed Definition 3.1 implies that such reduct is a De Morgan
bisemilattice (the regularization of de Morgan algebras). However, it is immediate to
check that the identity I6 in Definition 3.4 holds in any Bochvar algebra, as it does in
WKe. Although being the variety generated by the matrix that defines B, IBSL is not its
algebraic counterpart, which rather consists of the proper quasivariety generated by
WK. This quasivariety is called single-fixpoint involutive bisemilattices,SIBSL for short,3

as its members are precisely the involutive bisemilattices with at most one fixpoint for
negation, namely those containing at most one element a such that a = ¬a.

The examples of Bochvar algebras we have made so far (WKe and any Boolean
algebra) consist of algebras having an SIBSL-reduct; this is actually true for any
Bochvar algebra.

Proposition 3.5. Every Bochvar algebra has a SIBSL-reduct.

Proof. It suffices to check that every valid SIBSL-quasi-equation is also valid inBCA.
To see this, let � be a quasi-equation in the language of WK. We have that

SIBSL � � ⇐⇒
WK � � ⇐⇒

WKe � � ⇐⇒
BCA � �.

The first equivalence holds because WK generates SIBSL, the second one because WK
is the 〈J0 , J1 , J2〉-free reduct of WKe and the last one because WKe generates BCA.

Clearly, since SIBSL ⊂ IBSL, every Bochvar algebra has an IBSL-reduct. Although
this fact, it is not the case that any (single-fixpoint) involutive bisemilattice can be
turned into a Bochvar algebra: the reasons will be clear in the last part of the section.

3 This quasivariety is firstly investigated in [7], and [26] contains information on its constant-
free formulation.
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The fact that the J
k
-free reduct of every Bochvar algebra is an involutive bisemilattice

(Proposition 3.5) carries to the relevant observation that any such reduct can be
represented as a Płonka sum of Boolean algebras [7]. Płonka sums are general
constructions introduced by the polish mathematician J. Płonka [27, 28, 30] (more
comprehensive expositions are [9, chap. 2], [31, 33])—and now going under his name.
In brief, the construction consists of “summing up” similar algebras, organized into a
semilattice direct system and connected via homomorphisms, into a new algebra. In
more details, the (semilattice direct) system is formed by a family of similar algebras
{Ai}i∈I with disjoint universes, such that the index set I forms a lower-bounded
semilattice (I,∨, i0)—we denote by ≤ the induced partial order—and, moreover, is
made of a family {pij}i≤j of homomorphisms pij : Ai → Aj , defined from the algebra
Ai to the algebra Aj , whenever i ≤ j, for i, j ∈ I . Such homomorphisms satisfy a
further compatibility property: pii is the identity, for every i ∈ I and pjk ◦ pij = pik ,
for every i ≤ j ≤ k.

Given a semilattice direct system of algebras 〈{Ai}i∈I , (I,∨, i0), {pij}i≤j〉, the
Płonka sum over it is the new algebra A = Pł(Ai)i∈I (of the same similarity type
of the algebras {Ai}i∈I ) whose universe is the union A =

⋃
i∈I
Ai and whose generic

n-ary operation g is defined as

gA(a1, ... , an) := gAk (pi1k(a1), ... pink(an)), (1)

where k = i1 ∨ ··· ∨ in and a1 ∈ Ai1 , ... , an ∈ Ain . If the similarity type contains any
constant operation e, then eA = eAi0 . The algebras {Ai}i∈I are called the fibers
of the Płonka sum. A fiber Ai is trivial if its universe is a singleton. As already
stated above, an element a is a fixpoint when a = ¬a. Equivalently, using the
Płonka sum representation, a fixpoint can be understood as the universe of a trivial
fiber.

With this terminology at hand, a remarkable result states that any member of
the variety IBSL of involutive bisemilattices is isomorphic to the Płonka sum over
a semilattice direct system of Boolean algebras (see [7, 9]). In a Płonka sum of Boolean
algebras A = Pł(Ai)i∈I , a key role is played by the absorption function ϕ ∧ (ϕ ∨ �), in
the following sense. Given a, b ∈ A, it is possible to check that a, b ∈ Ai for some i ∈ I
if and only if a ∧ (a ∨ b) = a and b ∧ (b ∨ a) = b. Moreover, if a ∈ Ai and i ≤ j,
it holds pij(a) = a ∧ (a ∨ b), for any b ∈ Aj . In the light of the above observations,
given a Bochvar algebra A we will denote by Pł(Ai)i∈I the Płonka decomposition of
its IBSL-reduct.

It shall be clear to the reader that a Bochvar algebra can not be represented as a
Płonka sum (of some class of algebras) in the usual sense (recalled above). The reason
is that the operations J

k
, for any k ∈ {0, 1, 2}, are not computed according to condition

(1). Indeed, if Pł(Ai)i∈I is a Płonka sum and a ∈ Ai , Axiom (11) entails that Jka ∈ Ai0
(with i0 the least element of the index set I), while condition (1) requires that Jka ∈ Ai .
Nonetheless, the fact that any Bochvar algebra has an IBSL-reduct (Proposition 3)
suggests that Płonka sums are good candidates to provide a representation theorem.
Indeed we will rely on the Płonka sum representation of the IBSL-reduct of a Bochvar
algebra to “reconstruct” the additional operations J

k
and provide a (unique) Płonka

sum decomposition for any Bochvar algebra. We begin by studying the behavior of the
maps J

k
with respect to the IBSL-reduct of a Bochvar algebra.
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Lemma 3.6. Let A be a (non-trivial ) Bochvar algebra and Pł(Ai)i∈I be the Płonka
decomposition of the IBSL-reduct of A, having i0 as the least element in I. Then:

(1) J
Ai0
1 is the constant map onto 0;

(2) J
Ai0
2 = id ;

(3) J
Ai0
0 a = ¬a, for any a ∈ Ai0 .

Proof. It suffices to notice that (1) holds if and only if

BCA � ϕ ∧ 0 ≈ 0 ⇒ J1ϕ ≈ 0

and this quasi-equation clearly holds in WKe. The same applies to (2), (3) with respect
to the quasi-equations ϕ ∧ 0 ≈ 0 ⇒ J2ϕ ≈ ϕ, ϕ ∧ 0 ≈ 0 ⇒ J1ϕ ≈ ¬ϕ.

Observe that, when one takes into account the whole algebra A, J1 in general does
not coincide with the constant function 0, as in WKe it holds J1

1/2 = 1.
The next result summarizes the key features of the operation J1 .

Lemma 3.7. The following hold for every A ∈ BCA (with Pł(Ai)i∈I the Płonka
decomposition of its IBSL-reduct).

(1) if a, b ∈ Ai , for some i ∈ I , then J1a = J1b;
(2) if a ∈ Ai0 then J1a = 0;
(3) if a = ¬a then J1a = 1;
(4) pi0i(J1a) = a ∧ ¬a, for every a ∈ Ai and i ∈ I .

Proof. (1). For every a, b ∈ Ai , a ∧ (a ∨ b) = a and b ∧ (b ∨ a) = a. Since

WKe � ϕ ∧ (ϕ ∨ �) ≈ ϕ & � ∧ (� ∨ ϕ) ≈ � ⇒ J1ϕ ≈ J1�,

it follows J1a = J1b.
(2). Follows from (1) in Lemma 3.6.
(3). Holds because WKe � ϕ ≈ ¬ϕ ⇒ J1ϕ ≈ 1.
(4). For a ∈ Ai , it holds pi0i(J1a) = J1a ∧ (J1a ∨ a) and observe that

WKe � J1ϕ ∧ (J1ϕ ∨ ϕ) = ϕ ∧ ¬ϕ,

so pi0i(J1a) = J1a ∧ (J1a ∨ a) = a ∧ ¬a.

Remark 3.8. It follows from Lemma 3.7 that, for every a, b ∈ Ai ( for some i ∈ I ),
i.e., a, b are elements in the same fiber of the Płonka sum, J1a = J1b, thus, in particular,
J1(a ∨ b) = J1a ∨ J1b = J1a ∧ J1b = J1(a ∧ b).

As a notational convention, let us denote by 1i and 0i the top and the bottom
elements, respectively, of a generic fiber Ai in a Płonka sum of Boolean algebras.

Lemma 3.9. Let A be a Bochvar algebra with Pł(Ai)i∈I the Płonka decomposition of
its IBSL-reduct. Then:

(1) Pł(Ai)i∈I has surjective homomorphisms;
(2) for every i 
= i0, pi0i is not injective;
(3) for everya ∈ A and every i ∈ I (witha ∈ Ai), J2a ∈ p–1

i0i
(a) and J0a ∈ p–1

i0i
(¬a);

(4) for every a, b ∈ Ai , J2(a ∨ b) = J2a ∨ J2b.
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Proof. Clearly WKe � J2ϕ ∧ (J2ϕ ∨ ϕ) ≈ ϕ, and WKe � J0ϕ ∧ (J0ϕ ∨ ϕ) ≈ ¬ϕ,
so, for a ∈ Ai , pi0i(J2a) = J2a ∧ (J2a ∨ a) = a and pi0i(J0a) = ¬a. This proves
(3) and that pi0i is surjective, for every i ∈ I . Let now i ≤ j. Since pi0j = pij ◦
pi0i is surjective, also pij is surjective. This shows that Pł(Ai)i∈I has surjective
homomorphisms (1). (4) holds as it is equivalent to the quasi-equation

ϕ ∧ (ϕ ∨ �) ≈ ϕ & � ∧ (� ∨ ϕ) ≈ � ⇒ J2(ϕ ∨ �) ≈ J2ϕ ∨ J2�,

which is true in WKe.
(2) Suppose, by contradiction, that there is j ∈ I such that j 
= i0 and pi0j is an

injective homomorphism. Thus, by Lemma 3.7 and the fact that J2(ϕ ∧ ¬ϕ) ≈ 0 is
true in WKe, it holds J10j = 0 and J20j = 0. Moreover, by (12), J00j = 1, hence
J
i
0 = J

i
0j , for every i ∈ {0, 1, 2}. Therefore, by the quasi-equation (13), 0 = 0j , a

contradiction.

Remark 3.10. It follows from Lemma 3.9 that, for any i ∈ I ,pi0i ◦ JAi
2

= idAi , namely
that J2 (restricted on Ai) is the right inverse of the surjective homomorphism pi0i .

Remark 3.11. Note that, in general, it does not hold that J2(ϕ ∨ �) ≈ J2ϕ ∨ J2� (the
identity is falsified in WKe).

Recall that, for any non-trivial Boolean algebra A = 〈A,∧,∨,¬, 0, 1〉 and any a ∈ A,
one can turn the interval [0, a] = {x ∈ A | x ≤ a} into a Boolean algebra [0, a] =
〈[0, a],∧,∨,∗ , 0, a〉, where x∗ = ¬x ∧ a. We will refer to such an algebra as an interval
Boolean algebra. In the following result we show that any Boolean algebra in the Płonka
sum representation of the IBSL-reduct of a Bochvar algebra is isomorphic to a specific
interval Boolean algebra in the lowest fiber.

Proposition 3.12. Let A be a Bochvar algebra with Pł(Ai)i∈I the Płonka decomposi-
tion of its IBSL-reduct. Then, for every i ∈ I , J2 : Ai → [0,�] is an isomorphism onto the
interval Boolean algebra [0,�] = 〈[0,�],∧,∨,∗ , 0,�〉, where � = J21i , for every i 
= i0.

Proof. WKe |= J2(ϕ ∧ �) ≈ J2ϕ ∧ J2�, thus J2 preserves the ∧ operation. By
Lemma 3.9(4) it also preserves ∨ when the arguments belong to the same fiber.
This implies that J2(Ai) is a lattice. To see that is bounded, recall that J20i =
0 (with 0i the bottom element of Ai); moreover, let b ∈ J2(Ai), thus b = J2a,
for some a ∈ Ai , then J2a ∨ J21i = J2(a ∨ 1i) = J21i , i.e., J2a ≤ J21i thus � =
J21i is the top element of the lattice J2(Ai). Finally, observe that, for any
a ∈ Ai , J2¬a = J0a = ¬J2a ∧ ¬J1a = ¬J2a ∧ (J2a ∨ J0a) = ¬J2a ∧ (J2a ∨ J2¬a) =
¬J2a ∧ (J2(a ∨ ¬a)) = ¬J2a ∧ J21i = (J2a)∗, i.e., J2 preserves also the complemen-
tation of the interval algebra [0,�]. We have so shown that J2 is a boolean
homomorphism. Moreover, J2 is injective as pi0i is its left-inverse (see Remark
3.10). To see that J2 is also surjective (onto [0,�]), let a ∈ [0,�], i.e., a ≤ J21i . By
Lemma 3.6, J2a = a ≤ J21i hence a = J2a ∧ J21i = J2(a ∧ 1i) = J2(pi0i(a) ∧ 1i) =
J2(pi0i(a)). This concludes the proof, because pi0i(a) ∈ Ai .

Remark 3.13. Since pi0i is a surjective (but not injective) homomorphism, for any
i ∈ I (and i 
= i0), then Ai0/Ker(pi0i) ∼= Ai (with Ker(pi0i 
= ΔAi0 for i 
= i0), via the
isomorphism f mapping [x]Ker(pi0i )

�→ pi0i(x). The proof of Proposition 3.12 shows that
J2 is in fact the inverse of f.
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Combining Proposition 3.12 and Remark 3.13 we get that, for any i ∈ I [0,�] ∼=
Ai0/Ker(pi0i). In the following we use the interval characterization proved in
Proposition 3.12 to establish some properties that will be used in the subsequent
sections.

Lemma 3.14. Let A be a Bochvar algebra with Pł(Ai)i∈I the Płonka decomposition of
its IBSL-reduct. Then:

(1) If i < j, then J21j < J21i . In particular, J2 (Aj) = [0, J2 1j ] ⊂ [0, J2 1i ] = J2(Ai).
(2) J2(pij(a)) ≤ J2a, for every i ≤ j and a ∈ Ai .

Proof. (1). If 1i < 1j then 1i ∧ 1j = 1j 
= 1i . The following two quasi-equations
hold in WKe:

ϕ ∨ ¬ϕ ≤ � ∨ ¬� ⇒ J2(� ∨ ¬�) ≤ J2(ϕ ∨ ¬ϕ),

J2(ϕ ∨ ¬ϕ) ≈ J2(� ∨ ¬�) ⇒ ϕ ∨ ¬ϕ ≈ � ∨ ¬�.
From the former we have that J21j ≤ J21i and, since 1i 
= 1j , from the latter we
conclude J21j < J21i . This entails J2(Aj) = [0, J2 1j ] ⊂ [0, J2 1i ] = J2(Ai).

(2) is equivalent to the equation J2(ϕ ∧ (ϕ ∨ �)) ≤ J2ϕ, which is true in WKe.

The following result provides necessary conditions for an SIBSL to be the reduct of
a Bochvar algebra.

Theorem 3.15 (Płonka sum decomposition). Let A be a Bochvar algebra withPł(Ai)i∈I
the Płonka sum representation of its IBSL-reduct. Then:

(1) All the homomorphisms {pij}i≤j are surjective and pi0i is not injective for every
i 
= i0.

(2) For every i ∈ I , there exists an element ai ∈ Ai0 such that the restriction pi0i on
[0, ai] is an isomorphism (with inverse J2 ) onto Ai , with ai 
= aj for every i 
= j;
in particular, if i < j then aj < ai .

Moreover, the decomposition is unique up to isomorphism.

Proof. Let A ∈ BCA. By Proposition 3, the J
k
-free reduct (with k ∈ {0, 1, 2}) of A is

a single-fixpoint involutive bisemilattice, thus it is isomorphic to a Płonka sum over a
semilattice direct systems 〈{Ai}i∈I , (I,≤), pij〉 of Boolean algebras (see [7, 9]), whose
homomorphisms are surjective and pi0i is not injective (by Lemma 3.9). Moreover,
for every i ∈ I , J21i is the element in Ai0 such that Ai ∼= [0, J2 1i], by Proposition 3.12
(which also ensures the isomorphisms are given by J2 and pi0i). Lemma 3.14 ensures
that, if i < j then J21j < J21i . Finally, notice that J2(ϕ ∨ ¬ϕ) ≈ J2(� ∨ ¬�) ⇒
ϕ ∨ ¬ϕ ≈ � ∨ ¬� holds in WKe. Therefore, since i 
= j entails 1i 
= 1j , we conclude
ai = J21i 
= J21j = aj .

We now show that the decomposition is unique up to isomorphism, namely
that different choices of the element J2a ∈ p–1

i0i
(a) (for any a ∈ Ai) on isomorphic

IBSL-reducts lead to isomorphic Bochvar algebras. Observe that the decomposition of
the IBSL-reduct of A is unique up to isomorphism (see [7, 9]). So, suppose that A and
B are Bochvar algebras whose IBSL-reducts A′, B′ are isomorphic via an isomorphism
Φ: A′ → B′. We claim that A ∼= B via Φ. To this end, we want to show that Φ preserves
also the operations J

k
, for any k ∈ {0, 1, 2}. Recall from the theory of Płonka sums

that Φ preserves the fibers (details can be found in [5, 8]) in the following sense: for
any fiber Ai in the Płonka sum decomposition of A′, Φ(Ai) ∼= Bϕ(i), where ϕ is the
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isomorphism induced by Φ on the semilattice of indexes and Bϕ(i) is a fiber in the
Płonka sum decomposition of B′. In particular, the following diagram commutes, for
any i ∈ I (with a slight abuse of notation we indicate ϕ(i0) with i0 as it is still a lower
bound in ϕ(I )).

Ai0 Bi0
Φ�Ai0

Φ�Ai
Ai Bϕ(i)

pi0i qi0ϕ(i)

We claim that A ∼= B via Φ. Let a ∈ A; in particular, a ∈ Ai , for some i ∈ I . By Lemma
3.9, JA

2
a ∈ p–1

i0i
(a) and JB

2
Φ(a) ∈ q–1

i0ϕ(i)(Φ(a)), hence, by the commutativity of the

above diagram, the fact that J2 is the isomorphism between Ai and Ai0/Ker(pi0i)
(Remark 3.13) and that Φ�Ai and Φ�Ai0

are isomorphisms) follows that Φ(JA
2
a) =

JB
2

Φ(a). Therefore, we have that Φ is a homomorphism with respect to J2 (and hence
with respect of J1 and J0 , which can be defined in term of J2) and this shows that
A ∼= B, namely the Płonka sum decomposition is unique up to isomorphism.

Remark 3.16. Observe that, as a consequence of Theorem 3.15, the Płonka sum
decomposition of a Bochvar algebra A admits no injective homomorphism (excluding the
identical homomorphisms pii). To see this, suppose pij is injective, for some i < j. Then
pij is an isomorphism, as it is also a surjective map. Observe that aj = J21j < ai = J21i
and pi0i : [0, ai] → Ai is also an isomorphism. Therefore, pi0i(aj) 
= 1i = pi0i(ai) and,
by the injectivity of pij , pij ◦ pi0i(aj) = pi0j(aj) 
= 1j , a contradiction.

We now show that the conditions displayed in the above theorem are also sufficient
to equip any SIBSL with a BCA-structure.

Theorem 3.17. Let A = 〈A,∧,∨,¬, 0, 1〉 be an involutive bisemilattice whose Płonka
sum representation is such that:

(1) all homomorphisms are surjective and pi0i is not injective for every i0 
= i ∈ I ;
(2) for each i ∈ I there exists an element ai ∈ Ai0 such that pi0i : [0, ai ] → Ai is an

isomorphism, with ai 
= aj for i 
= j and, in particular, aj < ai for each i < j.

Define, for every a ∈ Ai and i ∈ I :

• J2(a) = p–1
i0i

(a) ∈ [0, ai ];
• J0a := J2(¬a);
• J1a := ¬(J2a ∨ J2(¬a)).

Then B = 〈A,∧,∨,¬, 0, 1, J2 , J1 , J0〉 is a Bochvar algebra.

Proof. It is immediate to check that assumption (1) implies that A ∈ SIBSL. Since
pi0i : [0, ai ] → Ai is an isomorphism (with inverse p–1

i0i
) the maps J2 , J1 and J0 are well

defined and naturally extend to the whole algebra A. It can be mechanically checked
that B satisfies all the quasi-equations in Definition 3.1.
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The first part of condition (2) in Theorems 3.15 and 3.17 can be replaced by the
assumption that 1/Kerpi0i is a principal filter, for every i ∈ I . Therefore, we obtain the
following.

Corollary 3.18. Let A ∈ SIBSL be with surjective and non-injective homomorphisms.
The following are equivalent:

(1) A is the reduct of a Bochvar algebra;
(2) for each i ∈ I , 1/Kerpi0i is a principal filter, with generator ai ∈ Ai0 . Moreover,

if i 
= j then ai 
= aj and aj < ai for each i < j;
(3) for each i ∈ I there exists an element ai ∈ Ai0 such that pi0i : [0, ai ] → Ai is an

isomorphism. Moreover, if i 
= j then ai 
= aj and aj < ai for each i < j.

Proof. We just show (2) ⇔ (3). Let 1/Kerpi0i be the filter generated by ai , for some
ai ∈ Ai0 . It is routine to check that pi0i : [0, ai ] → Ai is an isomorphism. Conversely,
assume that there is an element ai ∈ Ai0 such that pi0i : [0, ai ] → Ai is an isomorphism.
Suppose, by contradiction, that 1/Kerpi0i is not principal, i.e., there is an element
b ∈ Ai0 such that ai � b and pi0i(b) = 1i . Then c = b ∧ ai is an element in [0, ai ] such
that pi0i(c) = 1i , in contradiction with the fact that pi0i is an isomorphism.

We conclude this section with an example which empathizes the role of condition (2)
in Corollary 3.18 and shows an SIBSL that can not be turned into a Bochvar algebra.

Example 3.19. Let P(Z) be the power set Boolean algebra over the integers. This
algebra is uncountable and atomic, with Z as top element. Consider now the non-principal
ideal I containing all the finite subsets of Z. Observe that P(Z)/I is an atomless Boolean
algebra. Let A be the Płonka sum built over the two fibers P(Z),P(Z)/I and with (the
unique non-trivial ) homomorphism the canonical map p : P(Z) → P(Z)/I . Clearly A
satisfies condition (1) of Theorem 3.17 (the homomorphism p is both surjective and non-
injective hence A ∈ SIBSL). However the filter Z/Kerp (corresponding to the ideal I) is
not principal, as I is not. In the light of condition (2) of Corollary 3.18, A is a SIBSL
which is not the reduct of any Bochvar algebra.

The results included in the subsequent sections will strongly make use of the Płonka
sum decomposition of a Bochvar algebra provided in Theorem 3.15. In the exposition
of many results we will take for granted some of the details introduced in this section.

§4. On quasivarieties of Bochvar algebras. The logic B
e is algebraizable with respect

to the quasivariety of Bochvar algebras and it is well known that there exists a dual
isomorphism between the lattice of extensions of B

e and the lattice of subquasivarieties
of BCA. In this section we characterize such lattices, proving that they consist of
the three-elements chain. In order to do so, we take advantage of the recent results
in [25], therefore applying general properties of passive structurally complete (PSC)
quasivarieties. PSC is a weakened variant of structural completeness (see, among
others, [11, 14, 32, 34]), a notion defined, in its algebraic version, as follows.

Definition 4.1. A quasivariety K is structurally complete (SC ) if, for every quasivari-
ety K′:

K′ � K ⇒ V(K′) � V(K),
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where V(K) = HSP(K) is the variety generated by K. Recall that a quasi-identity ϕ1 ≈
�1 & ...& ϕn ≈ �n ⇒ ϕ ≈ � is passive in a quasivariety K if, for every substitution
h : Fm → Fm, there exists an algebra A ∈ K such that A � h(ϕi) ≈ h(�i) for some
1 ≤ i ≤ n. Put differently, a quasi-identity is passive if it is equivalent to a quasi-
identity whose conclusion is x ≈ y, where x, y are variables that do not appear in the
antecedent (see [1, sec. 4.3]) for details.4 We take the following as a definition of passive
structural completeness (PSC).

Definition 4.2 [38]. A quasivariety K is PSC if every passive quasi-identity over K is
valid in K.

For a quasivariety K, one of the consequences of being PSC amounts to be generated
by a single algebra, i.e., to be singly generated (see [25, sec. 7]). Recall that an algebra A
is a retract of B if there exist two homomorphisms � : A → B and r : B → A such that
r ◦ � is the identity map on A. This forces r to be surjective and � to be injective: we will
call r a retraction. A is a common retract of a quasivariety K if it is a retract of every
non-trivial member of K. We denote by Ret(K,A) = {B ∈ K : A is a retract of B} the
members of K having A as a retract.

The main tool that will be instrumental for our purposes is the following.

Theorem 4.3 [25, theorem 7.11]. Let K be a quasivariety of finite type and A ∈ K a finite
0-generated algebra. Then Ret(K,A) is a maximal PSC subquasivariety of K.5

The following summarizes the properties of the quasivariety BCA with respect to the
above introduced notions.

Proposition 4.4. The following hold:

(i) BCA is not PSC;
(ii) B2 is the 0-generated algebra in BCA;
(iii) Ret(BCA,B2) is a maximal PSC subquasivariety of BCA.

Proof. (i). The quasi-identity

J1ϕ ≈ 1 ⇒ � ≈ 1 (NF)

is passive in BCA. Indeed, for each substitution, the antecedent J1ϕ ≈ 1 is falsified in
every Bochvar algebra containing no trivial algebra in its Płonka sum decomposition.
On the other hand, it is immediate to check that BCA � (NF ).

(ii) Is straightforward, as every Boolean algebra is also a Bochvar algebra (see
Example 3.2), and B2 is the 0-generated Boolean algebra.

(iii) Follows from (ii) and Theorem 4.3.

It is easy to check that, in BCA, (NF ) is equivalent to the quasi-identity

ϕ ≈ ¬ϕ ⇒ � ≈ 
.

Since (NF ) is valid in the quasivarietyRet(BCA,B2), it demands that the underlying
involutive bisemilattice of any of its non-trivial members lacks trivial fibers. A stronger
fact is established in the following lemma.

4 Passive rules were originally introduced under the name of overflow rules by Wroński in [38].
5 K′ is a maximal PSC subquasivariety of K when for every PSC quasivariety K′′, if

K′ ⊆ K′′ ⊆ K then K′′ = K′.
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Lemma 4.5. Let A ∈ BCA be non-trivial. Then A ∈ Ret(BCA,B2) if and only if
A � (NF ).

Proof. (⇒). By Proposition 4.4, Ret(BCA,B2) is a (maximal) PSC quasivariety
and (NF ) is a passive quasi-identity, therefore Ret(BCA,B2) � (NF ). (⇐). Suppose
A � (NF ), therefore its IBSL-reduct lacks trivial fibers. If A is a Boolean algebra, the
conclusion immediately follows. Differently, |I | ≥ 2. Let i > i0 and consider the set
X = {a ∈ Ai0 | pi0i(a) = 1i}; let F0 be an ultrafilter on A0 containing X (it exists since
the filter generated by X is proper, as the Płonka decomposition lacks trivial algebras).
Since all the homomorphisms between fibers of A are surjective and A lacks trivial
fibers, Fj = pi0j [F0] is an ultrafilter on Aj , for each j ∈ I (this readily follows from

the fact that F0 is an ultrafilter extending X). Set F =
⋃
k∈I
pi0k[F0] and let r : A → B2

be defined, for each a ∈ A, as

r(a) =

{
1, if a ∈ F,
0, otherwise.

We want to show that r is a retraction. We show that r is compatible with ∧, ¬
and J2 . Let a ∈ Ai , b ∈ Aj and set k = i ∨ j: we have r(a ∧ b) = 1 ⇐⇒ a ∧ b ∈
Fk ⇐⇒ pik(a), pjk(b) ∈ Fk . Suppose, by contradiction, a /∈ Fi . Then p–1

i0i
(a) /∈ F0

which entails pi0k(p
–1
i0i

(a)) /∈ Fk . However, by the composition property of Płonka
homomorphisms, pi0k(p

–1
i0i

(a)) = pik(pi0i(p
–1
i0i

(a)) = pik(a) ∈ Fk , a contradiction. So
a ∈ Fi . The same argument applies to b, and we conclude b ∈ Fj . Therefore r(a) ∧
r(b) = 1 = r(a ∧ b).

Let r(a) = 1, for some a ∈ A, then a ∈ Fj , for some j ∈ I and, since Fj is an
ultrafilter on Aj , ¬a 
∈ Fj , thus r(¬a) = 0 = ¬r(a).

Finally, we show the compatibility of r with J2 . For any a ∈ Aj , we have
r(J2a) = 1 ⇐⇒ J2a ∈ F0 ⇐⇒ pi0i(J2a) = a ∈ Fi ⇐⇒ J2r(a) = 1. So r is a sur-
jective homomorphism. Setting � : B2 → A such that �(1) = 1, �(0) = 0, we have that r
is a retraction. This shows B2 is a retract of A, so A ∈ Ret(BCA,B2).

Corollary 4.6. Ret(BCA,B2) is the quasivariety axiomatized by adding (NF ) to the
quasi-equational theory of BCA. Moreover, a Bochvar algebra belongs to Ret(BCA,B2)
if and only if its Płonka sum decomposition lacks trivial fibers.

In analogy with the terminology introduced in [26], we call the quasivariety
Ret(BCA,B2): nonparaconsistent Bochvar algebras, NBCA in brief. Since NBCA is
a (maximal) PSC subquasivariety of BCA, we know that NBCA, as a quasivariety,
is generated by a single algebra A, namely NBCA = ISPPu(A) = ISP(A) (see [25,
theorem 4.3]). We now introduce an example of a Bochvar algebra which will play an
important role.

Example 4.7 (B4 ⊕ B2). Let B4 ⊕ B2 denote the involutive bisemilattice whose Płonka
sum consists of a system made of the four-element Boolean algebra B4, the two-element
one B2, the two-element lattice as index set as in the following diagram (where the arrows
stand for the homomorphism pi0i : B4 → B2).
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�

1 ⊥

a ¬a

0

It follows from the structure theory developed in Section 3 that the unique way to turn
B4 ⊕ B2 into a Bochvar algebra is by defining J2� = a, J2 ⊥= 0, J1� = J1 ⊥= ¬a and
J0� = 0, J0 ⊥= a (recall that J2 is the identity on B4, J1 is the constant onto 0 and J0

is negation). With a slight abuse of notation we will indicate this unique Bochvar algebra
by B4 ⊕ B2, as its IBSL-reduct.

Theorem 4.8. The quasivariety NBCA is generated by B4 ⊕ B2.

Proof. We show that NBCA = ISP(B4 ⊕ B2). The right to left inclusion is obvious,
as subalgebras of direct products of an involutive bisemilattice without trivial fibers
preserve the property of lacking trivial fibers.

For the converse, the proof is an adaption of [26, theorem 7], and we only sketch
its main ingredients (leaving the details to the reader). Preliminarily recall that for
quasivarieties K,K′, K ⊆ K′ if and only if every finitely generated member of K belongs
to K′. Moreover, for algebras A,B, A ∈ ISP(B) if and only if that there exists a family
H ⊆ Hom(A,B) such that

⋂
h∈H
Ker(h) = ΔA. It is possible to show that, for a finitely

generated A ∈ NBCA, there exists a family of homomorphismsH ⊆ Hom(A,B4 ⊕ B2)
such that

⋂
h∈H
Ker(h) = ΔA. Indeed, B4 ⊕ B2

∼= WKe × B2 and WKe generates BCA, so

there existsH ⊆ Hom(A,WK) such that
⋂
h∈H
Ker(h) = ΔA. Moreover, by Lemma 4.5,

B2 is a retract of A, so there exists a retraction r : A → B2. Now, the familyH × {r} is
a family of homomorphisms from A to B4 ⊕ B2, defined for each h ∈ H and a ∈ A by
a �→ 〈h(a), g(a)〉. It is easy to check that

⋂
h∈H
Ker〈h, g〉 = ΔA, so A ∈ ISP(B4 ⊕ B2),

as desired.

Upon noticing that every non-trivial NBCA lacks trivial subalgebras (this amounts
to say that NBCA is Kollár), [25, corollary 7.8] ensures that B2 is the unique relatively
simple member of NBCA, namely it is the unique algebra in the quasivariety whose
lattice of relative congruences is a two-element chain. Moreover, B4 ⊕ B2 is a relatively
subdirectly irreducible member of NBCA which is therefore not simple. In other words,
NBCA is not relatively semisimple, unlike BCA.

Observe that any Bochvar algebra satisfies the absorption law ϕ ≈ ϕ ∧ (ϕ ∨ �) if
and only if its involutive bisemilattice reduct is a Boolean algebra. We call JBA the
quasivariety axiomatized by adding the absorption law to the quasi-equational theory
of BCA. It is immediate to verify that JBA and BA are term equivalent by interpreting
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the operation J2 as the identity map. The next theorem characterizes the structure
of the lattice of non-trivial subquasivarieties of BCA, proving that it consists of the
following three-elements chain.

BCA

NBCA

JBA

Theorem 4.9. The only non-trivial subquasivarieties of BCA are NBCA and JBA. They
form a three element chain JBA ⊂ NBCA ⊂ BCA.

Proof. We already proved JBA ⊂ NBCA ⊂ BCA. We only have to show that these
are the only non-trivial ones. Suppose that K ⊆ BCA and K � NBCA. Therefore there
exists A ∈ K and A /∈ NBCA. This entails A ∈ BCA and A has a unique trivial fiber
with universe {a}. Clearly g : WKe → A mapping 1WKe → 1A, 0WKe → 0A, 1/2 → a is
an embedding. Therefore WKe ∈ S(A), whence WKe ∈ K. Since WKe generates BCA,
K = BCA.

Suppose now K ⊆ NBCA and K � JBA and let A ∈ K,A /∈ JBA. This entails that
the Płonka sum decomposition of A has at least two fibers Ai0 ,Ai(i0 < i) and no fiber
is trivial. Moreover, by Lemma 3.9, Ai0 has cardinality ≥ 4 (for otherwise Ai would be
trivial). Let h : B4 ⊕ B2 → A mapping 1B4⊕B2 → 1A, 0B4⊕B2 → 0A, 1B2 → 1i , 0B2 → 0i ,
a → J2(1i),¬a → ¬J21i . Clearly h is an embedding, so B4 ⊕ B2 ∈ S(A), which entails
K = NBCA.

Corollary 4.10. The quasivariety NBCA is structurally complete.

Proof. The only proper subquasivariety of NBCA is the variety JBA, so V(JBA) =
JBA � NBCA � V(NBCA).

Moreover, from the fact that BCA is not SC we can infer the following.

Corollary 4.11. V(NBCA) = V(BCA).

Let now switch our attention to the logical setting, relying on the bridge results
connecting an algebraizable logic (and its extensions) with its algebraic counterpart(s).
Let NB

e be the logic obtained by adding to B
e the rule

J1ϕ 	 �. (EFJ)

This logic is a proper extension of B
e, as (EFJ ) is the logical pre-image of (NF )

via the transformer formula-equations transformer � and (NF ) is not valid in B
e (a

counterexample is easily found in WKe). In the light of Theorem 4.9 we obtain the
following.

Corollary 4.12. NB
e is complete with respect to the matrix 〈B4 ⊕ B2, {1}〉.

Moreover, the only non-trivial extensions of B
e are NB

e and CL.
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In a logical perspective, the notions of PSC and SC have been investigated in several
contributions, such as [2, 32, 34, 38]. For a logic 	, being SC amounts to the fact that
each admissible rule is derivable in 	. In other words, 	 is SC if for every rule (R) of
the form 〈Γ, �〉:

(	 ϕ ⇐⇒ 	R ϕ) ⇒ Γ 	 �,
where 	R is the extension of 	 obtained by adding (R) to 	. Clearly, the converse
implication in the above display is always true. A passive rule is of the form 〈Γ, y〉,
where no member of Γ contains occurrences of y, namely y /∈ Var(Γ). Accordingly,
we say that a logic 	 is PSC if every passive, admissible rule is derivable.6

The following corollary emphasizes the logical meaning of the previous results on
the subquasivarieties of BCA.

Corollary 4.13. B
e is not PSC, while NB

e is SC.

Proof. In order to prove the first statement we show (EFJ ) is passive, admissible
and non-derivable in B

e. That (EFJ ) is passive and non-derivable in B
e is clear. Let

now ϕ be a theorem of NB
e, and remind it is the logic obtained adding (EFJ ) to B

e.
Suppose ϕ is not a theorem of B

e. Then BCA 
� ϕ ≈ 1, and NBCA � ϕ ≈ 1. However,
this contradicts Corollary 4.11. So, B

e is not PSC.
That NB

e is SC follows straightforwardly upon noticing it has CL as unique proper
(non-trivial) extension, and that ϕ ∨ ¬ϕ is not a theorem of NB

e.

§5. Amalgamation in quasivarieties of Bochvar algebras. In the context of alge-
braizable logics, several logical properties can be established by means of the so-called
bridge theorems, whose general form is

a logic L has the property P ⇐⇒ K has the property Q,

where the quasivariety K is the equivalent algebraic semantics of L. A valid instance
of the above equivalence can be obtained by replacing P with “Deduction theorem”
and Q with “Equationally definable principal relative congruences” (see [13, theorem
Q.9.3]).

In the light of the results of Section 4, BCA and NBCA are the only interesting
quasivarieties of Bochvar algebras. In this section we show that they enjoy the
amalgamation property (AP) or, equivalently, that their associated logics enjoy the
Craig interpolation property. The strategy for proving (AP) for BCA consists in
providing a sufficient condition implying (AP), established in [24, theorem 9] for
varieties, and that naturally extends to quasivarieties (Theorem 5.2).

Recall that a V-formation (see Figure 2) is a 5-tuple (A,B,C, i, j) such that A,B,C
are similar algebras, and i : A → B, j : A → C are embeddings. A class K of similar
algebras is said to have the amalgamation property if for every V-formation with
A,B,C ∈ K there exists an algebra D ∈ K and embeddings h : B→ D, k : C→ D such
that k ◦ j = h ◦ i . In such a case, we also say that (D, h, k) is an amalgam of the
V-formation (A,B,C, i, j).

The following lemma is originally due to Grätzer [20] (it can be also found in [24]),
while the subsequent theorem is the obvious adaptation to quasivarieties of a theorem

6 In the context of finitary algebraizable logics, the fact that the logical definition of PSC is
the “right” translation of the algebraic one can be inferred by comparing [25, corollary 3.3]
and [32, theorem 7.5].
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Figure 2. A generic amalgamation schema.

by Metcalfe, Montagna, and Tsinakis [24, theorem 9]. We insert the proofs for the
completeness of the exposition.

Lemma 5.1 [20]. Let Q be a quasivariety. The following are equivalent:

(1) Q has (AP);
(2) for every V-formation (A,B,C, i, j) and elements x 
= y ∈ B (x 
= y ∈ C ,

respectively) there exists Dxy ∈ Q and homomorphisms hxy : B → Dxy and
kxy : C → Dxy such that hxy(x) 
= hxy(y) (kxy(x) 
= kxy(y), respectively) and
h ◦ i = k ◦ j.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1). Let (A,B,C, i, j) be a V -formation in Q. Define D =

∏
x �=y∈B

Dxy . By

assumption, for every x 
= y ∈ B there exist hxy : B → Dxy and kxy : C → Dxy s. t.
h(x) 
= h(y) and h ◦ i = k ◦ j. By the universal property of the product, D and the
homomorphisms h and k, where �xy ◦ h = hxy and �xy ◦ k = kxy (with � : D → Dxy
the projection) is the amalgam.

The following provides a sufficient condition for a quasivariety to have the (AP) and
it reduces somehow the search for an amalgam to a subclass of a quasivariety. As a
notational convention, by CoA

K we denote the lattice of K-congruences on an algebra
A, namely the congruences 
 on A such that A/
 ∈ K. Let {
i}i∈I be a family of
K-congruences on an algebra A ∈ K. We say that A is subdirectly irreducible relative
to K, or just relatively subdirectly irreducible, when

∧
i∈I 
i = ΔA entails 
i = ΔA for

some i ∈ I . Moreover, given a quasivarietyK, byKRSI we indicate the class of relatively
subdirectly irreducible members of K. If K is a variety, we simply write KSI .

Theorem 5.2 (essentially [24]). Let K be a subclass of a quasivariety Q satisfying the
following properties:

(1) QRSI ⊆ K;
(2) K is closed under I and S;
(3) for every algebras A,B ∈ Q such that A ≤ B and every 
 ∈ CoA

K such that A/
 ∈ K
there exists Φ ∈ CoB

K extending 
 with respect to K, i.e., B/Φ ∈ K and Φ ∩ A2 = 
;
(4) every V-formation of algebras in K has an amalgam in Q.

Then Q has the (AP).

Proof. We show that Q satisfies the condition (2) in Lemma 5.1. Let (A,B,C, i, j)
be a V -formation in Q and x 
= y ∈ B . By Zorn lemma, it is possible to find a relative
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congruence Ψ of B maximal with respect to the property (x, y) 
∈ Ψ. Let 
 = Ψ ∩ A2,
and define the map f : A/
 → B/Ψ, [a]
 �→ f([a]
) := [a]Ψ. Observe that f is an
injective homomorphism. Indeed, for [a]
 
= [b]
 , i.e., (a, b) 
∈ 
, hence (a, b) 
∈ Ψ
(Ψ is maximal with respect to this property), i.e., [a]Ψ 
= [b]Ψ. B/Ψ ∈ QRSI (since
Ψ is completely meet-irreducible), thus, by hypothesis (1), B/Ψ ∈ K; A/
 ≤ B/Ψ,
hence A/
 ∈ K (by hyp. (2)). Since A ≤ C (upon identifying A with j(A)) and

 ∈ CoA

K, by hyp. (3), there exists Φ ∈ CoC
K s.t. Φ ∩ A2 = 
 and C/Φ ∈ K. The map

g : A/
 → C/Φ defined as [a]
 �→ g([a]
) := [a]Φ is an injective homomorphism.
Therefore (A/
,B/Ψ,C/Φ, f, g) is a V -formation of algebras in K. By hyp. (4),
there exists an amalgam (h, k,D) in Q. Define the homomorphisms h′ : B → D
and k′ : C → D as h′ = h ◦ �Ψ and k′ = k ◦ �Φ (�Ψ and �Φ the projections onto
the quotients B/Ψ and C/Φ, resp.). Observe that h′(x) 
= h′(y) and h′ ◦ i =
k′ ◦ j. Indeed, h′(x) = h(�Ψ(x)) = h([x]Ψ) 
= h([y]Ψ) = h(�Ψ(y)) = h′(y) (where
we have used the injectivity of h and the fact that [x]Ψ 
= [y]Ψ). As for the
latter, let a ∈ A, h′ ◦ i(a) = h(�Ψ(i(a))) = h([i(a)]Ψ) = k([j(a)]Φ) = k(�Φ(j(a))) =
k′(j(a)) = k′ ◦ j(a) (where we have used the fact that (D, f, g) is an amalgam).
Finally, by Lemma 5.1, we conclude that Q has the (AP).

Remark 5.3. B
e is a finitary logic with a Deduction Theorem (Theorem 2.4): this is a

stronger property than the local deduction, which implies that the logic enjoys the filter
extension property (see [13, theorem 2.3.5]). This translates into the relative congruence
extension property (by the algebraizability of B

e, the lattice of logical filters is dually
isomorphic to that of the relative congruences).

Theorem 5.4. BCA has the Amalgamation Property (AP).

Proof. We show that K = BCARSI = {WKe ,B2} satisfies the assumptions (1)–(4) of
Theorem 5.2. (1), (2) and (4) are immediate. As concerns (3): suppose that A,B ∈ BCA
with A ≤ B, 
 ∈ CoA

K and A/
 ∈ K. B decomposes into a Płonka sum Pł(Bi)i∈I and,
since A ≤ B, and S(Pł(Bi)) ⊆ Pł(S(Bi)), then A decomposes into a Płonka sum Pł(Aj)
of subalgebras of Bi , over a semilattice of indexes J ≤ I , thus, in particular, i0 ∈ J .
Observe that, for every i ∈ I , 
i = 
 ∩ A2

i is a (Boolean) congruence on Ai . The
hypothesis that A/
 ∈ K implies that 
i0 is a maximal congruence on Ai0 (a congruence
corresponding to a maximal ideal). Since BCA has the relative congruence extension
property and A ≤ B then there exists a relative congruence Ψ on B extending 

(Ψ ∩ A2 = 
). Ψi0 = Ψ ∩ Bi0 is a (Boolean) congruence on Bi0 ; let Φi0 (one of) its
maximal extension on Bi0 and Φ the congruence on B defined as follows: (x, y) ∈ Φ
iff (J2x, J2y) ∈ Φi0 . It is immediate to check that Φ ∈ CoB

K and B/Φ ∈ K. Finally, it
also holds that Φ ∩ A2 = 
: 
 ⊆ Φ ∩ A2 follows by construction. On the other hand,
let a, b ∈ A (with a ∈ Ai and b ∈ Bj) and (a, b) ∈ Φ, i.e., (J2a, J2b) ∈ Φi0 , hence
(J2a, J2b) ∈ 
i0 (by construction), thus J2a, J2b ∈ [1]
 or J2a, J2b ∈ [0]
 . Suppose
J2a, J2b ∈ [1]
 (the other case is analogous), therefore a = pi0i(J2a) ∈ [1i ]
 and
b = pi0j(J2b) ∈ [1j ]
 . The assumption that A/
 ∈ K implies that [1i ]
 = [1j ]
 , from
which (a, b) ∈ 
.

We conclude this section by proving that also the quasivariety NBCA has the (AP).
Before proceeding further, it is worth noticing that we cannot apply the same strategy
used in the case of BCA. This is a consequence of the following remark, which also
proves that the logic NBe does not have a local deduction theorem.
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Remark 5.5. Observe that NBCARSI ⊆ IS(B4 ⊕ B2), because ISP(B4 ⊕ B2) =
IPSS(B4 ⊕ B2). So, the only relatively subdirectly irreducible members of NBCA are
B4 ⊕ B2 and B2. The classK = {B4 ⊕ B2,B2} does not satisfy condition (3) of Theorem
5.2, consider the algebra B4 ⊕ B2 depicted in 4.7, where J1(⊥) = ¬a. Observe that
B4 ≤ B4 ⊕ B2 and consider 
 = CgB4

NBCA(1,¬a). Clearly B4/
 ∼= B2 but, for eachNBCA-
congruence Φ on B4 ⊕ B2, if (¬a, 1) ∈ Φ then Φ = ∇ 
= 
 ∩ B2

4. This shows that NBCA
fails the relative congruence extension property or, equivalently, that NBe fails to have a
local deduction theorem.

Nonetheless, (AP) holds for NBCA, as shown in the following.

Theorem 5.6. NBCA has the amalgamation property.

Proof. Let (A,B,C, f, g) be a V -formation in NBCA. By Theorem 5.4, there exists
an amalgam (h, k,D) with D ∈ BCA. If D has no trivial fibers, then (h, k,D) is also
an amalgam in NBCA. Otherwise, let u ∈ I be the index of the trivial fiber Du with
universe {u}, where I is the underlying semilattice of D and homomorphisms pij for
every i ≤ j. Observe that k(b) 
= u and h(c) 
= u, for each b ∈ B , c ∈ C . Consider
an ultrafilter F0 over Di0 (the lowest fiber in D) and Fi = pi0i [F0], for each i0 ≤ i and

set F =
⋃
i<u

Fi . Each Fi is an ultrafilter over the algebra Di (since homomorphisms

are surjective). Consider the algebra D′ = D × B2, which shares with D the semilattice
structure I and whose homomorphisms are denoted by qij for i ≤ j. Observe that this
algebra does not contain trivial fibers as u is the top element of I and D′

u is the two-
elements Boolean algebra with universe {〈u,�〉, 〈u,⊥〉}. This entails that D′ ∈ NBCA.
Define the map k′ : B → D′ such that, for any b ∈ B :

k′(b) =

{
〈k(b),�〉, if k(b) ∈ F,
〈k(b),⊥〉, otherwise.

Similarly, consider h′ : C → D′ defined by the same rule when applied to elements in C.
We show that k′ is an embedding. Clearly the map in injective, as k is. It is also clear
that k′ preserves the Boolean operations. Moreover, for b ∈ B ,

k′(J2b) = 〈k(J2b),�〉 ⇐⇒
k(J2b) = J2k(b) ∈ F ⇐⇒

k(b) ∈ F ⇐⇒
J2k

′(b) = J2〈(k(b),�〉 = 〈J2k(b), J2�〉 = 〈k(J2b),�〉,

where the second equivalence is justified because, for any i ∈ I and di ∈ Di ,
J2di ∈ p–1

0i (di). This, together with an analogous argument applied to h′, show
that k′, h′ are embeddings. In order to conclude the proof, recall that for a ∈ A,
k ◦ f(a) = h ◦ g(a), so the following equivalences hold:

k′ ◦ f(a) = 〈k ◦ f(a),�〉 ⇐⇒
k ◦ f(a) ∈ F ⇐⇒

g ′′ ◦ g(a) = 〈g ′ ◦ g(a),�〉 = 〈k ◦ f(a),�〉.

This proves k′ ◦ f(a) = h′ ◦ g(a), as desired.
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§A. Appendix. This appendix is devoted to the proof of Theorem 3.3. Let us denote
by BCA2 the quasivariety axiomatized by (1)–(13) in Theorem 3.3.

Lemma A.1. The following identities hold in BCA2.

(1) 1 ∧ ϕ ≈ ϕ.
(2) J

k
ϕ ∨ ¬J

k
ϕ ≈ 1, ∀k ∈ {0, 1, 2}.

(3) J
k
ϕ ∧ ¬J

k
ϕ ≈ 0, ∀k ∈ {0, 1, 2}.

(4) J2(ϕ ∨ ¬ϕ) ≈ J2ϕ ∨ J2¬ϕ.
(5) J2Jkϕ ≈ J

k
ϕ, for every k ∈ {0, 1, 2}.

(6) J0Jkϕ ≈ ¬J
k
ϕ, for every k ∈ {0, 1, 2}.

(7) J
i
ϕ ≈ ¬(J

j
ϕ ∨ J

k
ϕ), for i 
= j 
= k 
= i .

(8) ((J
i
ϕ ∨ J

k
ϕ) ∧ J

i
ϕ) ≈ J

i
ϕ, for i, k ∈ {0, 1, 2}.

Proof. Let A ∈ BCA2 and a, b ∈ A.
(1) 1 ∧ a = ¬(¬1 ∨ ¬a) = ¬(0 ∨ ¬a) = ¬(¬a) = a.
(2) The case k = 0 follows immediately by the case k = 2 (which holds by Definition

3.3). For k = 1: J1a ∨ ¬J1a = ¬(J2a ∨ J0a) ∨ (J2a ∨ J0a) = (¬J2a ∧ ¬J0a) ∨ (J2a ∨
J0a) = (¬J2a ∨ J2a ∨ J0a) ∧ (¬J0a ∨ J2a ∨ J0a) = (1 ∨ J0a) ∧ (1 ∨ J2a) = (J0a ∨
¬J0a ∨ J0a) ∧ (J2a ∨ ¬J2a ∨ J2a) = (J0a ∨ ¬J0a) ∧ (J2a ∨ ¬J2a) = 1 ∧ 1 = 1.

(3) Follows from (2) (and De Morgan laws).
(4) J2(a ∨ ¬a) = (J2a ∧ J2¬a) ∨ (J2¬a ∧ J2¬a) ∨ (J2a ∧ J2a) = ((J2a ∧ J2¬a) ∨

J2¬a) ∨ J2a = ((J2a ∨ J2¬a) ∧ (J2¬a ∧ J2¬a)) ∨ J2a = ((J2a ∨ J2¬a) ∧ J2¬a) ∨
J2a = (J2a ∨ J2¬a ∨ J2a) ∧ (J2¬a ∨ J2a) = (J2a ∨ J2¬a) ∧ (J2¬a ∨ J2a) = J2a ∨
J2¬a, where we have used (12) and distributivity.

(5) k = 2: it follows directly from ¬J2a = J2¬J2a, which holds as ¬J2a = J0J2a =
J2¬J2a (where we have used (9) and the definition of J0). k = 0: J2J0a = J2J2¬a =
J2¬a = J0a. k = 1: J2J1a = J2¬(J2a ∨ J0a) = J0(J2a ∨ J0a) = J0(J2a ∨ J2¬a) =
J0J2(a ∨ ¬a) = ¬J2(a ∨ ¬a) = ¬(J2a ∨ J2¬a) = ¬(J2a ∨ J0a) = J1a, where we have
use the previous (4).

(6) k = 2 is included in Definition 3.3, k = 0 follows immediately by (9). For
k = 1: J0J1a = J2¬J1a = J2(J2a ∨ J0a) = (J2J2a ∧ J2J0a) ∨ (J2¬J2a ∧ J2J0a) ∨
(J2J2a ∧ J2¬J0a) = (J2a ∧ J0a) ∨ (J0J2a ∧ J0a) ∨ (J2a ∧ J0J0a) = (J0a ∧ (J2a ∨
¬J2a)) ∨ (J2a ∧ ¬J0a) = (J0a ∧ 1) ∨ (J2a ∧ ¬J0a) = J0a ∨ (J2a ∧ ¬J0a) = (J0a ∨
J2) ∧ (J0a ∨ ¬J0a) = (J0a ∨ J2) ∧ 1 = J0a ∨ J2 = ¬J1a.

(7) We only have to show the case J0ϕ ≈ ¬(J2ϕ ∨ J1ϕ) (as the others hold
by Definition 3.3 and by the definition of J1). J0a = J2¬a = ¬(J0¬a ∨ ¬J1¬a) =
¬(J2a ∨ J1a).

(8) We just show the case i = 2, k = 0 (as the others are analogous).
J2a ∧ (J2a ∨ J0a) = J2a ∧ ¬J1a = ¬(J0a ∨ J1a) ∧ ¬J1a = ¬J0a ∧ ¬J1a ∧ ¬J1a =
¬J0a ∧ ¬J1a = ¬(J0a ∨ J1a) = J2a.

Observe that, by Lemma A.1 (in particular, (8) and (9)), it follows that the image
J2(A) (and hence of J0 and J1) of a Bochvar algebra forms the universe of a Boolean
algebra: a fact that we will use several times (in the proofs) of the next lemma, where
we will indicate with ≤ the order of the mentioned Boolean algebra.

Lemma A.2. The following identities and quasi-identities hold in BCA2.

(1) J21 ≈ 1, J00 ≈ 1, J20 ≈ 0, J01 ≈ 0.
(2) J2ϕ ∨ J0ϕ ≈ J2(1 ∨ ϕ).
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(3) J2(1 ∨ ϕ) ≈ J2(1 ∨ ¬ϕ).
(4) J2(1 ∨ ϕ) ≈ J2(1 ∨ (0 ∧ ϕ)).
(5) J

i
ϕ ≤ ¬J

k
ϕ, for every i 
= k ∈ {0, 1, 2}.

(6) J2(ϕ ∧ 0) ≈ 0.
(7) J2(1 ∨ (ϕ ∧ �)) ≈ J2(1 ∨ ϕ) ∧ J2(1 ∨ �).
(8) J1(ϕ ∧ �) ≈ J1ϕ ∨ J1�.
(9) J0(ϕ ∧ �) ≈ (J2ϕ ∧ J0�) ∨ (J0ϕ ∧ ¬J1�).
(10) J2(ϕ ∧ �) ≈ ¬(J2ϕ ∧ J0�) ∧ J2ϕ ∧ ¬J1�.
(11) J2(ϕ ∧ �) ≈ J2ϕ ∧ J2�.
(12) J0(ϕ ∨ �) ≈ J0ϕ ∧ J0�.
(13) ϕ ∨ J

k
ϕ ≈ ϕ, for k ∈ {1, 2}.

(14) J0ϕ ≈ J0� & J1ϕ ≈ J1� & J2ϕ ≈ J2� ⇒ ϕ ≈ �.

Proof. Let A ∈ BCA2 and a, b ∈ A.

(1) J21 = J2(J2a ∨ ¬J2a) = (J2J2a ∨ J2¬J2a) ∧ (J2¬J2a ∨ J2¬J2a) ∨ (J2J2a ∨
J2J2a) = (J2a ∧ J0J2a) ∨ J0J2a ∨ J2a = (J2a ∧ ¬J2a) ∨ ¬J2a ∨ J2a = 0 ∨
¬J2a ∨ J2a = 0 ∨ 1 = 1.
J20 = ¬(J00 ∨ J10) = ¬(1 ∨ J11) = ¬1 = 0. The last equality follows from

this one.
(2) J2(1∨ a) = (J21∧ J2a)∨ (J21∧ J0a)∨ (J20∧ J2a) = (1 ∧ J2a) ∨ (1 ∨ J0a) ∨

(0 ∧ J2a) = J2a ∨ J0a ∨ 0 = J2a ∨ J0a.
(3) It follows directly from the previous point, upon observing that J2ϕ ≈ J0¬ϕ.
(4) Observe that 1 ∨ (0 ∧ a) = (1 ∨ 0) ∧ (1 ∨ a) = 1 ∧ (1 ∨ a) = 1 ∨ a (by

Lemma A.1(1)).
(5) Immediate from Lemma A.1(7).
(6) Observe that, by the previous point, J2(0 ∧ a) ≤ ¬J0(0 ∧ a) = ¬J2(1 ∨

¬a) = ¬J2(1 ∨ a). Therefore J2(0 ∧ a) ≤ ¬J2(1 ∨ a) = ¬J2(1 ∨ (0 ∧ a)) =
¬(J2(0 ∧ a) ∨ J0(0 ∧ a)) = ¬J2(0 ∧ a) ∧ ¬J0(0 ∧ a) ≤ ¬J2(0 ∧ a), hence
J2(0 ∧ a) = 0.

(7) Applying De Morgan laws and 12, we have

J2 (1 ∨ (a ∧ b)) = J2 (1 ∨ ¬a ∨ ¬b)
= J2 ((1 ∨ ¬a) ∨ ¬b)
= (J2 (1 ∨ ¬a) ∧ J0b) ∨ (J2 (1 ∨ ¬a) ∧ J2a) ∨ (J0 (1 ∨ ¬a) ∧ J0b)

= (J2 (1 ∨ a) ∧ J0b) ∨ (J2 (1 ∨ a) ∧ J2a) ∨ (J2 (0 ∧ a) ∧ J0b)

= (J2 (1 ∨ a) ∧ J0b) ∨ (J2 (1 ∨ a) ∧ J2a) ∨ 0

= (J2 (1 ∨ a) ∧ J0b) ∨ (J2 (1 ∨ a) ∧ J2a)

= J2 (1 ∨ a) ∧ (J0b ∨ J2b)

= J2 (1 ∨ a) ∧ J2 (1 ∨ b).

(8) The claim is equivalent to (7). Indeed J1(ϕ ∧ �) ≈ J1ϕ ∨ J1� iff ¬J1(ϕ ∧
�) ≈ ¬J1ϕ ∧ ¬J1� iff J2(ϕ ∧ �) ∨ J0(ϕ ∧ �) ≈ (J2ϕ ∨ J0ϕ) ∧ (J2� ∨ J0�)
iff J2(1 ∨ (ϕ ∧ �)) ≈ J2(1 ∨ ϕ) ∧ J2(1 ∨ �).

(9) Easy calculation using (12), De Morgan laws, distributivity and Lemma
A.1(6).
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(10) By Lemma A.1(6), we have

¬J2(a ∧ b) = J0(a ∧ b) ∨ J1(a ∧ b)
= (J2a ∧ J0b) ∨ (J0a ∧ ¬J1b) ∨ J1(a ∧ b) (9)

= (J2a ∧ J0b) ∨ (J0a ∧ ¬J1b) ∨ J1b ∨ J1a (8)

= (J2a ∧ J0b) ∨ ((J0a ∨ J1b) ∧ (¬J1b ∨ J1b)) ∨ J1a

= (J2a ∧ J0b) ∨ ((J0a ∨ J1b) ∧ 1) ∨ J1a

= (J2a ∧ J0b) ∨ J0a ∨ J1b ∨ J1a

= (J2a ∧ J0b) ∨ ¬J2a ∨ J1b,

thus the conclusion follows by De Morgan laws.
(11) By the previous point, we have

J2(a ∧ b) = ¬(J2a ∧ J0b) ∧ J2a ∧ ¬J1b

= (¬J2a ∨ ¬J0b) ∧ J2a ∧ ¬J1b

= ((¬J2a ∧ J2a) ∨ (¬J0b ∧ J2a)) ∧ ¬J1b

= (0 ∨ (¬J0b ∧ J2a)) ∧ ¬J1b

= ¬J0b ∧ J2a ∧ ¬J1b

= J2a ∧ J2b.

(12) J0(a ∨ b) = J2(¬a ∧ ¬b) = J2¬a ∧ J2¬b = J0a ∧ J0b.
(13) We show that the antecedent of the quasi-identity (13) is satisfied, so is the con-

sequent. J2(a ∨ J2a) = (J2a ∧ J2J2a) ∨ (J2¬a ∧ J2J2a) ∨ (J2a ∧ J2¬J2a) =
(J2a ∧ J2a) ∨ (J0a ∧ J2a) ∨ (J2a ∧ J2J0a) = J2a ∨ (J0a ∧ J2a) ∨ (J0a ∧
J2a) = J2a ∨ (J0a ∧ J2a) = J2a, where in the last passage we have used
the dual version of (9).
J0(a ∨ J2a) = J0a ∧ J0J2a = J0a ∧ ¬J2a = J0a ∧ (J0a ∨ J1a) = J0a.

Thus, by the quasi-identity (13) we have the conclusion.
The case of k = 1 is proved analogously.

(14) We just have to show that J0ϕ ≈ J0� & J2ϕ ≈ J2� implies J0ϕ ≈
J0� & J1ϕ ≈ J1� & J2ϕ ≈ J2�. Suppose J0a = J0b and J2a = J2b. Then
J1a = ¬(J2a ∨ J0a) = ¬(J2b ∨ J0b) = J1b.

Proof of Theorem 3.3. The original axiomatization of BCA (Definition 3.1) includes
all the identities (1)–(13); all the remaining identities (and quasi-identities) appearing
in Definition 3.1 but not in Theorem 3.3 have been shown to follow, from the
axiomatization provided in Theorem 3.3 in Lemmas A.1 and A.2.
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