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Limited Sets and Bibasic Sequences

Ioana Ghenciu

Abstract. Bibasic sequences are used to study relative weak compactness and relative norm compact-
ness of limited sets.

Throughout this paper, X and Y will denote Banach spaces. The unit ball of X will
be denoted by BX , and the closed linear span of a sequence (xn) in X will be denoted
by [xn]. An operator T : X → Y will be a continuous and linear function. Let X∗

denote the continuous linear dual of X, let L(X,Y ) denote the space of all continuous
linear operators T : X → Y , and let K(X,Y ) denote the compact linear maps. Let
Lw∗(X∗,Y ) denote the w∗ − w continuous operators, and let Kw∗(X∗,Y ) denote the
w∗ − w continuous compact operators.

A bounded subset A of a Banach space X is called a limited subset of X if for each
w∗-null sequence (x∗n ) in X∗,

lim
n

sup{|x∗n (x)| : x ∈ A} = 0.

If A is a limited subset of X, then T(A) is relatively compact for any operator T : X →
c0. An operator T : X → Y is called limited if T(BX) is a limited subset of Y . We note
that the operator T is limited if and only if T∗ is w∗-norm sequentially continuous.

The subset S of X is said to be weakly precompact provided that every bounded
sequence from S has a weakly Cauchy subsequence [1]. Every limited subset of X is
weakly precompact [4].

It is known that `∞ contains limited sets that are not relatively weakly compact
(see [21, Example 1.1.8]). In this paper we study limited sets that fail to be relatively
norm or weakly compact.

A sequence (xn, f ∗n ) in X × X∗ is called bibasic ([20, p. 85], [8]) if (xn) is a basic
sequence in X, ( f ∗n ) is a basic sequence in X∗, and f ∗i (x j) = δi j . If (xn, f ∗n ) is a
bibasic sequence, X0 = [xn], and x∗n = f ∗n |X0 (i.e., (x∗n ) is the sequence of coefficient
functionals corresponding to the basic sequence (xn)), then f ∗n is a continuous linear
extension of x∗n to all of X for each n. The bibasic sequence (xn, f ∗n ) is seminormalized
if there are p, q > 0 so that p ≤ ‖xn‖ ≤ q for all n.

We denote the canonical unit vector basis of c0 (resp. `1) by (en) (resp. (e∗n )). If K
is a subset of X, then K − K is defined to be {x − y : x, y ∈ K}. For a subset A of X,
let co(A) denote the convex hull of A. If U is a subspace of X, then

U⊥ = { f ∈ X∗ : f (x) = 0 for all x ∈ U}.
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72 I. Ghenciu

Suppose X has a basis (xi) with the associated sequence of coordinate functionals
(x∗i ). The basis (xi) is shrinking if (x∗i ) is a basis for X∗. The unit vector bases of c0

and `p, 1 < p <∞ are shrinking, and the unit vector basis of `1 is not shrinking.

A bounded subset A of X is called a V ∗-subset of X provided that

lim
n

(
sup{|x∗n (x)| : x ∈ A}

)
= 0

for each weakly unconditionally converging series
∑

x∗n in X∗.
A topological space S is called dispersed (or scattered) if every nonempty closed

subset of S has an isolated point [19]. A compact Hausdorff space K is dispersed if
and only if `1 6↪→ C(K) [18]. The reader should consult [9] or [1] for undefined
terminology and notation.

1 Limited Sets and Bibasic Sequences

In [8, Theorem 1] it is proved that every infinite dimensional Banach space contains
a bounded bibasic sequence. We will show that special bibasic sequences exist in
X × X∗ whenever X contains a limited set that fails to be relatively weakly or norm
compact. We begin with the following two lemmas.

Lemma 1.1 If K is a limited subset of the Banach space X, (xn, f ∗n ) is a biorthogonal
sequence in K × X∗, and supn ‖ f ∗n ‖ <∞, then some subsequence of ( f ∗n ) is equivalent
to the unit vector basis of `1.

Proof Suppose that ( f ∗n ) has a w∗-Cauchy subsequence ( f ∗ni
). Let y∗i = f ∗ni

− f ∗ni+1

for each i. Then (y∗i ) is w∗-null and y∗i (xni ) → 0, since K is limited. However,
y∗i (xni ) = 1 for all i. Therefore, ( f ∗n ) has no w∗-Cauchy subsequence, and thus it has
no weakly Cauchy subsequence. By Rosenthal’s `1-theorem [9], some subsequence
of ( f ∗n ) is equivalent to (e∗n ).

Lemma 1.2 ([17, Lemma 1(ii)]) If (xn) is an unconditional basis for X, (x∗n ) is the
sequence of coefficient functionals corresponding to (xn), and the subsequence (x∗ni

) of
(x∗n ) is equivalent to (e∗i ), then (xni ) ∼ (ei).

It is known that `∞ contains limited sets that are not relatively weakly compact
(see [21, Example 1.1.8]). Further, Haydon [15] has given an example of a C(K)
space that is a Grothendieck space and does not contain `∞. Such a space must
contain limited sets that are not relatively weakly compact [21, pp. 27–28].

In [8, Proposition 1], Davis, Dean, and Lin showed that if X is an infinite di-
mensional space, then there is a bounded bibasic sequence (xn, f ∗n ) in X × X∗ so
that ( f ∗n ) 6∼ (x∗n ). The following theorem, which extends [1, Theorem 4.5], shows
that limited subsets that are not relatively weakly compact naturally generate such
sequences. In the next theorem, t : N → N is a strictly increasing function and
g∗t(n) = x∗t(n)|[xt( j): j∈N].

Theorem 1.3 Suppose that K is a subset of the Banach space X. If K is a nonrelatively
weakly compact limited set, then there is a bibasic sequence (xn, f ∗n ) in K × X∗ and an
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element x∗ ∈ X∗ such that ( f ∗n ) ∼ (e∗n ) and lim x∗(xn) > 0. If (xn) is unconditional,
t : N→ N and g∗t(n) are as above, then (g∗t(n)) 6∼ ( f ∗t(n)).

Proof Suppose that K is a limited subset of X that is not relatively weakly compact.
Let (xn) be a sequence in K with no weakly convergent subsequence. By Pelczyinski’s
version of the Eberlein–Smulian theorem ([9, p. 41]), we may assume that (xn) is
basic and lim x∗(xn) > 0 for some x∗ ∈ X∗. Note that (xn) is a seminormalized
sequence. Let (x∗n ) be the associated sequence of coefficient functionals, and for each
n, let f ∗n be a Hahn–Banach extension of x∗n to all of X. By Lemma 1.1, we may
suppose without loss of generality that ( f ∗n ) ∼ (e∗n ).

Now suppose that (xn) is a seminormalized unconditional basic sequence, (xn)
has no weakly convergent subsequence, and (g∗t(n)) ∼ ( f ∗t(n)). Consequently, we have
an unconditional basic sequence (xn) and a subsequence (x∗t(n)) of the coordinate
functionals so that (x∗t(n)) ∼ (e∗n ) in [xt(n)]∗. Lemma 1.2 implies that (xt(n)) ∼ (en).
Therefore, (xt(n)) is weakly null, a contradiction.

The following result, due to Schlumprecht [21], tells us when {en : n ∈ N} embeds
as a limited subset of X.

Lemma 1.4 ([21, Theorem 1.3.2, p. 36]) If (xn) is a basic sequence in X that is
equivalent to (en), then the following are equivalent:

(a) (xn) is a limited sequence in X;
(b) if S is an infinite subset of N, then [xn : n ∈ S] is not complemented in X.

The following result studies the structure of limited sets that contain uncondi-
tional basic sequences (xn) such that (x∗n ) ∼ ( f ∗n ).

Theorem 1.5 If K is a limited subset of the Banach space X, then the following are
equivalent:

(i) There is an isomorphic embedding T : c0 → X so that {T(en)} ⊆ K.
(ii) There is a seminormalized bibasic sequence (xn, f ∗n ) in K × X∗ so that (xn) is

unconditional, ( f ∗n ) ∼ (x∗n ), and [xn] is not complemented in X.
(iii) There is a seminormalized bibasic sequence (xn, f ∗n ) in K × X∗ so that (xn) is

unconditional, ( f ∗n ) ∼ (x∗n ), [ f ∗n ] is complemented in X∗, and [xn] is not comple-
mented in X.

(iv) There is a seminormalized bibasic sequence (xn, f ∗n ) in K × X∗ so that (xn) is un-
conditional, ( f ∗n ) ∼ (x∗n ), {yk} is not a limited subset of [yk] for each subsequence
(yk) of (xn), and [xn] is not complemented in X.

(v) There is a seminormalized bibasic sequence (xn, f ∗n ) in K × X∗ so that (xn) is
shrinking and unconditional, ( f ∗n ) ∼ (x∗n ), [ f ∗n ] is complemented in X∗, and [xn]
is not complemented in X.

(vi) There is a seminormalized bibasic sequence (xn, f ∗n ) in K × X∗ so that (xn) is
unconditional and

∑
f ∗(xn) f ∗n converges for all f ∗ ∈ X∗, and [xn] is not com-

plemented in X.
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Proof Suppose that (i) holds and let xn = T(en) for each n. Then (xn) is an uncon-
ditional basic sequence and (xn) ∼ (en). By Lemma 1.4, [xn] is not complemented
in X. Let (x∗n ) be the associated sequence of functionals, and for each n, let f ∗n be
a Hahn–Banach extension of x∗n to all of X. Let S : [en] → [xn] be an isomorphism
from [en] onto [xn]. Then S∗(x∗n ) = e∗n , S∗ is an isomorphism, and (x∗n ) ∼ (e∗n ). Let
C > 0 such that

C
∑
|ai | ≤ ‖

∑
aix
∗
i ‖,

for each finite sequence (a1, . . . , an) of real numbers. Then

C
∑
|ai | ≤ ‖

∑
ai f ∗i |[xn] ‖ ≤ ‖

∑
ai f ∗i ‖ ≤ M

∑
|ai |,

where M is a bound for (‖ f ∗i ‖). Therefore, ( f ∗n ) ∼ (e∗n ) ∼ (x∗n ). Let (yk) be a
subsequence of (xn) and let X0 = [yn]. Since X0 is separable and limited subsets
of separable spaces are relatively compact [4], (yk) is not limited in X0 (otherwise
‖yn‖ → 0, a contradiction). Thus (xn, f ∗n ) satisfies the conclusion of (ii) and (iv).

Suppose that (ii) holds and let (xn, f ∗n ) satisfy the conclusions of (ii). Use
Lemma 1.1 and let ( f ∗ni

) be a subsequence of ( f ∗n ) so that ( f ∗ni
) ∼ (e∗i ). Then

(x∗ni
) ∼ (e∗i ). Since (xn) is unconditional, (xni ) ∼ (ei), by Lemma 1.2. Then (xni ) is

shrinking and
∑

xni is weakly unconditionally converging. Therefore,
∑

f ∗(xni ) f ∗ni

converges for all f ∗ ∈ X∗. Hence [ f ∗ni
] is complemented in X∗, by [20, Corollary

1.12 b, p. 93] (or by a result of [3], since ( f ∗ni
) is not a V ∗-subset of X∗). Conse-

quently, the bibasic sequence (xni , f ∗ni
) satisfies the conclusions of (i), (iii), (v), and

(vi).
Note that (iii) implies (ii), (iv) implies (ii), and (v) implies (ii). Therefore (i), (ii),

(iii), (iv), and (v) are equivalent.
Suppose (vi) holds and let (xn, f ∗n ) satisfy the conclusions of (vi). By [20, Propo-

sition 1.14 b, p. 91], [xn]⊥ + [ f ∗n ] = X∗. By [20, Theorem 1.10, p. 93] (or [20,
Lemma 1.3, p. 91]), (x∗n ) ∼ ( f ∗n ), and (vi) implies (ii).

We note that if K is a limited subset of X, then the set K − K is a limited subset
of X.

Corollary 1.6 Suppose that K is a non-relatively compact set limited subset of X.
Then the statements (i)–(vi), replacing K with K − K in Theorem 1.5, are equivalent.

Proof Suppose (i) holds. Let T : c0 → X be an isomorphic embedding so that
{T(en)} ⊆ K − K and let xn = T(en) for each n. Then (xn) is an unconditional
basic sequence, (xn) is limited, and (xn) ∼ (en). The proof that (i) implies (ii) in the
previous theorem shows that (x∗n ) ∼ (e∗n ) ∼ ( f ∗n ) and [xn] is not complemented in X.

Suppose (ii) holds and let (xn, f ∗n ) in (K − K)× X∗ satisfy the conclusions of (ii).
Let (yn) be a sequence in K and ε > 0 such that ‖yn − yn+1‖ > ε for all n (since
K is nonrelatively compact). Since limited sets are weakly precompact [4], we can
suppose without loss of generality that (yn) is weakly Cauchy. Let xn = yn − yn+1,
for each n. Since (xn) is weakly null and not norm null, by Bessaga and Pelczyinski’s
selection principle ([2, 9]) we can suppose without loss of generality that (xn) is a
seminormalized basic sequence. Let (x∗n ) be the associated sequence of coefficient
functionals, and for each n, let f ∗n be a Hahn–Banach extension of x∗n to all of X∗. By
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Lemma 1.1 applied to the limited set K − K, ( f ∗n ) has a subsequence ( f ∗ni
) equivalent

to (e∗i ). The proof of (ii) implies (i) in the previous theorem shows that (xni ) ∼ (ei).
The proofs for the other implications are similar to the corresponding ones in the

previous theorem.

Bourgain and Diestel proved that limited subsets of Banach spaces not containing
`1 are relatively weakly compact ([4, Proposition 7]). The following lemmas will be
used to give an alternative proof of this result.

Lemma 1.7 ([22, Lemma 1]) Let A be a bounded subset of a Banach space Y. Then
A is relatively weakly compact if and only if, given any sequence (xn) in A, there exists a
sequence (yn) with yn ∈ co{xi : i ≥ n} that converges weakly.

The following result is from [13]. We include a proof for the convenience of the
reader.

Lemma 1.8 ([13, Theorem 3.12]) The following are equivalent:

(i) If T : Y → X is an operator and T∗ : X∗ → Y ∗ is w∗-norm sequentially continu-
ous, then T is weakly compact (resp. compact).

(ii) Same as (i) with Y = `1.
(iii) Every limited subset of X is relatively weakly compact (resp. relatively compact).

Proof (weakly compact) Certainly (i) implies (ii). Now suppose that (ii) holds, A
is a limited subset of X, and let (xn) be a sequence in A. Define T : `1 → X by
T(b) =

∑
bixi . Since the closed absolutely convex hull of (xi) is a limited subset

of X, T is limited and T∗ is w∗-norm sequentially continuous. Thus T is weakly
compact, and (T(e∗n )) = (xn) has a weakly convergent subsequence.

Suppose that (iii) holds and let T : Y → X be an operator so that T∗ is w∗-norm
sequentially continuous. Then T(BY ) is a limited subset of X, and thus relatively
weakly compact.

Theorem 1.9 ([4]) If `1 6↪→ X, then every limited subset of X is relatively weakly
compact.

Proof Let T : Y → X such that T∗ : X∗ → Y ∗ is w∗-norm sequentially contin-
uous. Let (x∗n ) be a sequence in BX∗ . Since `1 6↪→ X, every bounded sequence in
X∗ has a w∗-convergent convex block ([16, Lemma 3A, p. 4], [21, Lemma 2.2.1,
p. 47]). Let (y∗n ) be a w∗-convergent convex block of (x∗n ). Let (kn) be a strictly
increasing sequence of natural numbers and (an) a sequence of positive real numbers

with
∑kn+1−1

i=kn
ai = 1, so that

y∗n =

kn+1−1∑
i=kn

aix
∗
i .

Then (T∗(y∗n )) is norm convergent. Note that y∗n ∈ co{x∗i : i ≥ n} and T∗(y∗n ) ∈
co{T∗(x∗i ) : i ≥ n} for each n. Then (T∗(x∗n )) is relatively weakly compact, by
Lemma 1.7. Then T∗, and thus T, is weakly compact. By Lemma 1.8 , every limited
subset of X is relatively weakly compact.
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76 I. Ghenciu

The proof of the previous theorem shows that if each sequence in BX∗ has a
w∗-convex block sequence, then every limited subset of X is relatively weakly com-
pact.

Corollary 1.10

(i) Suppose K is a dispersed compact Hausdorff space and `1 6↪→ X. Then every
limited subset of C(K,X) is relatively weakly compact.

(ii) Suppose `1 6↪→ X, `1 6↪→ Y , and L(X,Y ∗) = K(X,Y ∗). Then every limited subset
of X ⊗π Y is relatively weakly compact.

(iii) Suppose `1 6↪→ X and Y ∗ has the Radon–Nykodim Property. Then every limited
subset of Kw∗(X∗,Y ) is relatively weakly compact.

(iv) Suppose `1 6↪→ X and Y ∗ has the Radon–Nykodim Property. Then every limited
subset of X ⊗ε Y is relatively weakly compact.

Proof (i) Suppose `1 6↪→ C(K) and `1 6↪→ X. Then `1 6↪→ C(K,X) [6]. Apply
Theorem 1.9.

(ii) Suppose `1 6↪→ X, `1 6↪→ Y , and L(X,Y ∗) = K(X,Y ∗). By [12, Theorem 3],
`1 6↪→ X ⊗π Y . Apply Theorem 1.9.

(iii) If `1 6↪→ X and Y ∗ has the Radon–Nykodim Property, then `1 6↪→ Kw∗(X∗,Y )
([7, Theorem 1.7]). Apply Theorem 1.9.

(iv) If `1 6↪→ X and Y ∗ has the Radon–Nykodim Property, then `1 6↪→ X ⊗ε Y
([7, Theorem 1.14]). Apply Theorem 1.9.

A bounded subset A of X∗ is called an L-subset of X∗ if each weakly null sequence
(xn) in X tends to 0 uniformly on A; i.e.,

lim
n

sup{|x∗(xn)| : x∗ ∈ A} = 0.

Lemma 1.11 ([14, Lemmas 4.1 and 4.2]) Suppose A is a bounded subset of X∗. Then
A is an L-subset of X∗ if and only if T(A) is relatively compact for every T ∈ Lw∗(X∗, c0).

Theorem 1.12 If A is a bounded set that is not an L-subset of X∗, then there exists a
sequence (x∗n ) in A and a weakly null basic sequence (xn) in X so that x∗m(xn) = δnm.

Proof Suppose A is a bounded set that is not an L-subset of X∗. Then there exists
an operator T ∈ Lw∗(X∗, c0) such that T(A) is not relatively compact, by Lemma
1.11. Since limited subsets of separable spaces are relatively compact [4], T(A) is not
a limited subset of c0. By [21, Lemma 1.3.1], there is a w∗-null sequence (y∗n ) in `1

and a sequence (x∗n ) in A such that 〈y∗n ,T(x∗m)〉 = δnm. Let xn = T∗(y∗n ). Then (xn)
is weakly null in X and x∗m(xn) = δnm. Since (xn) is weakly null and not norm null,
by Bessaga and Pelczyinski’s selection principle ([2, 9]), we can assume without loss
of generality that (xn) is basic.

Proposition 1.13 Suppose A is a subset of X∗ such that for every ε > 0 there exists
an L-subset Aε of X∗ with A ⊆ Aε + εBX∗ . Then A is an L-set.
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Proof Suppose A satisfies the hypothesis. Let ε > 0 and Aε as in the hypothesis.
Suppose T ∈ Lw∗(X∗, c0), ‖T‖ ≤ 1. Then

T(A) ⊆ T(Aε) + εBc0 ,

and T(Aε) is relatively compact, by Lemma 1.11. Then T(A) is relatively compact
([9, p. 5]), and thus A is an L-set.

The following results are related to the Dunford–Pettis property. We recall that
a Banach space X has the Dunford–Pettis property (DPP) if every weakly compact
operator T with domain X is completely continuous. Equivalently, X has the DPP if
and only if x∗n (xn) → 0 for all weakly null sequences (xn) in X and (x∗n ) in X∗ [10].
Schur spaces, C(K) spaces, and L1(µ) spaces have the DPP. If X is a Grothendieck
space with the DPP, then a bounded subset of X is weakly precompact if and only if
it is limited [21].

The following theorem was proved in [13].

Theorem 1.14 ([13, Theorem 3.4]) If T : Y → X is an operator and LT : Y → c0 is
compact for all weakly compact operators L : X → c0, then T is weakly precompact.

Theorem 1.14 implies that every operator T : Y → X with completely continuous
adjoint is weakly precompact. Indeed, suppose that T∗ : X∗ → Y ∗ is completely
continuous. If L : X → c0 is weakly compact, then T∗L∗, and thus LT, is compact.
Hence T is weakly precompact by Theorem 1.14.

The following result gives a characterization of Banach spaces with the DPP.

Theorem 1.15 Let X be a Banach space. The following are equivalent:

(i) X has the DPP.
(ii) If T : Y → X is an operator, then T is weakly precompact if and only if T∗ : X∗ →

Y ∗ is completely continuous, for all Banach spaces Y .
(iii) Same as (ii) with Y = `1.

Proof (i) ⇒ (ii) Suppose X has the DPP. If T : Y → X is a weakly precompact
operator, then T∗ : X∗ → Y ∗ is completely continuous, by [10, Theorem 1]. The
converse follows from Theorem 1.14.

(ii)⇒ (iii) is clear.
(iii)⇒ (i) Suppose (iii) holds. Let (xn) be weakly Cauchy in X and (x∗n ) be weakly

null in X∗. Define T : `1 → X by T(b) =
∑

bnxn, b = (bn) ∈ `1. The operator
T maps the unit ball of `1 into the absolutely closed convex hull of {xn : n ∈ N},
a weakly precompact set ([21, p. 27]). Hence T is weakly precompact. Note that
T∗ : X∗ → `∞, T∗(x∗) = (x∗(xi)), x∗ ∈ X∗. Since T∗ is completely continuous,

|x∗n (xn)| ≤ ‖T∗(x∗n )‖ = sup
i
|x∗n (xi)| → 0,

and thus X has the DPP.

The following theorem gives a characterization of dual Banach spaces with the
DPP and improves [5, Proposition 10].
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Theorem 1.16 Let X be a Banach space. The following are equivalent:

(i) X∗ has the DPP.
(ii) For all Banach spaces Y , if S : Y → X∗ is an operator, then S is weakly precompact

if and only if S∗ : X∗∗ → Y ∗ is completely continuous.
(iii) Same as (ii) with Y = `1.
(iv) For all Banach spaces Y , if T : X → Y is an operator, then T∗ : Y ∗ → X∗ is weakly

precompact if and only if T∗∗ : X∗∗ → Y ∗∗ is completely continuous.
(v) Same as (iv) with Y = c0.
(vi) ([5]) For all Banach spaces Y , if T : X → Y is a weakly compact operator, then

T∗∗ : X∗∗ → Y is completely continuous.
(vii) Same as (vi) with Y = c0.

Proof (i), (ii), and (iii) are equivalent by Theorem 1.15.
(ii)⇒ (iv), (iv)⇒ (v), and (v)⇒ (vii) are clear.
(iv)⇒ (vi) is clear. We note that if T is weakly compact, then T∗∗(X∗∗) ⊆ Y .
(vi)⇒ (vii) is clear.
(vii) ⇒ (i) Suppose (x∗n ) is weakly null in X∗ and (x∗∗n ) is weakly null in X∗∗.

Define T : X → c0 by T(x) = (x∗n (x)). Then T∗ : `1 → X∗, T∗(e∗n ) = x∗n , and T∗(b) =∑
bix∗i , for b = (bi) ∈ `1. Further, T∗ maps the unit ball of `1 into the absolutely

closed convex hull of {x∗i : n ∈ N}, a relatively weakly compact set ([11, p. 51]).
Then T∗, and thus T, is weakly compact. If x∗∗ ∈ X∗∗, then T∗∗(x∗∗) = (x∗∗(x∗i )).
Since T∗∗ is completely continuous,

|x∗∗n (x∗n )| ≤ ‖T∗∗(x∗∗n )‖ = sup
i
|x∗∗n (x∗i )| → 0,

and thus X∗ has the DPP.
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