# ANISOTROPIC PRINCIPAL SERIES AND GENERATORS OF A FREE GROUP 

Carlo Pensavalle

In this paper we prove that the equivalence of anisotropic principal series of a free group $\Gamma$ related to different generator sets induces a $\Gamma$-isomorphism between the related Cayley-graphs. As a consequence we obtain that a nontrivial change of generators for $\Gamma$ leads to inequivalent anisotropic principal series.

## 1. Introduction

The subject of this paper is discrete noncommutative harmonic analysis, and more precisely harmonic analysis for anisotropic random walks of a finitely generated free group $\Gamma$ on homogeneous trees. Various explicit constructions of irreducible unitary representations of $\Gamma$ may be found in Cartier [3] Figà-Talamanca and Picardello [7], Pytlik [15], Mantero and Zappa [12, 13], Cowling and Steger [4], Kuhn and Steger [11] and Figà-Talamanca and Steger [8]. Almost of all the representations constructed may be realised as boundary representations of $\Gamma$.

We are particularly interested in the study of the representations belonging to the anisotropic principal series of $\Gamma$. This work arises from a generalisation of a result that was obtained analysing the isotropic case [14]. We fix two bases for $\Gamma$ and construct the corresponding Cayley-graphs on which $\Gamma$ acts by left multiplication. Now we select two representations $\pi_{1}$ and $\pi_{2}$, one in each of the anisotropic principal series of $\Gamma$ related to the fixed bases. We prove that if $\pi_{1}$ and $\pi_{2}$ are equivalent as unitary representations, then there exists a $\Gamma$-isomorphism of trees between the Cayley-graphs considered. As a consequence of this result we obtain that a nontrivial change of generators in a free group leads to inequivalent families of anisotropic principal representations of $\Gamma$. Using a result of Culler and Morgan on $\mathbb{R}$-trees [5] this is equivalent to the claim that the length translation function related to the chosen generator sets are inequivalent.

[^0]
## 2. Definitions and general results

Let ( $\Gamma, A$ ) be a noncommutative free group on finitely many generators, where $A=\left\{a_{j}^{ \pm 1} \mid a_{j} \in \Gamma\right.$ with $\left.j=1, \ldots, q+1\right\}$ consists of the basis elements and their inverses. Let $\Phi_{A}$ be the Cayley-graph of ( $\Gamma, A$ ), and $\Omega_{A}$ be its boundary. We identify the vertices of $\Phi_{A}$ with the group elements generated by $\left\{a_{1}, \ldots, a_{q+1}\right\}$ and the boundary $\Omega_{A}$ of $\Phi_{A}$ with the set of all infinite reduced words $\omega=a_{j_{1}} a_{j_{2}} \cdots$. A boundary representation of ( $\Gamma, A$ ) belonging to the anisotropic principal series of $(\Gamma, A)$ is obtained from a particular pair $(\nu, P)$ where:
(1) $\nu$ is a Radon measure on $\Omega_{A}$, and for every $\gamma \in(\Gamma, A)$ we have that $d \nu\left(\gamma^{-1} \omega\right)$ is absolutely continuous with respect to $d \nu(\omega)$.
(2) $P$ mapping ( $\Gamma, A) \times \Omega_{A} \rightarrow \mathbb{C}$ is $\nu$-measurable in $\omega$.
(3) $|P(\gamma, \omega)|^{2}=d \nu\left(\gamma^{-1} \omega\right) / d \nu(\omega)$.
(4) $P\left(\gamma_{1} \gamma_{2}, \omega\right)=P\left(\gamma_{1}, \omega\right) P\left(\gamma_{2}, \gamma_{1}^{-1} \omega\right)$.

By going through this construction we obtain a boundary representation which naturally acts on $L^{2}(\Omega, d \nu)$. First of all we start characterising the pair $(\nu, P)$ as described, for example, in Figà-Talamanca-Steger [8].

On ( $\Gamma, A$ ) we fix a real probability measure $\mu \in l^{1}(\Gamma)$, supported on $A$ and symmetric, [10]. Observe that the operator $R$ given by $R f=f * \mu$ is bounded linear and self-adjoint on $l^{2}(\Gamma)$, with norm not greater then 1 . Therefore its spectrum, denoted $s p(\mu)$, as an operator on $l^{2}(\Gamma)$ is a closed subset of the interval $[-1,1]$. If $z$ is a complex number, $z \notin s p(\mu)$, then $(z-R)^{-1}$ is a bounded operator on $l^{2}(\Gamma)$ and it is possible to see its action as the right convolution operation by some function $g_{z}=(z-\mu)^{-1}$ defined in the convolution algebra $l^{1}(\Gamma)$. This function $g_{z}$, which is called the Green function, is of a special type as proved in the following lemma basically due to Aomoto [1] and to Gerl and Woess [9, 16].

Lemma. Let $z$ be complex number not in the spectrum of $\mu$. If $z \neq 0$ then there exist $w \in \mathbb{C}$, an appropriate choice of $\pm$, and a multiplicative function $h_{z}$ on $(\Gamma, A)$, that is: $h_{x}\left(\gamma_{1} \gamma_{2}\right)=h_{z}\left(\gamma_{1}\right) h_{z}\left(\gamma_{2}\right)$ when $\left|\gamma_{1} \gamma_{2}\right|=\left|\gamma_{1}\right|+\left|\gamma_{2}\right|$, such that:
(i) $g_{z}(\gamma)=\left(h_{z}(\gamma)\right) /(2 w)$
(ii) $h_{z}(a)=\xi_{a}$ for every $a \in A$
(iii) $z=-(q-1) w+\sum_{a \in A} \pm \sqrt{w^{2}+\mu^{2}(a)}$
where $\xi_{a}=1 / \mu(a)\left( \pm \sqrt{w^{2}+\mu^{2}(a)}-w\right)$.
The functions $g_{z}$, as functions of $z$ are defined on $\mathbb{C} \backslash s p(\mu)$. But they may be analytically continued on a compact Riemann surface $S$ containing $\mathbb{C} \backslash \operatorname{sp}(\mu)$ as a subset. This can be used to prove that, for $\sigma \in s p(\mu), \lim _{\varepsilon \rightarrow 0} g_{\sigma+i \varepsilon}(\gamma)=g_{\sigma+i 0}(\gamma)$ and $\lim _{e \rightarrow 0} g_{\sigma-i \varepsilon}(\gamma)=g_{\sigma-i 0}(\gamma)$ exist, determine continuous functions of $\sigma$ and they are
distinct, unless $\sigma$ is a branch point of $\operatorname{sp}(\mu)[8]$. Associated to the function $h_{z}$ we have the Poisson kernel

$$
P_{z}(\gamma, \omega)=\lim _{\psi \rightarrow \omega} \frac{h_{z}\left(\psi^{-1} \gamma\right)}{h_{z}\left(\psi^{-1}\right)}
$$

where $\gamma \in(\Gamma, A)$ and $\omega \in \Omega_{A}$. Suppose that $\gamma$ and $\omega$ agree through their first $s$ letters, but not further. Let $\gamma=a_{i_{1}} \ldots a_{i_{s}} a_{i_{s+1}} \ldots a_{i_{n}}$ and $\omega=a_{i_{1}} \ldots a_{i_{8}} a_{j_{1}} a_{j_{2}} a_{j_{3}} \ldots$ Choose $\psi=a_{i_{1}} \ldots a_{i_{i}}, a_{j_{1}} \ldots a_{j_{t}}$. Then we have the following explicit expression for $P_{z}(\gamma, \omega)$ :

$$
\begin{aligned}
P_{z}(\gamma, \omega) & =\lim _{t \rightarrow+\infty} \frac{h_{z}\left(\psi^{-1} \gamma\right)}{h_{z}\left(\psi^{-1}\right)} \\
& =\lim _{t \rightarrow+\infty} \frac{h_{z}\left(a_{j_{t}}^{-1} \ldots a_{j_{1}}^{-1} a_{i_{s}+1} \ldots a_{i_{n}}\right)}{h_{z}\left(a_{j_{t}}^{-1} \ldots a_{j_{1}}^{-1} a_{i_{s}}^{-1} \ldots a_{i_{q}}^{-1}\right)} \\
& =\xi_{i_{1}}^{-1} \ldots \xi_{i_{g}}^{-1} \xi_{i_{i_{+1}}} \ldots \xi_{i_{n}} .
\end{aligned}
$$

Let $\sigma \in s p(\mu)$ and suppose that $\sigma$ is neither zero nor a branch point of $s p(\mu)$. In order to define a positive Radon measure on $\Omega_{A}$ it is possible to consider only the following sets $\Omega_{A}(x)=\left\{\omega \in \Omega_{A} \mid \omega\right.$ starts with $\left.x\right\}$, $[8]$. Let $O \in \Phi_{A}$ be the vertex corresponding to the identity element $e$ of $\Gamma$. We define

$$
\nu_{O, \sigma}\left(\Omega_{A}(x a)\right)=\left|h_{\sigma}(x)\right|^{2} \frac{\left|\xi_{a}\right|^{2}}{1+\left|\xi_{a}\right|^{2}}
$$

where $a \in A$ with $|x a|=|x|+1$. With $|x|$ we mean the usual length of the reduced word $x$, that is the distance of the vertex $x$ from the origin $O$ of $\Phi_{A}$.

Let $\Gamma(x)=\{y \in \Gamma \mid y$ starts with $x\}$.
Proposition. For every $\gamma \in(\Gamma, A)$ we have:
(i) $\gamma \Omega_{A}(x)=\Omega_{A}(\gamma x)$, if $\gamma \notin \Gamma(x)$
(ii) $\nu_{\gamma O, \sigma}(\gamma E)=\nu_{O, \sigma}(E)$
for every borel set $E$.
Proof: (i) follows from the definition of $\Omega_{A}(x)$.
(ii) $\gamma$ preserves the tree structure, so

$$
\begin{equation*}
\nu_{\gamma O, \sigma}\left(\gamma \Omega_{A}(x)\right)=\nu_{\gamma O, \sigma}\left(\Omega_{A}(\gamma x)\right)=\nu_{O, \sigma}\left(\Omega_{A}(x)\right) . \tag{0}
\end{equation*}
$$

In particular we get $\nu_{\gamma^{-1} O, \sigma}(E)=\nu_{O, \sigma}(\gamma E)$.

Now we can define the anisotropic principal series of $\Gamma$. Given $\sigma \in s p(\mu)$, neither zero nor a branch point of $s p(\mu)$, the boundary representation constructed by $(\nu, P)$ acting on $L^{2}(\Omega, d \nu)$ is defined as follows:

$$
\left[\pi_{\sigma}(\gamma) F\right](\omega)=P_{\sigma+i 0}(\gamma, \omega) F\left(\gamma^{-1} \omega\right)
$$

Conditions (1) and (2) guarantee that $\pi_{\sigma}(\gamma)$ takes $\nu$-measurable functions to $\nu$ measurable functions, condition (3) guarantees that $\pi_{\sigma}(\gamma)$ acts unitarily on $L^{2}(\Omega, d \nu)$ and condition (4) guarantees that $\pi_{\sigma}\left(\gamma_{1} \gamma_{2}\right)=\pi_{\sigma}\left(\gamma_{1}\right) \pi_{\sigma}\left(\gamma_{2}\right)$.

## 3. Main results

In the sequel, we need to assume the following conditions. We note all of them with [ 0 ]:

Let $\gamma$ be a free group on finitely many generators. Fix two new bases for $\Gamma$ and let $A_{1}$ and $A_{2}$ consist of the new basis elements and their inverses. Construct the Cayleygraphs $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ related to $A_{1}$ and $A_{2}$ on which $\Gamma$ acts by left multiplication. Let $\pi_{1}$ be a representation in the anisotropic principal series of $\left(\Gamma, A_{1}\right)$ and $\pi_{2}$ be a representation in the anisotropic principal series of ( $\Gamma, A_{2}$ ).

Our goal consists of the following statement
ThEOREM 1. We suppose that $[ \rangle]$ holds. If $\pi_{1} \simeq \pi_{2}$ then there exists a treeisomorphism $j: \Phi_{A_{1}} \rightarrow \Phi_{A_{2}}$ such that the following diagram is commutative for every $\gamma \in \Gamma$,

where $\gamma(\cdot)$ means the action of left multiplication by the word $\gamma$ thought of an element in ( $\Gamma, A_{1}$ ) and ( $\Gamma, A_{2}$ ) respectively.

Corollary. We suppose that $[0]$ holds. Then there exists an element $\gamma_{0} \in \Gamma$ such that $A_{2}=\gamma_{0}^{-1} A_{1} \gamma_{0}$.

In what follows, when $z \in \operatorname{sp}(\mu)$, it is convenient to denote the multiplicative function $h_{z}$ by $h$ only.

Observe that using techniques of Bishop-Steger [2], Figà-Talamanca and Nebbia [6] and Figà-Talamanca and Steger [8] we get

Theorem 2. Suppose [ $\left\langle\right.$ ] holds. Let $h_{1}$ and $h_{2}$ be the multiplicative functions related to the choice of the sets $A_{1}$ and $A_{2}$. If $\pi_{1} \simeq \pi_{2}$ then

$$
\sum_{\gamma \in \Gamma}\left[\left|h_{1}(\gamma)\right|\left|h_{2}(\gamma)\right|\right]^{1 /(1+\delta)}=+\infty
$$

for every positive $\delta$.
For the proof of this theorem we need the following results.
Lemma A. Let $\pi_{\sigma}$ be a $\Gamma$-representation in the anisotropic principal series. Construct the self-adjoint operator $\pi_{\sigma}(\mu)$, acting on the $\Gamma$-representation space, obtained from the usual extension of $\pi_{\sigma}$ to $l^{1}(\Gamma)$. Then for every $\varepsilon>0$ we have

$$
\left[\sigma+i \varepsilon-\pi_{\sigma}(\mu)\right]^{-1}=\pi_{\sigma}\left[(\sigma+i \varepsilon-\mu)^{-1}\right]
$$

Proof: We have only to note that, for $\varepsilon$ sufficiently large

$$
g_{\sigma+i e}=(\sigma+i \varepsilon-\mu)^{-1} \in l^{1}(\Gamma)
$$

hence

$$
\left[\sigma+i \varepsilon-\pi_{\sigma}(\mu)\right]^{-1}=\pi_{\sigma}\left[g_{\sigma+i \varepsilon}\right]
$$

Then we extend this result to small $\varepsilon$, by analytic continuation.
Lemma B. Let $\pi_{\sigma}$ be a representation in the anisotropic principal series of $\Gamma$. For every $v_{1}$ and $v_{2}$, chosen from the dense set in the representation space $H$, of linear combinations of left translates of a cyclic vector, there exists a constant $C$ such that

$$
\left|\left\langle\pi_{\sigma}(\gamma) v_{1}, v_{2}\right\rangle\right| \leqslant C\left|h_{\sigma}(\gamma)\right| .
$$

where $h_{\sigma}$ is the related multiplicative function.
Proof: Recall that $\pi_{\sigma}$ has associated to it a positive definite function $\phi_{\sigma}$ defined as follows:

$$
\phi_{\sigma}(\gamma)=\frac{g_{\sigma+i 0}(\gamma)-g_{\sigma-i 0}(\gamma)}{g_{\sigma+i 0}(e)-g_{\sigma-i 0}(e)}
$$

So for fixed $\sigma \in s p(\mu)$ and for a cyclic vector 1 , in the above dense set, we have

$$
\left|\left\langle\pi_{\sigma}(\gamma) 1,1\right\rangle\right|=\left|\phi_{\sigma}(\gamma)\right| \leqslant C\left|h_{\sigma}(\gamma)\right| .
$$

Then

$$
\begin{aligned}
\left|\left\langle\pi_{\sigma}(\gamma) v_{1}, v_{2}\right\rangle\right| & =\left|\left\langle\pi_{\sigma}(\gamma) \pi_{\sigma}\left(\gamma_{1}\right) 1, \pi_{\sigma}\left(\gamma_{2}\right) 1\right\rangle\right| \\
& =\left|\left\langle\pi_{\sigma}\left(\gamma_{2}^{-1} \gamma \gamma_{1}\right) 1,1\right\rangle\right| \\
& \leqslant C\left|h_{\sigma}\left(\gamma_{2}^{-1} \gamma \gamma_{1}\right)\right| \\
& \leqslant \frac{C}{\left|h_{\sigma}\left(\gamma_{2}^{-1}\right)\right|\left|h_{\sigma}\left(\gamma_{1}\right)\right|}\left|h_{\sigma}(\gamma)\right| .
\end{aligned}
$$

So by taking $C=C\left(\gamma_{1}, \gamma_{2}\right)=C /\left(\left|h_{\sigma}\left(\gamma_{2}^{-1}\right)\right|\left|h_{\sigma}\left(\gamma_{1}\right)\right|\right)$ we get the result.

Lemma C. For every $\delta>0$ there exists $\varepsilon_{0}>0$ such that

$$
\left|h_{\sigma+i c}(\gamma)\right| \leqslant\left|h_{\sigma}(\gamma)\right|^{1 /(1+6)}
$$

for every $0<\varepsilon<\varepsilon_{0}$ and $\gamma$ in $\Gamma$.
Proof: We have only to prove this on the set $A$ of generators and their inverses. Fix $a \in A$. Since $\left|h_{\sigma}(a)\right| \leqslant 1$ we have $\left|h_{\sigma}(a)\right|<\left|h_{\sigma}(a)\right|^{1 /(1+\delta)}$. Since

$$
\lim _{e \rightarrow 0^{+}} h_{\sigma+i e}(a)=h_{\sigma}(a)
$$

it is possible to select $\varepsilon_{0}>0$ such that

$$
\max _{0 \leqslant e \leqslant e_{0}}\left|h_{\sigma+i e}(a)\right| \leqslant\left|h_{\sigma}(a)\right|^{1 /(1+\delta)}
$$

By choosing some $\varepsilon_{0}$ which works for all $a \in A$, we get the result.
Proof of Theorem 2: We consider the self-adjoint operators

$$
\pi_{2}\left(\mu_{2}\right): H_{2} \longrightarrow H_{2} \text { and } \pi_{1}\left(\mu_{2}\right): H_{1} \longrightarrow H_{1}
$$

There exists a vector $v_{0,2} \neq 0$ such that $\pi_{2}\left(\mu_{2}\right) v_{0,2}=\sigma_{2} v_{0,2}$ [8]. Because $\pi_{2} \simeq \pi_{1}$ there exists a unitary map $J: H_{2} \longrightarrow H_{1}$ such that

is commutative. Then

$$
\pi_{1}\left(\mu_{2}\right) J v_{0,2}=J \pi_{2}\left(\mu_{2}\right) v_{0,2}=J \sigma_{2} v_{0,2}=\sigma_{2} J v_{0,2}
$$

As a consequence of Spectral Theorem

$$
\text { weak } \lim _{\varepsilon \rightarrow 0^{+}} i \varepsilon\left(\sigma_{2}+i \varepsilon-\pi_{1}\left(\mu_{2}\right)\right)^{-1}
$$

exists and it is not zero.
Hence for all vectors $v_{1}$ and $v_{2}$ chosen from the dense set in $H_{1}$ of linear combination of left translates of a cyclic vector, let it be 1 , we have

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left\langle i \varepsilon\left[\sigma_{2}+i \varepsilon-\pi_{1}\left(\mu_{2}\right)\right]^{-1} v_{1}, v_{2}\right\rangle \neq 0
$$

Fix $\varepsilon>0$. Then

$$
\begin{aligned}
0 & \neq\left|\left\langle i \varepsilon\left[\sigma_{2}+i \varepsilon-\pi_{1}\left(\mu_{2}\right)\right]^{-1} v_{1}, v_{2}\right\rangle\right| \quad \text { (from Lemma A) } \\
& =\left|\left\langle i \varepsilon \pi_{1}\left[\left(\sigma_{2}+i \varepsilon-\mu_{2}\right)^{-1}\right] v_{1}, v_{2}\right\rangle\right| \\
& =\frac{\varepsilon}{2\left|w_{\sigma_{2}+i e}\right|}\left|\sum_{\gamma \in \Gamma} h_{\sigma_{2}+i \varepsilon}(\gamma)\left\langle\pi_{1}(\gamma) v_{1}, v_{2}\right\rangle\right| \\
& \leqslant \frac{\varepsilon}{2\left|w_{\sigma_{2}+i e}\right|} \sum_{\gamma \in \Gamma}\left|h_{\sigma_{2}+i e}(\gamma)\right|\left|\left\langle\pi_{1}(\gamma) v_{1}, v_{2}\right\rangle\right| \quad \text { (from Lemma B) } \\
& \leqslant \frac{C \varepsilon}{2\left|w_{\sigma_{2}+i e}\right|} \sum_{\gamma \in \Gamma}\left|h_{\sigma_{2}+i e}(\gamma)\right|\left|h_{1}(\gamma)\right| \quad \text { (from Lemma C) } \\
& \left.\leqslant C \varepsilon \sum_{\gamma \in \Gamma}\left[\left|h_{2}(\gamma)\right|\right]^{1 /(1+\delta)}\left[\left|h_{1}(\gamma)\right|\right]^{1 /(1+\delta)} \quad \text { (for } 0<\varepsilon<\varepsilon_{0}\right) .
\end{aligned}
$$

By taking the limit as $\varepsilon$ goes to zero, we get the result.
So we resolve our initial problem, proving the following theorem
Theorem 3. Let $\Gamma$ be a free group on finitely many generators. Fix two new bases for $\Gamma$ and let $A_{1}$ and $A_{2}$ consist of the new basis elements and their inverses. Construct the Cayley-graphs $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ related to $A_{1}$ and $A_{2}$ on which $\Gamma$ acts by left multiplication. Let $h_{1}$ and $h_{2}$ be the multiplicative functions related to the choice of the sets $A_{1}$ and $A_{2}$. If for every positive $\delta$

$$
\sum_{\gamma \in \Gamma}\left[\left|h_{2}(\gamma)\right|\right]^{1 /(1+\delta)}\left[\left|h_{1}(\gamma)\right|\right]^{1 /(1+\delta)}=+\infty
$$

then there exists a tree-isomorphism $j: \Phi_{A_{1}} \longrightarrow \Phi_{A_{2}}$ such that the following diagram is commutative for every $\gamma \in \Gamma$

where $\gamma(\cdot)$ means the action of left multiplication by the word $\gamma$ thought of as an element in ( $\Gamma, A_{1}$ ) and ( $\Gamma, A_{2}$ ) respectively.

The proof of this result depends on a result of Culler-Morgan on $\mathbb{R}$-trees [5]. Select a Cayley-graph $\Phi_{A}$ related to ( $\Gamma, A$ ) and assign the following distance on it:

$$
d(x, y)=\log \frac{1}{\left|h\left(x^{-1} y\right)\right|^{2}}
$$

Then we define the translation length function $l$ of $\Gamma$ as follows:

$$
\begin{aligned}
l: \Gamma & \longrightarrow[0,+\infty) \\
\gamma & \longrightarrow l(\gamma)=\inf _{x \in \Phi_{A}} d(x, \gamma x)
\end{aligned}
$$

Now we can state the following result [5].
Theorem 4. (Culler-Morgan) Suppose that $T_{1} \times G \longrightarrow T_{1}$ and $T_{2} \times G \longrightarrow T_{2}$ are two minimal semisimple actions of a group $G$ on $\mathbb{R}$-trees with the same translation length function. Then there exists an equivariant isometry from $T_{1}$ to $T_{2}$. If either action is not a shift then the equivariant isometry is unique.

Remember that $\Gamma$ acts by left multiplication on one of its Cayley-graphs, so in a minimal and semisimple way as required by Culler-Morgan.

In the next section technical results are described, in order to apply the previous theorem. The proof of Theorem 3 will be exposed in Section 5.

## 4. Technical results

The following useful lemmas are easily obtained, with small changes, from their analogues in the isotropic case, so we refer to [14] for the proof.

We want to point out, once and for all, some assumptions that repeatedly occur in the following.

Let $\Gamma$ be a free group. We fix two bases for $\Gamma$ and let $A_{0}$ and $A$ consist of the basis elements and their inverses respectively. We shall use $A_{0}$ to define the set $L(\gamma)$ and $A$ to construct a Cayley-graph $\Phi_{A}$ on which $\Gamma$ acts by left multiplication.

Definition 1: For every $\gamma, \gamma^{\prime} \in \Gamma$ we define the following set:
$L(\gamma)=\left\{\omega \in \Omega_{A} \mid \omega\right.$ is a limit of points of type $\gamma \gamma^{\prime} O$ where $\left.\left|\gamma \gamma^{\prime}\right|=|\gamma|+\left|\gamma^{\prime}\right|\right\}$.
(In particular $L(e)=\Omega_{A}$ ).
Definition 2: Fix $\sigma \in s p(\mu)$ where $\mu$ is a probability measure on $A$. We define for every $\gamma \in \Gamma$ the following function:

$$
B(\gamma)=B_{\sigma}(\gamma)=\nu_{O, \sigma}(L(\gamma))
$$

where $\nu_{0, \sigma}$ is the positive Radon measure previously defined on $\Omega_{A}$.
Lemma 1. Fix $O \in \Phi_{A}$ and $\sigma \in s p(\mu)$. Then there exists a constant $C$ such that

$$
|h(\gamma)|^{2} \leqslant C B(\gamma)
$$

for every $\boldsymbol{\gamma} \in \Gamma$.
Lemma 2. Fix $\gamma_{0} \in \Gamma$ and $\sigma \in \operatorname{sp}(\mu)$ (where $\mu$ is a probability measure on $A$ ). Then there exists a constant $M_{0}$, depending only on the last letter of $\gamma_{0}$, such that for $\gamma_{1} \in \Gamma$ with $\left|\gamma_{1} \gamma_{0}\right|=\left|\gamma_{1}\right|+\left|\gamma_{0}\right|$ and $B\left(\gamma_{1}\right)<\min _{a \in A}\left|\xi_{a}\right|^{2} /\left(1+\left|\xi_{a}\right|^{2}\right)$ we have

$$
\frac{B\left(\gamma_{1} \gamma_{0}^{m}\right)}{B\left(\gamma_{1} \gamma_{0}^{m+1}\right)}=e^{ \pm l\left(\gamma_{0}\right)}
$$

for all $m \geqslant 1$ except at most $M_{0}$ values.
Lemma 3. There exists a constant $\eta_{0}>0$ such that for every $\gamma_{1}, a \in \Gamma$ with $|a|=1$ and $\left|\gamma_{1} a\right|=\left|\gamma_{1}\right|+1$

$$
\frac{B\left(\gamma_{1} a\right)}{B\left(\gamma_{1}\right)} \geqslant \eta_{0}
$$

holds.
Corollary. For every $\gamma \in \Gamma$ with $|\gamma| \geqslant 1$

$$
B(\gamma) \leqslant\left[1-(q-1) \eta_{0}\right]^{|\gamma|}
$$

holds.
Let $\Gamma$ be a free group and $A_{0}, A_{1}, A_{2}$ fixed generator sets, with their inverses. As usual we use $A_{0}$ to define the sets $L(\gamma)$ for every $\gamma \in \Gamma, A_{1}$ and $A_{2}$ to define the following objects:
two Cayley-graphs $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ on which $\Gamma$ acts by left multiplication; the multiplicative functions $h_{1}$ and $h_{2}$;
the boundary measures through which we construct the functions $B_{1}$ and $B_{2}$.
Lemma 4. If for every $\delta>0$

$$
\sum_{\gamma \in \Gamma}\left\{\left[B_{1}(\gamma)\right]^{1 / 2}\left[B_{2}(\gamma)\right]^{1 / 2}\right\}^{1 /(1+\delta)}=+\infty
$$

then for every natural numbers $N$ and $N^{\prime}$ and for every $\varepsilon>0$ and $c \in A_{0}$, there exists $\gamma_{2} \in \Gamma$ with $\left|\gamma_{2}\right| \geqslant N$ such that $\gamma_{2}$ ends with $c$ and

$$
\left|\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{\prime}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{\prime \prime}\right)}-\frac{B_{2}\left(\gamma_{2} \gamma_{0}^{\prime}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{\prime \prime}\right)}\right|<\varepsilon
$$

where $\left|\gamma_{0}^{\prime}\right|$ and $\left|\gamma_{0}^{\prime \prime}\right| \leqslant N^{\prime}$ and $\left|\gamma_{2} \gamma_{0}^{\prime}\right|=\left|\gamma_{2}\right|+\left|\gamma_{0}^{\prime}\right|$ and $\left|\gamma_{2} \gamma_{0}^{\prime \prime}\right|=\left|\gamma_{2}\right|+\left|\gamma_{0}^{\prime \prime}\right|$.

## 5. Proof of Theorem 3

We divide it into two steps.
First of all from Lemma 1, there exists a positive constant $C$ such that for every $\gamma \in \Gamma$

$$
\left|h_{1}(\gamma)\right|^{2} \leqslant C B_{1}(\gamma)
$$

and

$$
\left|h_{2}(\gamma)\right|^{2} \leqslant C B_{2}(\gamma) .
$$

So for every $\delta>0$

$$
C \sum_{\gamma \in \Gamma}\left\{\left[B_{1}(\gamma)\right]^{1 / 2}\left[B_{2}(\gamma)\right]^{1 / 2}\right\}^{1 /(1+\delta)} \geqslant \sum_{\gamma \in \Gamma}\left[\left|h_{1}(\gamma)\right|\left|h_{2}(\gamma)\right|\right]^{1 /(1+\delta)}=+\infty
$$

Step one.

## Claim:

If for every $\delta>0$

$$
\sum_{\gamma \in \Gamma}\left\{\left[B_{1}(\gamma)\right]^{1 / 2}\left[B_{2}(\gamma)\right]^{1 / 2}\right\}^{1 /(1+\delta)}=+\infty
$$

then

$$
l_{1}(\gamma)=l_{2}(\gamma)
$$

for every $\gamma \in \Gamma$, where $l_{1}$ and $l_{2}$ are the translation length functions related to $h_{1}$ and $h_{2}$.

We prove this by contradiction. Fix $\gamma_{0} \in \Gamma$. We can choose a unique constant $M_{0}$ such that Lemma 2 holds for both the actions of $\Gamma$, one on $\Phi_{A_{1}}$ and the other on $\Phi_{A_{2}}$. Fix $N^{\prime}=\left(2+2 M_{0}\right)\left|\gamma_{0}\right|$. From the corollary to Lemma 3, we can choose $N$ such that $\left|\gamma_{1}\right| \geqslant N$ implies $B_{1}\left(\gamma_{1}\right)<\min _{a \in A_{1}}\left|\xi_{a}\right|^{2} /\left(1+\left|\xi_{a}\right|^{2}\right)$ and $B_{2}\left(\gamma_{1}\right)<\min _{a \in A_{2}}\left|\xi_{a}\right|^{2} /\left(1+\left|\xi_{a}\right|^{2}\right)$. Suppose that

$$
e^{l_{1}\left(\gamma_{0}\right)} \neq e^{l_{2}\left(\gamma_{0}\right)}
$$

Let $0<\varepsilon<1$ be such that

$$
\left|e^{-l_{1}\left(\gamma_{0}\right)}-e^{-l_{2}\left(\gamma_{0}\right)}\right|>\varepsilon .
$$

Let $c \in \Gamma$ be a letter such that $|c|=1$ and $\left|c \gamma_{0}\right|=1+\left|\gamma_{0}\right|$. By applying Lemma 4, with $N, N^{\prime}, \varepsilon$ and $c$ chosen as above, there exists $\gamma_{2} \in \Gamma$ with $\left|\gamma_{2}\right| \geqslant N$ such that $\gamma_{2}$ ends with $c$ and

$$
\left|\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{\prime}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{\prime \prime}\right)}-\frac{B_{2}\left(\gamma_{2} \gamma_{0}^{\prime}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{\prime \prime}\right)}\right|<\varepsilon
$$

where $\left|\gamma_{0}^{\prime}\right|$ and $\left|\gamma_{0}^{\prime \prime}\right| \leqslant N^{\prime}$ and $\left|\gamma_{2} \gamma_{0}^{\prime}\right|=\left|\gamma_{2}\right|+\left|\gamma_{0}^{\prime}\right|$ and $\left|\gamma_{2} \gamma_{0}^{\prime \prime}\right|=\left|\gamma_{2}\right|+\left|\gamma_{0}^{\prime \prime}\right|$.
From this last result, it follows that

$$
\left|\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{m+1}\right)}-\frac{B_{2}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{m+1}\right)}\right|<\varepsilon
$$

for $1 \leqslant m \leqslant 2 M_{0}+1$. Remember, $\left|\gamma_{2}\right| \geqslant N$ and $B_{1}\left(\gamma_{1}\right)<\min _{a \in A_{1}}\left|\xi_{a}\right|^{2} /\left(1+\left|\xi_{a}\right|^{2}\right)$ and $B_{2}\left(\gamma_{1}\right)<\min _{a \in A_{2}}\left|\xi_{a}\right|^{2} /\left(1+\left|\xi_{a}\right|^{2}\right)$ and that $\gamma_{2}$ ends with $c$ where $\left|\gamma_{2} \gamma_{0}\right|=\left|\gamma_{2}\right|+\left|\gamma_{0}\right|$. Then from Lemma 2, there are at most $M_{0}$ values of $m$ such that

$$
\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{m+1}\right)} \notin\left\{e^{ \pm l_{1}\left(\gamma_{0}\right)}\right\} \text { and } \frac{B_{2}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{m+1}\right)} \notin\left\{e^{ \pm l_{1}\left(\gamma_{0}\right)}\right\}
$$

Then there exists at least one value of $m$ with $1 \leqslant m \leqslant 2 M_{0}+1$ such that

$$
\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{m+1}\right)} \in\left\{e^{ \pm l_{1}\left(\gamma_{0}\right)}\right\} \text { and } \frac{B_{2}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{m+1}\right)} \in\left\{e^{ \pm l_{1}\left(\gamma_{0}\right)}\right\} .
$$

So

$$
\left|\frac{B_{1}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{1}\left(\gamma_{2} \gamma_{0}^{m+1}\right)}-\frac{B_{2}\left(\gamma_{2} \gamma_{0}^{m}\right)}{B_{2}\left(\gamma_{2} \gamma_{0}^{m+1}\right)}\right| \geqslant\left|e^{-l_{1}\left(\gamma_{0}\right)}-e^{-l_{2}\left(\gamma_{0}\right)}\right|>\varepsilon
$$

and this is a contradiction.
Step two.
We think of $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ as $\mathbb{R}$-trees endowed with the canonical distance, the one which assigns distance 1 to two neighbouring vertices. $\Gamma$ acts in a minimal and semisimple way. Besides the translation length functions of $\Gamma$ on the two $\mathbb{R}$-trees are the same, so applying the result of Culler and Morgan stated in Theorem 4, we get the result.

Now we prove the Corollary to Theorem 1.
Proof of Corollary: From Theorem 1, there exists a tree isomorphism

$$
j: \Phi_{A_{1}} \longrightarrow \Phi_{A_{2}}
$$

such that for every $\gamma \in \Gamma$ the following diagram is cummutative:

where $\gamma(\cdot)$ means the action of left multiplication by the word $\gamma$ thought of as an element of ( $\Gamma, A_{1}$ ) and ( $\Gamma, A_{2}$ ) respectively.

This is, $j \circ \gamma(\cdot)=\gamma(\cdot) \circ j$ for every $\gamma \in \Gamma$. As usual, it is better to identify the vertices with the corresponding group elements. Let $e$ be the identity element of ( $\Gamma, A_{1}$ ). Then for every $\gamma$ thought of as an automorphism of $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ we have

$$
j(\gamma)=\gamma j(e)
$$

We define $j(e)=\gamma_{0}$. So $j(\gamma)=\gamma \gamma_{0}$. The edges of $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ are of ( $\left.\gamma, \gamma a\right)$-type where $a \in A_{1}$ and $a \in A_{2}$ respectively. The neighbours of $\gamma$ in $\Phi_{A_{1}}$ and $\Phi_{A_{2}}$ are $\{\gamma a\}_{a \in A_{1}}$ and $\{\gamma a\}_{a \in A_{2}}$. Then we have

$$
\begin{array}{rlrl} 
& & \{j(\gamma a)\}_{a \in A_{1}} & =\{j(\gamma) a\}_{a \in A_{2}} \\
\leftrightarrow & \left\{\gamma a \gamma_{0}\right\}_{a \in A_{1}} & =\left\{\gamma \gamma_{0} a\right\}_{a \in A_{2}} \\
\leftrightarrow & & \left\{a \gamma_{0}\right\}_{a \in A_{1}} & =\left\{\gamma_{0} a\right\}_{a \in A_{2}} \\
\leftrightarrow & \gamma_{0} A_{1} \gamma_{0}^{-1} & =A_{2} .
\end{array}
$$

Hence we obtain an anisotropic principal series of $\Gamma$ equivalent to the original one if and only if we interchange the generators of $\Gamma$ and their related measure (in this case $\gamma_{0}=e$ ) or we replace some of them with their inverses (again we have $\gamma_{0}=e$ ) or we apply conjugation by $\gamma \in \Gamma$ (in this case $\gamma_{0}=\gamma$ ) or we combine these kinds of operations.

## References

[1] K. Aomoto, 'Spectral theory on a free group and algebraic curves', J. Fac. Sci. Univ. Tokyo Sec. IA Math. 31 (1984), 297-318.
[2] C. Bishop and T. Steger, 'Three rigidity criteria for PSL(2, R)', Bull. Amer. Math. Soc. 24 (1991), 117-123.
[3] P. Cartier, 'Geometrie et analyse sur le arbres’, Sem. Bourbaki 24 (1971-72).Expose 407 Lecture Notes in Math. 317 (Springer Verlag, Berlin, 1973), pp. 123-140.
[4] M. Cowling and T. Steger, 'The irreducibility of restrictions of unitary representations of lattices', J. Reine Angew. Math. 420 (1991), 85-98.
[5] M. Culler and J. Morgan, 'Groups acting on R-trees', Proc. London Math. Soc. 55 (1985), 571-604.
[6] A. Figà-Talamance and C. Nebbia, Harmonic analysis and representation theory for groups acting on homogeneous trees, London Math. Soc. Lecture Note Series 162 (Cambridge University Press, Cambridge, 1991).
[7] A. Figà-Talamanca and A.M. Picardello, Harmonic analysis on free groups, Lecture Notes in Pure and Appl. Math. 87 (Marcel Dekker, New York, 1983).
[8] A. Figà-Talamanca and T. Steger, 'Harmonic analysis on trees', Sympos. Math. 29 (1987), 163-182.
[9] P. Gerl and W. Woess, 'Local limits and harmonic functions for nonisotropic random walks on free groups', Probab. Theory Related Fields 71 (1986), 341-355.
[10] H. Kesten, 'Symmetric random walks on groups', Trans. Amer. Math. Soc. 92 (1959), 336-354.
[11] G. Kuhn and T. Steger, 'A characterization of spherical series representations of free group', Proc. Amer. Math. Soc. 113 (1991), 1085-1096.
[12] A.M. Mantero and A. Zappa, 'The Poisson transform on free groups and uniformly bounded representations', J. Funct. Anal. 51 (1983), 372-399.
[13] A.M. Mantero and A. Zappa, 'Irreducibility of the analytic continuation of the principal series of a free group', J. Austral. Math. Soc. Ser. A 43 (1987), 199-210.
[14] C. Pensavalle, 'Spherical principal series and generators of a free group', Boll. Un. Math. Ital. (to appear).
[15] T. Pytlik, 'Radial functions on free groups and a decomposition of the regular representation into irreducible components', J. Reine Angew. Math. 326 (1981), 123-135.
[16] W. Woess, 'Context-free languages and random walks on groups', Discrete Math. 67 (1987), 81-87.

Istituto di Matematica
Università di Sassari
Via Vienna 2
07100 Sassari
Italy


[^0]:    Received 30 March 1993
    With great pleasure, the author sincerely thanks Tim Steger and Gabriella Kuhn for their interesting suggestions and discussions.

