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ANISOTROPIC PRINCIPAL SERIES AND GENERATORS
OP A FREE GROUP

CARLO PENSAVALLE

In this paper we prove that the equivalence of anisotropic principal series of a free
group F related to different generator sets induces a F-isomorphism between the
related Cayley-graphs. As a consequence we obtain that a nontrivial change of
generators for T leads to inequivalent anisotropic principal series.

1. INTRODUCTION

The subject of this paper is discrete noncommutative harmonic analysis, and more
precisely harmonic analysis for anisotropic random walks of a finitely generated free
group F on homogeneous trees. Various explicit constructions of irreducible unitary
representations of F may be found in Cartier [3] Figa-Talamanca and Picardello [7],
Pytlik [15], Mantero and Zappa [12, 13], Cowling and Steger [4], Kuhn and Steger [11]
and Figa-Talamanca and Steger [8]. Almost of all the representations constructed may
be realised as boundary representations of F .

We are particularly interested in the study of the representations belonging to the
anisotropic principal series of P. This work arises from a generalisation of a result that
was obtained analysing the isotropic case [14]. We fix two bases for F and construct the
corresponding Cayley-graphs on which F acts by left multiplication. Now we select two
representations -K\ and tti, one in each of the anisotropic principal series of F related to
the fixed bases. We prove that if -K\ and JTJ are equivalent as unitary representations,
then there exists a F-isomorphism of trees between the Cayley-graphs considered. As
a consequence of this result we obtain that a nontrivial change of generators in a free
group leads to inequivalent families of anisotropic principal representations of F. Using
a result of Culler and Morgan on R-trees [5] this is equivalent to the claim that the
length translation function related to the chosen generator sets are inequivalent.
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2. DEFINITIONS AND GENERAL RESULTS

Let (F, A) be a noncommutative free group on finitely many generators, where
A — {a,j | Oj- £ F with j — 1, ..., q + 1} consists of the basis elements and their
inverses. Let 9 A be the Cayley-graph of (F, A), and CIA be its boundary. We iden-
tify the vertices of 9A with the group elements generated by {oi, . . . , a,+i} and the
boundary CIA of &A with the set of all infinite reduced words w = a.jx a.j2 • • • . A bound-
ary representation of (F, A) belonging to the anisotropic principal series of (F, A) is
obtained from a particular pair (v, P) where:

(1) v is a Radon measure on fl^, and for every 7 G (F, A) we have that
dvyy~1wj is absolutely continuous with respect to dv(u>).

(2) P mapping (F, A) x UA —> C is (/-measurable in u;.

(3) | P ( 7 , a , ) | a = « k ( 7 -
(4) P(7i72, w) = P(7i,

By going through this construction we obtain a boundary representation which
naturally acts on L2(Q, dv). First of all we start characterising the pair {v, P) as
described, for example, in Figa-Talamanca-Steger [8].

On (F, A) we fix a real probability measure fi 6 ^(T), supported on A and
symmetric, [10]. Observe that the operator R given by Rf = f*fi is bounded linear and
self-adjoint on /2(F), with norm not greater then 1. Therefore its spectrum, denoted
sp(fi), as an operator on 22(F) is a closed subset of the interval [—1, 1]. If z is a complex
number, z ^ ap(fj.), then (z — R)~ is a bounded operator on Z2(F) and it is possible
to see its action as the right convolution operation by some function gz = (z — /i)"1

defined in the convolution algebra /1(F). This function gz, which is called the Green
function, is of a special type as proved in the following lemma basically due to Aomoto
[1] and to Gerl and Woess [9, 16].

LEMMA. Let z be complex number not in the spectrum of \x. If z / 0 then there
exist w e C, an appropriate choice of ±, and a multiplicative function hz on (F, A),
that is: /i*(7i72) = M 7 i ) M 7 a ) waen I7172I = l7il + I72I, such that:

(0 *(7) = (M7))/(2«0
(ii) hz(d) = fo for every a 6 A

(iii) z = -{q - l)w + ^

where £a = l//x(a)( ±y/w2 + (i?(a) — wj .

The functions gz, as functions of z are defined on C \ sp(fi). But they may
be analytically continued on a compact Riemann surface S containing C \ sp(fi) as
a subset. This can be used to prove that, for a E ap{fi), lim J(T+K(7) = <7<r+io(7)
and lim <7<y-»«(7) = <7<7->o(7) exist, determine continuous functions of a and they are
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distinct, unless a is a branch point of sp(fi) [8]. Associated to the function hx we have

the Poisson kernel

where 7 G (F, A) and w £ fix- Suppose that 7 and w agree through their first s

letters, but not further. Let 7 = o», ...a,-,<H,+l •••Oin and u = a,-, . . .a*,a,-,a,,Ojs

Choose rp = a,̂  . . . a;, a^ . . . a.jt. Then we have the following explicit expression for

= Cti • * * ' i , S»,+l • • • ?in •

Let a G sp(/x) and suppose that <r is neither zero nor a branch point of
In order to define a positive Radon measure on O.4 it is possible to consider only the
following sets CIA{*) = {W G UA I « starts with x } , [8]. Let O G $ A be the vertex
corresponding to the identity element e of T. We define

where o 6 i with |xa| = |x| + 1. With |x| we mean the usual length of the reduced

word x, that is the distance of the vertex x from the origin O of &A •

Let T(x) = {y G T | y starts with x}.

PROPOSITION . For every 7 G (I\ A) we have:

(i) 7nyl(x) = n A ( 7 x ) , i / 7 ^ r ( a : )

(ii) v^oAlE) = vo,*{E)

for every borel set E.

PROOF: (i) follows from the definition of n^(x).

(ii) 7 preserves the tree structure, so

In particular we get v^-\o O(E) = vo,o{iE).
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Now we can define the anisotropic principal series of F . Given a 6 sp(fj.), neither
zero nor a branch point of sp(fi), the boundary representation constructed by (u, P)
acting on L2(Q, dv) is defined as follows:

Conditions (1) and (2) guarantee that 7^(7) takes (/-measurable functions to v-

measurable functions, condition (3) guarantees that ira(f) acts unitarily on £2(fi, dv)

and condition (4) guarantees that ^(7172) = ?Ta(7i)iv(72)-

3. MAIN RESULTS

In the sequel, we need to assume the following conditions. We note all of them
with [0]:

Let 7 be a free group on finitely many generators. Fix two neiu bases for F and let
A\ and A2 consist of the new basis elements and their inverses. Construct the Cayley-
graphs $>Ai ani $ A 3 related to A\ and A2 on which F acts by left multiplication.
Let TTI be a representation in the anisotropic principal series of (F, Ai) and W2 be a
representation in the anisotropic principal series of (F, A2).

Our goal consists of the following statement

THEOREM 1 . We suppose that [0] holds. If TTI ~ 7T2 then tAere exists a tree-
isomorphism j : $Ax —* $A2 such that the following diagram is commutative for every

1 e r,

where 7(-) means the action of left multiplication by the word 7 thought of an element
in (F, A\) and (F, A2) respectively.

COROLLARY. We suppose that [0] Aoids. Tien there exists an element 70 € F
such that A2 ="fo1Ai7fO.

In what follows, when z £ sp(fi), it is convenient to denote the multiplicative

function hz by h only.

Observe that using techniques of Bishop-Steger [2], Figa-Talamanca and Nebbia

[6] and Figa-Talamanca and Steger [8] we get

THEOREM 2 . Suppose [0] holds. Let hi and h2 be the multiplicative functions
related to the choice of the sets A\ and A2. If TTI ~ 1T2 then

-rer
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for every positive 8.

For the proof of this theorem we need the following results.

LEMMA A. Let ira be a F-representation in t i e anisotropic principal series. Con-

struct the self-adjoint operator ira(/x), acting on the T-representation space, obtained

from the usual extension of 7ra to ^ ( F ) . Tien for every e > 0 we have

[<r + ie - T

PROOF: We have only to note that, for e sufficiently large

go+ie = (<r + ie - fi)'1 G/X(r)

hence
[<r + ie — i

Then we extend this result to small e, by analytic continuation. D

LEMMA B. Let ira be a representation in the anisotropic principal series of T.
For every vi and t>2 , chosen from the dense set in the representation space H, ofUnear
combinations of left translates of a cyclic vector, there exists a constant C such that

wiere ha is the related multiplicative function.

PROOF: Recall that ira has associated to it a positive definite function 4>a defined

as follows:

So for fixed a € sp(fj,) and for a cyclic vector 1, in the above dense set, we have

Then

-1
)

So by taking C = C(7l) 72) = C/(\h*fol)\ IM7OI) w e 6et t h e resul t- ^
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LEMMA C. For every 6 > 0 there exists e0 > 0 such that

for every 0 < e < eo and 7 in F.

PROOF: We have only to prove this on the set A of generators and their inverses.
Fix o € A. Since | M a ) | ^ 1 w e h a v e IMa)| < \h,,(a)\1/ll+S). Since

lim ha+it(a) = ha(a)
«-»o+

it is possible to select eo > 0 such that

max 1*^(0)1 <|M«0l1/ (1+ i )-

By choosing some eo which works for all o G -A, we get the result. D

PROOF OF THEOREM 2: We consider the self-adjoint operators

There exists a vector t>o,2 ^ 0 such that 7r2(/X2)i>o,2 = °2i'o12 [8]. Because -Ki ~'TTI
there exists a unitary map J: H2 —* H\ such that

is commutative. Then

As a consequence of Spectral Theorem

weak lim ie(«7p2 + *£ — Ti(M2))
e-»0+

exists and it is not zero.
Hence for all vectors v\ and vt chosen from the dense set in H\ of linear combi-

nation of left translates of a cyclic vector, let it be 1, we have

lim (te[<r2 +ie -^(/ij)]"1©!, v2) ^ 0.
e—0+
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Fix e > 0. Then

0 7̂  |{ie[<r2 + te — 7Ti(/i2)]~
1«i» v2}\ (from Lemma A)

(o-2 + *e — ^2)~1]vi, v2)

e

yHf

\h°i+"(y)\ I f a f r K . »2>| (from Lemma B)

(from Lemma C)

(for 0 < e < e0).

By taking the limit as e goes to zero, we get the result. U

So we resolve our initial problem, proving the following theorem

THEOREM 3 . Let F be a free group on finitely many generators. Fix two new
bases for F and let A\ and A2 consist of the new basis elements and their inverses.
Construct the Cayley-graphs $^i and $,1, related to Ai and A2 on which F acts by
left multiplication. Let hi and h2 be the multiplicative functions related to the choice
of the sets Ai and A2 . If for every positive S

then tiere exists a tree-isomorphism j :
is commutative for every 7 G F

such that the following diagram

where f(-) means the action of left multiplication by the word 7 thought of as an
element in (F, A\) and (F, A2) respectively.

The proof of this result depends on a result of Culler-Morgan on K-trees [5]. Select
a Cayley-graph $.4 related to (F, A) and assign the following distance on it:

d(x, y) = log — — — - j .
I M " 1 ) !
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Then we define the translation length function / of F as follows:

/ :r —> [0, +oo)

(x, yx)
A

Now we can state the following result [5].

THEOREM 4 . (Culler-Morgan) Suppose that 7i x G —> 7\ and T2 x G —> T2

are two minimal semisimple actions of a group G on K-frees with the same translation
length function. Then there exists an equivariant isometry from T\ to T2. If either
action is not a shift then the equivariant isometry is unique.

Remember that F acts by left multiplication on one of its Cayley-graphs, so in a
minimal and semisimple way as required by Culler-Morgan.

In the next section technical results are described, in order to apply the previous
theorem. The proof of Theorem 3 will be exposed in Section 5.

4. TECHNICAL RESULTS

The following useful lemmas are easily obtained, with small changes, from their
analogues in the isotropic case, so we refer to [14] for the proof.

We want to point out, once and for all, some assumptions that repeatedly occur in
the following.

Let T be a free group. We fix two bases for F and let Ao and A consist of the
basis elements and their inverses respectively. We shall use Ao to define the set L(y)
and A to construct a Cayley-graph $A on which F acts by left multiplication.

DEFINITION 1: For every y, 7' e F we define the following set:

L(y) = {u> G QA I w is a limit of points of type 77*0 where \fy'\ = I7I + py'l}.

(In particular L[e) = VLA )•

DEFINITION 2: Fix a G sp(fi) where fi is a probability measure on A. We define
for every 7 G F the following function:

where vo,a is the positive Radon measure previously defined on $\A •

LEMMA 1 . Fix O € $A &nd a 6 *P(AO • Tien tiere exists a constant C such
that

|A(7)|2
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for every 7 G F .

LEMMA 2 . Fix 70 G F and a G sp(p) (where (i is a probability measure on A).

Then there exists a constant M o , depending only on the last letter of y0> such that for

71 G F with h ^ o l = I71I + l7o| and Bfrx) < m i n | ^ o | / I I + |&,| ) we have

L = e±'(-n>)

for all m^ 1 except at most Mo values.

LEMMA 3 . There exists a constant 770 > 0 such that for every 71 , a G F with
|o| = l and

holds.

COROLLARY. For every 7 e F with \f\

hoids.

Let F be a free group and Ao, Ai, A2 fixed generator sets, with their inverses. As
usual we use Ao to define the sets £(7) for every 7 G F , A\ and A2 to define the
following objects:

two Cayley-graphs $ ^ t and $Aj on which F acts by left multiplication;
the multiplicative functions hi and h2;

the boundary measures through which we construct the functions B\ and

B2.

LEMMA 4 . If for every 8>Q

-rer

then for every natural numbers N and N' and for every e > 0 and c£ Ao, there exists

72 £ F with I72I ^ N such that 72 ends with c and

<e

where | 7 J | and | 7 » | ^ N' and | 7 2 7 ; | = | 7 2 | + ho\ and ^ ' l = I72I + l7o I
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5. PROOF OF THEOREM 3

We divide it into two steps.

First of all from Lemma 1, there exists a positive constant C such that for every

and

So for every 6 > 0

] 1 / 2 [ ( ] 1 / 2 } 1 / ( 1 + < ) £ [ I M ) I | ( ) ] 1 / ( 1 + * ) = +oo .

STEP ONE.

Claim:
If for every 6 > 0

£{[2M7)]l/a[ft(7)]1/a>1/(1+') =+oo

then

M7) = fe(7)

/or every 7 6 F, where /1 ana1 /2 are <Ae iranj/aiton length functions related to h\ and

h2.

We prove this by contradiction. Fix 70 G F. We can choose a unique con-

stant Mo such that Lemma 2 holds for both the actions of F, one on $Ai and

the other on $A3 . Fix N' = (2 + 2M0) \fO\- From the corollary to Lemma 3,

we can choose N such that |-yxI ^ N implies #1(71) < min |£o| / ( I + |£a| ) and

S 2 ( 7 l ) < min |^o|2 / ( l + \(a\
2) . Suppose that

e'l(7o) U

Let 0 < e < 1 be such that

Let c G F be a letter such that \c\ = 1 and |c-yo| = 1 + |7o|- By applying Lemma 4,
with N, N', e and c chosen as above, there exists 72 G F with I721 ̂  N such that 72
ends with c and
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where |7J| and |7£| < N' and | 7 z 7 i | = |7al + l7ol
From this last result, it follows that

h*7ol = h*l + l7o I

< e

for 1 < TO ̂  2Af0 + 1. Remember, | 7 2 | ^ N and #i(7 i ) < min |£o|
2 / f l + |6>|2) and

-#2(71) < min |$o|2/(l + \ta\) and that 72 ends with c where I7270I = I72I + |7o|-

Then from Lemma 2, there are at most Mo values of m such that

) , re±h(7o)> a n d ^»(7»7gI) ^ /e±',(-ro)i
1) } ^ ( m + 1 ) ^ } '

Then there exists at least one value of m with 1 ^ m ^ 2MQ + 1 such that

So

and this is a contradiction.

^2(727om) > -,-'1(70) _ p - > e

STEP TWO.

We think of $At and $.4, as R-trees endowed with the canonical distance, the
one which assigns distance 1 to two neighbouring vertices. F acts in a minimal and
semisimple way. Besides the translation length functions of F on the two R-trees are
the same, so applying the result of Culler and Morgan stated in Theorem 4, we get the
result. D

Now we prove the Corollary to Theorem 1.

PROOF OF COROLLARY: From Theorem 1, there exists a tree isomorphism

such that for every 7 € F the following diagram is cummutative:

* ,
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where y(-) means the action of left multiplication by the word 7 thought of as an
element of (F, A\) and (F, A2) respectively.

This is, j o -y(-) = 7(-) o j for every 7 G F. As usual, it is better to identify
the vertices with the corresponding group elements. Let e be the identity element of
(F, Ai). Then for every 7 thought of as an automorphism of $AX and $A7 we have

We define j(e) = 70 • So 7(7) = 770. The edges of $Ai and $ 4 , are of (7, 7a)-type
where a G A\ and o £ Aj respectively. The neighbours of 7 in $Jil and $ 4 , are

and {-ya}aeA2 • Then we have

Hence we obtain an anisotropic principal series of F equivalent to the original one
if and only if we interchange the generators of F and their related measure (in this
case 70 = e) or we replace some of them with their inverses (again we have 70 = e)
or we apply conjugation by 7 £ F (in this case 70 = 7) or we combine these kinds of
operations. D
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