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The present study focuses on identifying dynamical transition boundaries and presents
an order-to-chaos map for the unsteady flow field of a flapping foil in the low Reynolds
number regime. The effect of an extensive parametric space, covering a large number
of kinematic conditions, has been investigated. It is shown that the conventional
non-dimensional parameters cannot effectively capture the changes in the flow field
due to the variations in the relevant kinematic parameters and are unable to demarcate
the dynamical transition boundaries. Two new non-dimensional measures – maximum
effective angle of attack and a leading-edge amplitude-based Strouhal number – are
proposed here, which can capture the physical effect of the parametric variations
on the wake dynamics. The study proposes generalised transition boundaries and an
order-to-chaos map through a transitional regime in terms of these two newly proposed
parameters. Published data from the existing literature have also been tested to verify
the proposed transition model. It is seen that despite the wide variety of the parametric
combinations, the dynamical states from both the new and the published data corroborate
well the proposed boundaries, giving credibility to the order-to-chaos map.

Key words: wakes

1. Introduction

A systematic resolution of the nonlinear dynamical transitions in the near and far wake of
flapping bodies is still elusive. In the aperiodic and chaotic regimes, the aerodynamic
loads acting on a flapping body can become unpredictable from one flapping cycle
to another, posing significant challenges in designing suitable control algorithms for
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man-made flapping devices. Therefore, kinematic parameters that lead to aperiodic/chaotic
flow dynamics are not desirable from the viewpoint of an efficient design of bio-inspired
flapping devices like micro aerial vehicles. Identifying the transition onsets to determine
a stable operating regime for such devices is important. Earlier studies in the literature
are focused primarily on von Kármán to reverse von Kármán wake (drag-to-thrust)
transition (Triantafyllou, Triantafyllou & Gopalkrishnan 1991; Streitlien & Triantafyllou
1998) and symmetric to deflected wake transition phenomena (Jones, Dohring & Platzer
1998; Godoy-Diana et al. 2009; Zheng & Wei 2012); note that both transitions happen
in the periodic regime. However, a few recent studies have also highlighted interesting
changes from periodicity to aperiodicity in the wake for different canonical flapping
kinematics, e.g. pure plunging (Lewin & Haj-Hariri 2003; Badrinath, Bose & Sarkar
2017; Majumdar, Bose & Sarkar 2020a), pure pitching (Zaman, Young & Lai 2017) and
combined pitching–plunging (Lentink et al. 2010; Bose & Sarkar 2018; Bose, Gupta &
Sarkar 2021). Different local bifurcation routes to chaos, involving quasi-periodic and
intermittent dynamical states, were reported in these studies.

Lentink et al. (2010), through two-dimensional (2-D) soap film experiments, presented
chaotic wake patterns using phase-averaged vorticity contours. Bose & Sarkar (2018)
and Bose et al. (2021), through Navier–Stokes simulations, reported a quasi-periodic
route, accompanied by sporadic intermittent windows of aperiodicity, towards a regime of
robust chaos. The authors established that the time delay in the formation of the primary
leading-edge vortex (LEV) was instrumental in ushering chaos in the wake. At high
plunge velocities, the LEV sheds aperiodically, and subsequently, its irregular interactions
with the trailing-edge vortex (TEV) gives way to chaos in the wake. The mechanism is
sustained in the far wake through a variety of fundamental vortex interactions (such as
vortex merging, collision, shredding, exchange of partners). Majumdar et al. (2020a) have
also shown that the aperiodic transition is extremely sensitive to LEV behaviour, and any
discrepancy in their formation, growth or transport may lead to a completely different
dynamical state. Note that even though the effects of flapping amplitude and frequency
were considered carefully in these earlier studies, some of the other important kinematic
parameters, such as pitch amplitude, pitching axis location, phase offset and kinematic
pattern, have received almost no attention in the existing literature. In the case of combined
kinematics, it is likely that LEV separation, and in turn, the near-field interactions of
vortices, will be altered significantly by varying these parameters. Furthermore, the
ensuing change in the effective angle of attack (AoA) for combined pitch and plunge can
also be crucial in dictating the flow field. Note that earlier studies that considered the
variation of some of these parameters (Anderson et al. 1998; Read, Hover & Triantafyllou
2003; Lee & Su 2015; Buren, Floryan & Smits 2019) focused primarily on their effect on
aerodynamic force magnitudes and pressure distributions, and not on dynamical behaviour.
No attempts have yet been made in the existing literature to consider the effects of all these
relevant parametric combinations together and study the dynamical transitions to predict
generalised bifurcation boundaries.

This leads to two interesting directions: first, can one identify suitable non-dimensional
parameters that can capture the effects of different kinematic parameters together,
and second, can one model generalised transition/bifurcation boundaries to demarcate
the dynamical regimes to an acceptable level of accuracy, statistically? Traditionally,
flow field transitions have been defined in terms of a diverse set of non-dimensional
parameters. Godoy-Diana et al. (2009) demonstrated the wake transition for a pure pitching
kinematics using an ‘AD versus StD’ plot, where AD is the thickness-based dimensionless
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amplitude, and StD is the thickness-based Strouhal number. Here, AD = A/D, where
A and D represent the peak-to-peak amplitude of the trailing edge and the maximum
thickness of the foil, respectively; StD = feD/U∞, where fe and U∞ denote the flapping
frequency and free stream velocity, respectively. Deng et al. (2016) have used the same
parameters and have presented periodic to chaotic transitions for increasing StD at a fixed
AD. Cleaver, Wang & Gursul (2012) presented flow field bifurcations in terms of the
chord-based Strouhal number Stc, where Stc = fec/U∞, with c being the chord length.
Triantafyllou et al. (1991) defined an amplitude-based Strouhal number as StA = feA/U∞,
to characterise the drag-to-thrust transition. It was proposed as the single key parameter
that is a function of both flapping amplitude and frequency simultaneously. Lewin &
Haj-Hariri (2003), Lentink et al. (2010) and Ashraf, Young & Lai (2012), as well as
the recent studies from our group (Bose & Sarkar 2018; Majumdar et al. 2020a), have
considered the maximum non-dimensional plunge velocity (κh) as the main control
parameter for wake transitions. Here, κh is proportional to StA, where κ = 2πfec/U∞
is called the reduced frequency and h = h0/c is the non-dimensional plunge amplitude.

Note that these existing non-dimensional parameters are not comprehensive enough
to encompass the combined effects of different kinematic conditions. Previous studies
that consider simple and unmixed kinematics, such as pure pitching or pure plunging,
rely on a fixed set of dimensionless parameters that are effective enough to identify the
changes in the flow field. However, they fall short in reflecting the combined effects of
multiple parameters in a wholesome manner when more complex kinematics are used.
These kinematic parameters include phase offsets between simple canonical kinematics
and location of the pitching axis. Also, the parametric maps available in the literature
for distinguishing qualitatively different wake regimes are strongly kinematic-specific
and are mostly applicable to the periodic regime (low κh or StA). To address this issue,
Lagopoulos, Weymouth & Ganapathisubramani (2019) have defined a path-length-based
Strouhal number Stτ = feτ/U∞, where τ is the average trajectory length covered by
the chord of the foil in one flapping period. It was reported that, irrespective of the
flapping kinematics, drag-to-thrust transition takes place as Stτ crosses unity. However, the
applicability of Stτ was confined to the periodic flow regime only (0.15 < StD < 0.35).
No attempts have yet been made in the literature to demarcate the regimes of aperiodic
transitions using a robust measure considering the combined effects of all the relevant
kinematic parameters of importance. The present study is focused in that direction with
the following specific objectives: (i) to establish the role of a wide variety of kinematic
parameters, including plunge amplitude (h), pitch amplitude (θ0), reduced frequency (κ),
pitching axis location (x0), elliptic foil thickness, flapping kinematics, and phase offset
(φ) on the dynamical transition of the wake from order to chaos; (ii) to identify new
non-dimensional measures encompassing the effects of all important kinematic quantities,
and present an order-to-chaos map, demarcating the periodic, quasi-periodic/intermittency
and chaotic states; (iii) to propose mathematical models for the generalised transition
boundaries for predicting the transition onsets. Overall, this study aims to provide
novel metrics connected to wake transitions and insight into the underlying flow field
mechanisms behind chaos.

The present study is limited to 2-D situations, and the authors are not in a position to
comment on three-dimensional (3-D) behaviour through the present set of results. The 3-D
wake interactions for a finite-span wing can be distinctly different as compared to the 2-D
flow field in the presence of tip vortices (Calderon et al. 2014). Apart from the tip vortices,
an LEV can also be instrumental in giving rise to spanwise instability. Very recently,
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Zurman-Nasution, Ganapathisubramani & Weymouth (2020) studied comprehensively
the effect of three-dimensionality on the propulsive performance of flapping wings,
and reported that the balance between the strength and stability of leading/trailing-edge
vortices and the flapping energy underlies the trigger for 2-D to 3-D transition. The
authors also stated that 2-D simulation results remain comparable to those obtained from
3-D simulations within a certain range of the flapping amplitude/frequency. However,
the parametric range at which significant qualitative differences between the 2-D and
3-D structures are expected is not entirely conclusive. Visbal (2009) reported that 2-D
leading-edge coherent vortices can break down into small-scale 3-D structures, preventing
chaotic wakes in three dimensions. Note that this behaviour has been reported at Reynolds
number ranges higher by at least an order of magnitude than the present case. A subsequent
study by Ashraf et al. (2012) took up this question more systematically and confirmed
that such observations were confined to high-frequency low-amplitude regimes only.
However, at relatively low-frequency and high-amplitude situations (as considered in the
present study as well), the 2-D primary structures were found to be stable and were
also qualitatively similar to the corresponding 3-D structures (with small variation in the
secondary structures). Note that the scope of the present 2-D study has been kept limited
to low-frequency and high-amplitude flapping motions.

The rest of the paper is organised as follows. A brief description of the flapping
motion and the computational methodologies are provided in § 2. The transitional wake
dynamics observed at variety of parametric combinations are presented in § 3. Section 4
explains the role of the primary LEV in dictating the dynamical characteristic of the
flow field and the role of phase offset in altering LEV behaviour. Non-dimensional
measures and a mathematical model of generalised transition boundaries to distinguish
the different dynamical regimes are proposed in § 5. The salient findings are summarised
and conclusions are drawn in § 6.

2. Computational details

2.1. Body geometry and flapping kinematics
A rigid elliptic foil is subjected to a simultaneous pitching–plunging motion under a
uniform inflow condition. The location of the pitching axis along the chord is represented
by x0, which indicates the distance of the pivot location from the leading edge of the foil.
Unless mentioned specifically otherwise, a sinusoidal flapping kinematics is used in the
present study as follows:

yp(t) = h0 sin (2πfet), (2.1)

θ(t) = θm + θ0 sin (2πfet + φ), (2.2)

where yp denotes the position of the pivot point in the vertical direction, and θ is
the instantaneous pitching rotation, defined clockwise positive. Here, h0 is the plunge
amplitude; θ0 denotes the pitch amplitude, and θm signifies the mean pitch angle and
is chosen to be zero (θm = 0◦) throughout this study; t indicates time. The phase
offset between the plunging and pitching motions is denoted by φ. Schematic drawings
displaying the flapping motion of the foil are presented in figure 1, considering x0 = 0.5,
i.e. the pitching axis being at the mid-chord location. The thickness to chord ratio of the
elliptic-shaped foil will be denoted as th/c (=minor axis/major axis). Throughout this
study, time-instant values are presented by normalising them using the flapping period
T(= 1/fe).
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(a) c

θ(t)

(b)

U∞ yp(t)
θ(t)

U∞
yp(t)

y

x

Figure 1. Position of the foil with pitch–plunge flapping kinematics for (a) φ = π/2, where the leading edge
leads the trailing edge and ‘slices through’ the incoming flow, and (b) φ = 2π, where the foil appears to be
pitching about a point downstream of the trailing edge. The solid lines indicate the upstroke, and the dashed
lines indicate the downstroke.

2.2. The immersed boundary method based flow solver
The unsteady flow field is simulated by solving numerically the 2-D incompressible
Navier–Stokes equation. A discrete forcing type immersed boundary method (IBM) based
in-house flow solver (Majumdar et al. 2020a) is used in this study. In the present IBM
technique, a ‘momentum forcing’ is applied at all the grid points inside the solid domain.
This reconstructs the velocity field in the solid domain in such a way that the appropriate
no-slip/no-penetration boundary condition is satisfied exactly on the solid surface (Kim,
Kim & Choi 2001). Moreover, a mass source/sink term is included in the continuity
equation to ensure rigorous mass conservation across the immersed boundary. A finite
volume based semi-implicit fractional step method (FSM) of Δp form is adopted in the
present work to advance discretised equations in time. In order to achieve a divergence-free
velocity field, a pseudo pressure correction term is used to correct the intermediate
velocities at every time step. The convection and diffusion terms are advanced in time
using the Adams–Bashforth discretisation and the Crank–Nicolson method, respectively.
The spatial derivatives are calculated using the second-order central difference scheme.

The flow Reynolds number is defined as Re = U∞c/ν, with ν being the kinematic
viscosity of the fluid. A flow Reynolds number Re = 300 is kept constant for all the
simulations of present study. The drag (D′) and lift (L′) forces on the flapping foil
are defined positive along the directions of the positive x- and y-axes, respectively.
The aerodynamic load coefficients are computed as CD = D′/0.5ρf U2∞c and CL =
L′/0.5ρf U2∞c, where ρf denotes the fluid density.

The flow-governing equations are solved on a background Eulerian grid, with the
primitive flow variables (u, v, p) being arranged in a staggered manner. At every
time step, the position of the elliptic foil is tracked using 1500 Lagrangian markers.
A rectangular computational domain consisting of a structured non-uniform Cartesian
mesh is considered in this study. A uniform grid spacing of Δx × Δy is used in the
region of body movement, and then the grid spacing is increased following a geometric
progression towards the outer boundaries. The mesh is stretched with common ratio 1.10
in the upstream direction, and common ratio 1.008 in the downstream side. In both top and
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Figure 2. Time step independence test for the flow over a pitching–plunging foil: (a) drag and (b) lift
coefficients, and (c) instantaneous vorticity contours at a typical time instant t/T = 20.25.

bottom directions, the mesh is stretched with common ratio 1.05. The boundary conditions
are as follows: uniform inflow (u = 1, v = 0), zero-gradient outflow (∂u/∂x = 0), and the
slip boundary condition (∂u/∂y = 0, v = 0) at the top and bottom boundaries. Further
details on the flow solver can be found in the earlier work by Majumdar et al. (2020a). It
was also validated thoroughly in Majumdar et al. (2020a) by comparing the results of the
present solver with those available in the literature, and also with the results obtained from
a well-established ALE based OpenFOAM solver. The convergence test results relevant
to the present study are presented next. Note that the time step size (Δt), grid spacing
(Δx and Δy) and domain size reported in the next subsection are in their corresponding
non-dimensional forms.

2.3. Convergence tests
For all the convergence test cases, simulations are performed for a simultaneously
pitching–plunging elliptic foil with parametric set h = 0.375, θ0 = 15◦, φ = π/2, κ = 4.0,
x0 = 0.5, th/c = 0.12 and Re = 300, which corresponds to a periodic flow field.

2.3.1. Time step convergence test
An appropriate time step size has been chosen through a time step independence test
with four different time step sizes, Δt = 0.00005, 0.0001, 0.0002 and 0.0004. The grid
size in the uniform mesh region is taken as Δx = Δy = 0.004, with the mesh stretching
ratios towards the outer boundaries being the same as mentioned in § 2.2. The size of
the computational domain is considered to be [−10.0, 30.0] × [−12.5, 12.5] along the x-
and y-axes, respectively. Time histories of CD and CL along with close-up views near the
peaks, and instantaneous vorticity contours at a typical time instant (t/T = 20.25), are
presented in figure 2. Vorticity contour plots are shown considering vorticity range −10 to
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Time step size Peak lift coefficient (Cpeak
L ) Mean drag coefficient (C̄D)

Δt = 0.0004 7.5411 (0.83 %) −0.7078 (4.75 %)
Δt = 0.0002 7.5601 (0.58 %) −0.7255 (2.37 %)
Δt = 0.0001 7.5947 (0.13 %) −0.7398 (0.44 %)
Δt = 0.00005 7.6046 −0.7431

Table 1. Results of time step convergence study; the values in parentheses denote percentage relative
difference with respect to corresponding values of the lowest Δt case.

Mesh size Peak lift coefficient (Cpeak
L ) Mean drag coefficient (C̄D)

Δx = Δy = 0.008 7.4625 (1.9 %) −0.7188 (2.98 %)
Δx = Δy = 0.004 7.5947 (0.16 %) −0.7398 (0.15 %)
Δx = Δy = 0.002 7.6072 −0.7409

Table 2. Results of grid-independent study; the values in parentheses denote percentage relative difference
with respect to corresponding values of the minimum grid size case.

+10 throughout the paper. Also, quantitative values of the peak lift coefficient (Cpeak
L ) and

average drag coefficient (C̄D) are presented in table 1 along with the percentage relative
difference with respect to the lowest Δt case considered. Both CD and CL time histories,
as well as the vorticity contours, for Δt = 0.00005 and 0.0001 are almost identical.
Therefore, Δt = 0.0001 is taken as the appropriate time step size for all the simulations
hereafter.

2.3.2. Grid size convergence test
The optimal grid sizes Δx and Δy are also selected based on the outcomes of
a grid independence study. To that end, different grid sizes, Δx = Δy = 0.002,
Δx = Δy = 0.004 and Δx = Δy = 0.008, have been tested. The ratio of the stretching
of the mesh towards the outer boundaries is kept the same, as mentioned in § 2.2,
for all of these three different grid sizes. The time step size is taken as Δt = 0.0001,
and the computational domain size is [−10.0, 30.0] × [−12.5, 12.5] along the x- and
y-axes, respectively. The quantitative values of Cpeak

L and C̄D, and the percentage relative
difference with respect to the lowest grid size case, are presented in table 2. The time
traces of CD and CL, as well as the vorticity contours, for grids Δx = Δy = 0.002 and
Δx = Δy = 0.004 match very closely; see figure 3. Hence the mesh corresponding to grid
size Δx = Δy = 0.004 is chosen for further simulations.

2.3.3. Domain size convergence test
The size of the computational domain is finalised after performing a domain independence
test to ensure that the aerodynamic load coefficients do not change much with further
increase in the domain size. Three different rectangular domains are chosen, with sizes
as follows: ‘D1’, [−5.0, 15.0] × [−6.25, 6.25]; ‘D2’, [−10.0, 30.0] × [−12.5, 12.5]; and
‘D3’, [−20.0, 60.0] × [−25.0, 25.0]; with the pitching axis of the foil being placed at
the origin at the start of simulations. Time step and minimum grid sizes are taken as
Δt = 0.0001 and Δx = Δy = 0.004, respectively, based on the outcomes of time and
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Figure 3. Grid independence test for the flow over a pitching–plunging foil: (a) drag and (b) lift coefficients,
and (c) instantaneous vorticity contours at a typical time instant t/T = 20.25.

mesh convergence tests. Note here that the size of the dense zone and mesh-stretching
common ratios are kept the same for all three domains. The CL and CD time histories
and vorticity contour plot presented in figure 4 show that the results of the medium-sized
domain D2 and largest domain D3 are almost identical and do not suffer from boundary
effects. The same is evident from the percentage relative difference with respect to the
largest domain size case as presented in table 3. Hence D2 is chosen to be the optimum
size of the computational domain for all the following simulations.

3. Dynamical transitions in the flow field

A wide range of parametric variations has been considered in the present study to
investigate their individual and combined effects on the flow field dynamics. This section
starts with a description of the parametric space considered here. We also introduce the
qualitative/quantitative tools used to distinguish the different nonlinear dynamical states
of the flow field, and also demonstrate them for three representative cases of periodic,
quasi-periodic and chaotic wakes, the three primary dynamical states encountered in the
present study. Subsequently, the flow field behaviour under the entire range of parametric
variations is discussed.

3.1. The parametric space
It is known from our earlier studies that periodic-to-chaotic transition happens around
κh ≥ 1.5 (Badrinath et al. 2017; Bose & Sarkar 2018; Majumdar et al. 2020a; Bose et al.
2021). However, only the plunge amplitude was varied in those cases, focusing solely on
the effects of this single parameter on the system dynamics. In contrast, the present study
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Figure 4. Domain size independence test for the flow over a pitching–plunging foil: (a) drag and (b) lift
coefficients, and (c) instantaneous vorticity contours at a typical time instant t/T = 20.25.

Domain Peak lift coefficient (Cpeak
L ) Mean drag coefficient (C̄D)

D1: [−5.0, 15.0] × [−6.25, 6.25] 7.5038 (1.40 %) −0.7312 (1.69 %)
D2: [−10.0, 30.0] × [−12.5, 12.5] 7.5947 (0.21 %) −0.7398 (0.54 %)
D3: [−20.0, 60.0] × [−25.0, 25.0] 7.6104 −0.7438

Table 3. Results of domain-size-independent study; the values in parentheses denote percentage relative
difference with respect to corresponding values of the largest domain size case.

considers a much wider range of parametric variations for all the relevant key parameters,
i.e. plunge amplitude (h = 0.25, 0.375, 0.475, 0.625), pitch amplitude (θ0 = 5◦, 15◦, 25◦),
pitching axis location (x0 = 0.25, 0.5, 0.75), flapping frequency (κ = 2.0, 4.0, 8.0) and
phase offset (in the range 0 ≤ φ ≤ 2π, in steps of π/8). Any of these kinematic
parameters can potentially alter the near-field vortex interactions and affect the dynamical
transition mechanisms in the flow field. Qualitatively different kinematics (sinusoidal and
trapezoidal) are also included here, as well as different foil thickness to chord ratios
(th/c = 0.06, 0.12, 0.18). Throughout the study, the flow Reynolds number is kept constant
at Re = 300. The overall parametric space is presented in table 4. Results for varying h and
φ, with θ0 = 15◦, κ = 4.0, x0 = 0.5 and th/c = 0.12 being kept fixed, are presented first.
The other parameters, i.e. θ0, x0, κ and th/c, as well as the kinematic pattern, are varied
next, one by one, keeping the rest of the parameters unchanged. For these cases, results are
presented for plunge amplitude h = 0.475 at four typically chosen phase offsets, φ = π/2,
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Parameter Values

Reynolds number Re = 300
Non-dimensional plunge amplitude h = 0.25, 0.375, 0.475, 0.625
Pitch amplitude θ0 = 5◦, 15◦, 25◦
Mean pitch angle θm = 0◦
Pitching axis location x0 = 0.25, 0.5, 0.75
Reduced frequency κ = 2.0, 4.0, 8.0
Phase offset between plunge and pitch motions φ = π

8 , 2π
8 , 3π

8 , . . . , 2π

Thickness to chord ratio of the elliptic foil th/c = 0.06, 0.12, 0.18

Table 4. The parameter space considered in the present study.

π, 3π/2 and 2π. The above-mentioned different parametric combinations gave a total of
100 different simulation cases.

3.2. Measures used for dynamical characterisation of the flow field
The wake patterns are classified based on the dynamical characteristics of the unsteady
flow field. When the evolution of the vortex structures repeats exactly in consecutive
flapping cycles, the corresponding wake is classified as a periodic wake. On the other
hand, in the quasi-periodic state, the flow field vortices do not overlap exactly after each
cycle; instead, the positions of the vortex cores stay in the close neighbourhood of their
previous cycle counterparts. The wake is classified as chaotic when the vortex structures
never repeat and the long-term behaviour of the unsteady wake becomes completely
unpredictable. These are the three main types of dynamics encountered in the present
study. The dynamical states of the flow field at different parametric values are first
identified qualitatively through the phase-averaged vorticity plots (Lentink et al. 2010), and
subsequently confirmed quantitatively with the help of vorticity correlation values (Bose &
Sarkar 2018) as well as the phase portraits and the Morlet wavelet transforms (Grossmann,
Kronland-Martinet & Morlet 1990), which are presented in the supplementary material
available at https://doi.org/10.1017/jfm.2022.385. Please note that the vorticity correlation
coefficient values presented in this study are calculated as an average of the correlation
coefficients obtained at the end of 16 consecutive flapping cycles (for t/T = 15.0 to
t/T = 30.0). The phase-averaged vorticity plots are also obtained for the same number
of flapping cycles. Since the flow field in the periodic regime repeats exactly, the average
of the flow field data at the same time instant in several consecutive cycles gives a crisp
image of the vorticity contour. But it gives a completely blurry image during chaos
when there is no correlation between the flow fields in different cycles. However, the
phase-averaged image is neither crisp nor entirely blurry in the quasi-periodic regime.
The average vorticity correlation value (ρ), if close to unity, represents periodicity, while
it hovers near zero in the chaotic state denoting a near absence of correlation between the
flow fields from different cycles. In the quasi-periodic regime, it stays between 0 and 1.

The dynamical characteristics are established further by using a series of other nonlinear
time series tools from the dynamical systems theory, such as stroboscopic Poincaré
sections (Hilborn et al. 2000), reconstructed phase portraits (Kennel, Brown & Abarbanel
1992) and recurrence plots (Marwan et al. 2007). The main advantage of these nonlinear
time series tools is that they can establish the nature of the dynamics conclusively even
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Transition boundaries and an order-to-chaos map
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Figure 5. ‘Periodic dynamics’: (a) phase-averaged vorticity contour and average vorticity correlation; (b) time
history of drag coefficient; (c) CL−CD phase portrait, where the corresponding stroboscopic Poincaré section
(red dots) converges to a single point; (d) reconstructed phase portrait of CD, depicting a close loop orbit;
(e) organised narrow frequency band in Morlet wavelet transform; and ( f ) recurrence plot obtained from the
reconstructed CD data, displaying equidistant solid lines parallel to the main diagonal. All these measures
indicate the signature of the periodic flow field. The parametric values are h = 0.475, θ0 = 15◦, φ = 4π/8,
κ = 4.0, x0 = 0.5 and th/c = 0.12.

with short time history data. This is particularly useful in our case as simulation of
long time histories for many flapping cycles using a high-fidelity Navier–Stokes solver
is associated with a prohibitive computational cost. The results obtained using these
tools, along with the CL−CD phase portraits and Morlet wavelet transforms for three
typically chosen parametric cases representative of the periodic, quasi-periodic and chaotic
dynamics, are shown in figures 5–7, respectively. Note that these cases are selected
randomly as representative cases, and the corresponding parametric values are mentioned
in their respective figure captions. A closed loop orbit in the phase portrait diagram
indicates a periodic dynamics. Here, the phase space trajectory repeats exactly in different
cycles. Hence the stroboscopic Poincaré section converges to a single point (Hilborn
et al. 2000). This is accompanied with an organised narrow frequency band on the
wavelet transform plot, and equidistant solid lines parallel to the main diagonal on the
recurrence plot. In contrast to periodic dynamics, the trajectory neither repeats exactly nor
deviates significantly during the quasi-periodic state, but returns in the neighbourhood of
its previous positions, eventually filling the phase space in the form of a toroidal shape,
and the Poincaré section depicts a closed loop curve (Hilborn et al. 2000). The presence
of modulating frequency bands along with incommensurate frequencies in the wavelet
spectra and unequally spaced lines on the recurrence plot confirms quasi-periodicity. An
irregular phase portrait with the Poincaré points being scattered, a broadband frequency
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Figure 6. ‘Quasi-periodic dynamics’: (a) phase-averaged vorticity contour and average vorticity correlation;
(b) time history of drag coefficient; (c) CL−CD phase portrait, where the corresponding stroboscopic Poincaré
section (red dots) depicts a close loop; (d) reconstructed phase portrait of CD, depicting a ‘toroidal’ phase
portrait; (e) modulating incommensurate frequency band in Morlet wavelet transform; and ( f ) recurrence plot
obtained from the reconstructed CD data, displaying unequally spaced lines. All these measures indicate the
signature of quasi-periodicity. The parametric values are h = 0.625, θ0 = 15◦, φ = 6π/8, κ = 4.0, x0 = 0.5
and th/c = 0.12.

spectrum, short and broken diagonal lines along with isolated scattered points on the
recurrence plot – all these confirm the existence of chaos in figure 7.

The above discussions demonstrate the way the flow field is classified dynamically in
this study. The dynamical transition behaviour in the flow field under different parametric
conditions is presented in the next subsection. Only the phase-averaged vorticity contours
and the associated average vorticity correlation values are presented here, for the sake of
brevity. The CL−CD phase portraits and the Morlet wavelet transforms are included in
the supplementary material, and they are referred to in the paper in relevant discussions.
Results of the other measures for all the 100 different parametric cases are not included
here, for the sake of brevity.

3.3. Flow field behaviour under parametric variations

3.3.1. Plunge amplitude (h) and phase offset (φ)
The dynamical transition observed by varying the plunge amplitude and phase offset is
shown symbolically in figure 8. Here, each of the data points is marked according to
the dynamical signature of the flow field observed in the simulations at those respective
parameters. The periodic-to-chaotic transition in the flow field takes place through a
quasi-periodic route. For φ = π, the flow field is periodic for h ≤ 0.375; it exhibits a
quasi-periodic behaviour at h = 0.475, and chaos at κh = 0.625 (figure 8). Note that
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Transition boundaries and an order-to-chaos map

10 19.0

0.18

Fr
eq

ue
nc

y

0.21
0.26
0.32
0.43
0.64
1.27

20.3 21.6 22.9 24.2 20

–1045403525 30

–10

10

–5

5

ρ = –0.003

15

0

–40

–80

40

0

80

–5 0 5 10 15

20

30

40

6040

10

60

50

70

10

0

15

00

–10

10
5

–5

–10–10 tt + τ t/T

t/T

t/T

CD

CD CL

t/
T

t +
 2

τ

(e)

(b)(a) (c)

(d ) ( f )

Figure 7. ‘Chaotic dynamics’: (a) phase-averaged vorticity contour and average vorticity correlation; (b) time
history of drag coefficient; (c) CL−CD phase portrait, where the corresponding stroboscopic Poincaré section
(red dots) is scattered; (d) reconstructed phase portrait of CD, depicting a chaotic attractor; (e) broad banded
frequency spectra in Morlet wavelet transform; and ( f ) recurrence plot obtained from the reconstructed CD data,
displaying short and broken diagonal lines along with isolated scattered points. All these measures indicate the
signature of chaos. The parametric values are h = 0.625, θ0 = 15◦, φ = 2π, κ = 4.0, x0 = 0.5 and th/c =
0.12.

with the variation in φ, the onset of the transition along h changes significantly, though
the qualitative route remains unchanged. For 2π/8 ≤ φ ≤ 6π/8, the flow field remains
periodic even for higher h (h = 0.475) (figure 8), whereas it becomes chaotic even at
lower h values (h = 0.375) for 3π/2 ≤ φ ≤ 2π (figure 8). Thus aperiodic onset gets
advanced or delayed depending on the phase offset. This can be attributed to the LEV
separation behaviour, which is strongly dependent on φ, as will be discussed in § 4. The
flow field results supporting the dynamical transition and the variety in the trailing-wake
behaviour are shown in figures 9 and 10. Phase-averaged wake images and average vorticity
correlation values are presented for different φ cases in steps of 2π/8.

h = 0.25: Figure 8 reveals that for h = 0.25, a periodic pattern is shown by the
wake for almost all φ values, except for 11π/8 to 13π/8, where it turns quasi-periodic.
For h = 0.25, clockwise (CW) and counter-clockwise (CCW) vortices are seen to shed
alternatively in each flapping cycle from the trailing edge. A drag-producing von Kármán
wake is observed at φ = 2π/8 (figure 9a), and a reverse von Kármán wake is seen for
3π/8 ≤ φ ≤ 10π/8. The flow remains completely attached to the body without any LEV
formation (figures 9b–e). For 2π/8 ≤ φ ≤ 10π/8, the flow field is periodic and repeats
exactly, as revealed by the crisp phase-averaged images. The vorticity correlation remains
very close to unity, signifying a strong correlation between the flow fields of different
cycles. However, for the φ = 12π/8 case, the phase-averaged contour is neither crisp
nor entirely blurry (figure 9f ). The correlation value comes down to 0.74, indicating a
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Figure 8. Summarising the dynamical states observed at different h and φ values, keeping other parameters
fixed.
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Figure 9. Phase-averaged vorticity contours at different φ: (a–h) h = 0.25, and (i–p) h = 0.375.

quasi-periodic flow signature. The flow field returns to periodicity at 14π/8 ≤ φ ≤ 2π

(figures 9g,h). The CL−CD phase portraits and the wavelet spectra of all the above cases
are presented, respectively, in figures 1(a–h) and 3(a–h) of the supplementary material.

h = 0.375: For φ = 2π/8, the von Kármán wake of h = 0.25 turns into reverse von
Kármán at h = 0.375 (figure 9i). The wake undergoes deflection during 4π/8 ≤ φ ≤
10π/8, and the deflection angle increases with the increase in φ; see figures 9(j–m). The
flow remains periodic in the range 2π/8 ≤ φ ≤ 8π/8, but shows quasi-periodic signatures
at φ = 10π/8 with ρ = 0.85. The flow field exhibits chaos for 12π/8 ≤ φ ≤ 2π, where
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Transition boundaries and an order-to-chaos map
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Figure 10. Phase-averaged vorticity contours at different φ; (a–h) h = 0.475, and (i–p) h = 0.625.

the flow is irregular and the long-term behaviour is unpredictable. Chaos is confirmed
by the correlation values being close to zero, and also the entirely blurry patterns seen
in figures 9(n–p). The phase portrait and wavelet plots corresponding to the cases of
figures 9(i–p) are presented in figures 1(i–p) and 3(i–p) of the supplementary material,
respectively, and support the dynamical characteristics observed in the flow field plots.

h = 0.475: At this h, the trailing wake exhibits several interesting flow patterns for
varying φ. A deflected reverse von Kármán wake is seen at φ = 2π/8 (figure 10a),
with CW and CCW vortices shed in alternate fashion at every cycle. An S + P pattern
(Williamson & Roshko 1988) is seen at φ = 4π/8 (figure 10b) with a single CCW vortex
(S) and a pair of CW and CCW vortices (P) shed in every cycle. For the latter, the CCW
part of P gets shredded (Gustafson & Leben 1988) gradually under the influence of its
stronger CW partner, and the far wake transforms to a downward deflected reverse von
Kármán wake. The deflection direction gets reversed as φ crosses π/2, giving an upward
deflected wake at φ = 6π/8 (figure 10c). This is because the initial direction of the pitch
rotation gets reversed as φ crosses π/2, influencing the direction of deflection (Zheng
& Wei 2012; Majumdar, Bose & Sarkar 2020b). Although the wake patterns vary with
φ, they remain periodic within 2π/8 ≤ φ ≤ 6π/8, and turn quasi-periodic at φ = 8π/8
(figure 10d). Finally, the flow field becomes chaotic for 10π/8 ≤ φ ≤ 2π as denoted
by the entirely blurry phase-averaged patterns and almost zero vorticity correlation; see
figures 10(e–h). Figures 2(a–h) and 4(a–h) of the supplementary material present the phase
portrait and wavelet plots corresponding to the cases of figures 10(a–h), respectively.

h = 0.625: At this high plunge amplitude, the organised pattern of the wake is almost
entirely lost, and chaos is seen for a wide range of φ (0 ≤ φ ≤ 2π/8 and π ≤ φ ≤ 2π); see
figures 10(i,l–p). Outside this regime (3π/8 ≤ φ ≤ 7π/8), quasi-periodic flow signatures
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Figure 11. Phase-averaged vorticity contours for different pitch amplitudes and phase offsets at h = 0.475,
κ = 4.0, x0 = 0.5 and th/c = 0.12.

are observed (figures 10j,k). These claims are confirmed further by the CL−CD phase
portraits and wavelet spectra presented in figures 2(i–p) and 4(i–p) of the supplementary
material.

3.3.2. Pitch amplitude, θ0
The pitch amplitude is varied as θ0 = 5◦, 15◦ and 25◦. Other kinematic parameters are kept
fixed at h = 0.475, κ = 4.0, x0 = 0.5 and th/c = 0.12. Figure 11 presents the dynamical
states corresponding to these parametric cases, and the identified dynamical signatures
are further confirmed by CL−CD phase plots and wavelet spectra presented in figures 5
and 6 of the supplementary material. For θ0 = 15◦ and 25◦, the transition route remains
the same, i.e. periodic at φ = π/2, quasi-periodic at φ = π, and chaos at φ = 3π/2 and
2π. At θ0 = 5◦, the effect of the pitch motion is comparatively lesser, with the flow field
getting dictated primarily by the dominant plunge motion. For this θ0, the periodic flow
field is absent at the chosen φ values; quasi-periodic flow is seen for φ = π/2, π and 2π;
and robust chaos is exhibited at φ = 3π/2.

3.3.3. Location of the pitching axis, x0
To investigate the effect of different pitching axis locations, three different pivot points
have been chosen, x0 = 0.25, 0.5 and 0.75, i.e. at the quarter-chord, mid-chord and
three-quarter-chord, respectively. All other parameters are kept fixed at h = 0.475, θ0 =
15◦, κ = 4.0 and th/c = 0.12. The resulting flow field dynamics are demonstrated in
figure 12. The corresponding CL−CD phase portraits and wavelet transforms of CD time
histories are presented in figures 7 and 8 of the supplementary material, respectively. It is
evident from these results that the dynamical states are not drastically different for different
pitching axis locations. The influence of pivot location on the dynamical characteristics
is insignificant at φ = π/2 and 3π/2. The flow field displays periodicity at φ = π/2, and
chaos at φ = 3π/2. However at φ = π, there is gradual change in the dynamical signature,
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Figure 12. Phase-averaged vorticity contours for different pitching axis locations and phase offsets at
h = 0.475, θ0 = 15◦, κ = 4.0 and th/c = 0.12.

showing quasi-periodicity for x0 = 0.25 and x0 = 0.5, but purely periodic behaviour at
x0 = 0.75. This indicates that the flow field gets regularised gradually as the pivot location
is moved towards the trailing edge at φ = π. This can be noticed from the gradual increase
in the average vorticity correlation values at φ = π (ρ = 0.40, 0.65 and 0.98 at x0 = 0.25,
0.5 and 0.75, respectively); see figure 12. On the other hand, at φ = 2π, despite all three
x0 cases being chaotic, an increase in the degree of irregularity can be noticed from
the decrease in the magnitude of average vorticity correlation values as x0 increases
(|ρ|= 0.15, 0.05 and 0.02 at x0 = 0.25, 0.5 and 0.75, respectively); see figure 12. In
conclusion, as the pivot point is moved from the leading edge towards the trailing edge, the
flow field gets regularised at φ = π, but becomes more and more irregular at φ = 2π. The
physical reason behind this trend is presented in Appendix C, as this can be appreciated
better after the discussion on the role of flapping motion on LEV growth, and in turn, on
the dynamical states, as given in §§ 4 and 5.1.

3.3.4. Flapping frequency, κ

In this case, we have chosen two new flapping frequencies, κ = 2.0 and 8.0, i.e. half of
and double the earlier chosen frequency. Other kinematic parameters are kept fixed at
h = 0.475, θ0 = 15◦, x0 = 0.5 and th/c = 0.12. The phase-averaged vorticity contour plots
are presented in figure 13. Figures 9 and 10 of the supplementary material present the
corresponding CL−CD phase plots and the wavelet spectra, respectively. For κ = 2.0, the
resultant dynamical flapping velocity is so low that the flow exhibits a periodic dynamic
independent of the phase offset value between pitch and plunge motions. On the other
hand, at κ = 8.0, the flapping velocity being significantly high, the flow field exhibits
chaos at all φ values. Thus the flapping frequency can be a control parameter to trigger a
periodic to chaotic transition in the wake.
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Figure 13. Phase-averaged vorticity contours for different flapping frequencies and phase offsets at
h = 0.475, θ0 = 15◦, x0 = 0.5 and th/c = 0.12.

3.3.5. Thickness to chord ratio of the foil, th/c
The simulations are run for different foil thicknesses with three different thickness to
chord ratios, th/c = 0.06, 0.12 and 0.18, respectively, keeping the kinematic parameters
constant at h = 0.475, θ0 = 15◦, κ = 2.0 and x0 = 0.5. The phase-averaged vorticity
contours shown in figure 14 display clearly that the dynamical states for the three chosen
foil thicknesses remain almost the same – periodic at φ = π/2, quasi-periodic at π
and chaotic at 3π/2, respectively. However, a minor difference is observed at φ = 2π,
where th/c = 0.06 and th/c = 0.12 result in chaos, while the thicker foil with th/c = 0.18
exhibits quasi-periodicity. Though the flow dynamics is quasi-periodic at th/c = 0.18,
the average correlation of the vorticity field remains on the lower side (ρ = 0.23). This
signifies that the system at this parametric situation is very close to chaos, and any small
change in the parameters may push it to robust chaos. It can be concluded here that the foil
shape does not play a crucial role behind transition under the chosen parametric conditions.
The dynamical characteristics remain more or less similar irrespective of the change in the
thickness or shape, provided that the foil is not significantly thick (th/c = 0.18 or greater
based on the observations of the present study).

3.3.6. Flapping profile
The discussion so far has been based entirely on pure sinusoidal kinematics, and will be
referred to as ‘Flapping I’ hereafter. In this section, another variety of flapping motion
pattern is tested, namely a sinusoidal plunge along with a trapezoidal pitch motion, and
this will be referred to as ‘Flapping II’ in this study. The kinematics is given by

yp(t) = h0 sin(2πfet), (3.1)

θ(t) = θm + θ0

tanh β
tanh(β sin(2πfet + φ)), (3.2)

where β is a scaling parameter to match the amplitudes, taken as β = 2.5 in this study.
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Figure 14. Phase-averaged vorticity contours for different foil thicknesses and phase offsets at h = 0.475,
θ0 = 15◦, κ = 4.0 and x0 = 0.5.
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Figure 15. Flapping pattern considering sinusoidal plunge along with trapezoidal pitch motion: (a) φ = π/2,
and (b) φ = 2π.

The kinematic parameters are taken as h = 0.475, θ0 = 15◦, κ = 4.0, x0 = 0.5 and
th/c = 0.12. Once again, four different φ values are chosen, φ = π/2, π, 3π/2 and 2π.
Figure 15 shows the flapping patterns for φ = π/2 and 2π. The dynamical states of the
flow fields are presented in figure 16; the CL−CD plots and wavelet transforms are given
in figures 13 and 14 of the supplementary material. It is seen that the transition route
remains the same for both Flapping I and Flapping II, exhibiting periodicity at φ = π/2,
quasi-periodicity at φ = π, and chaos at φ = 3π/2 and 2π. This indicates that small
changes in the flapping pattern do not affect the dynamical transition behaviour much.

With the knowledge of the dynamics from these 100 different simulation cases, the role
of the key vortex structures, especially the LEV, in triggering aperiodicity in the wake is
investigated next. A correlation between the strength of the LEV and the dynamical state
of the wake is also sought.

942 A40-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.385


D. Majumdar, C. Bose and S. Sarkar

F
la

p
p
in

g
 I

φ = π/2 φ = π φ = 3π/2 φ = 2π

F
la

p
p
in

g
 I

I

ρ = 0.99 ρ = 0.65 ρ = 0.04 ρ = 0.05

ρ = 0.98 ρ = 0.8 ρ = 0.01 ρ = –0.03

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 16. Phase-averaged vorticity contours for different flapping patterns and phase offsets at h = 0.475,
θ0 = 15◦, κ = 4.0, x0 = 0.5 and th/c = 0.12. Flapping I: sinusoidal plunge and sinusoidal pitch. Flapping II:
sinusoidal plunge and trapezoidal pitch.

0

Chaotic Quasi-periodic Periodic

0.2 0.4 0.6
ρ

0.8 1.0
0

5

10

15

Γ

Periodic
Quasi-periodic
Chaotic

Figure 17. Average circulation of the primary LEV shows strong correlation with the periodicity of the flow
field.

4. Role of the primary LEV on flow field periodicity

The primary LEV is one of the key near-field structures to dictate the dynamical state
of the flow field. As mentioned in the Introduction, LEV growth and separation become
aperiodic in the high κh regime, and the subsequent LEV–TEV interactions lead to
spontaneous formation and destruction of series of secondary vortices, thus triggering
aperiodicity in the wake (Bose & Sarkar 2018; Majumdar et al. 2020a; Bose et al. 2021).
The strong interconnection between LEV growth and the chaotic transition of the flow field
is demonstrated quantitatively in the present study in terms of the strength of the LEV.
Figure 17 shows the variation in the average LEV strength (Γ ) at different parametric
cases, along with the associated ρ values, presented in § 3.3. In order to estimate the
LEV strengths, circulation values are calculated as an integral of the vorticity field over
a rectangular region that covers the LEV area around the location of maximum vorticity
(Zurman-Nasution et al. 2020). The position and size of the rectangular box are changed
depending on the location and size of the primary LEV at different time instants and
different parameters. Some examples of such rectangular regions surrounding the LEV
can be seen in figure 18 for a few typical flow field snapshots. The integration is performed
at a time instant when the foil completes an upstroke and reaches its topmost position.

942 A40-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.385


Transition boundaries and an order-to-chaos map

h = 0.25
φ

 =
 π

/2
φ

 =
 π

φ
 =

 3
π

/2
φ

 =
 2

π

LEV

LEVLEV

LEV LEV
LEV

LEV LEV LEV LEV

LEV

LEV

LEV

TEV TEV
TEV TEV

TEV TEV TEV
TEV

TEV

TEV

TEV

TEV

TEV
TEV

TEV

TEV

SV

SV

SV

Γ  = 0.92

Γ = 1.19

Γ = 3.33

Γ = 2.71

Γ = 1.82

Γ = 2.41

Γ = 5.75

Γ = 4.69

Γ = 3.73 Γ = 6.47

Γ = 2.34

Γ = 9.17
Γ = 7.43

Γ = 4.49

Γ = 2.64

Γ = 14.98

h = 0.375 h = 0.475 h = 0.625(a) (b) (c) (d)

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

Figure 18. Comparison of the instantaneous vorticity contours at t/T = 20.25 (at the end of an upstroke)
for h = 0.25, 0.375, 0.475, 0.625 at four typically chosen phase offset values (φ = π/2, π, 3π/2, 2π). The
circulation of the primary LEV is mentioned in each panel. The black rectangular boxes show the region
considered to calculate the circulation values. SV: secondary vortex.

The primary counter-clockwise LEV is assumed to be fully grown at this instant. The LEV
circulation is obtained for 16 consecutive flapping cycles (t/T = 15–30), and the average
LEV strength, Γ , is computed. From the Γ versus ρ plot in figure 17, a direct correlation
between the strength of the primary LEV and the chaotic transition in the flow field can be
observed. For the periodic cases, in general, Γ is seen to remain bounded (approximately
Γ < 5). In the majority of these cases, the LEV, being weak in strength, does not get shed
and remains attached to the body. As a result, no LEV–TEV interactions take place in
the near field. For the quasi-periodic cases, Γ is seen to cover almost the same range as
that of the periodic cases (approximately 1.5 < Γ < 6). So periodic and quasi-periodic
dynamics cannot be distinguished clearly based on the Γ values alone. On the other
hand, for most of the chaotic cases, Γ goes beyond a certain threshold, approximately
at Γ > 6; see figure 17. This indicates that beyond a certain strength, the growth of the
LEV turns chaotic, triggering the entire flow field to be chaotic eventually. Notably large
variations in the circulation values at different cycles are seen during chaos, and a high
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Figure 19. Schematic diagram showing the pitching–plunging foil motion at φ = π
2 , π, 3π

2 and 2π.

average is observed. A strong LEV is shed from the body during different flapping cycles
aperiodically, and subsequently interacts with the TEV to propagate chaos in the wake.

The fundamental mechanisms that dictate the onset of chaotic transition are related
to the LEV and other near-field vortices, as will be shown next. They are examined in
this section based on a few typically chosen representative cases. A comparison of the
near-field vortices at four h values (0.25, 0.375, 0.475, 0.625) is presented in figure 18
for four typical φ cases (π/2, π, 3π/2, 2π). These representative cases are taken from
§ 3.3.1. Note that the circulation values shown in the panels of figure 18 correspond to
each specific snapshot, and are not the averaged quantities. For a better appreciation of the
foil motion, the orientations of the foil at different time instants during a flapping cycle are
shown schematically in figure 19, corresponding to the cases presented in figure 18. These
pictorial representations will be useful in the follow-up discussion. The effective AoA αeff
is also computed for each of these cases using the equation

αeff (t) = θ(t) − tan−1
[

1
U∞

{
ẏp(t) −

( c
2

− x0

)
θ̇ (t) cos(θ(t))

}]
. (4.1)

The derivation of this equation is given in Appendix A. The numerical value of αeff
depends on both the plunge and pitch parameters, as well as on the phase offset between
them. Figure 20 presents αeff over a flapping cycle for a typical case with h = 0.475 at
four different φ values. The trend remains the same for the other h values. The αeff values
reported in the following discussion are specific to the h = 0.475 case.

The phase offset between the plunge and pitch motions is a crucial parameter in
ultimately dictating the relative orientation of the flapping foil with respect to the incoming
flow. At φ = π/2, the leading edge of the foil leads the trailing edge, and the foil ‘slices
through’ the free stream (see figure 19), thus minimising the maximum value that the
effective AoA can reach (αmax

eff = 47.24◦ for h = 0.475, see figure 20). As a result, the
flow remains completely attached to the body at h = 0.25 (figure 18a). Even though an
LEV forms with an increase in h, the circulation of the LEV remains low (Γ = 1.82
at h = 0.375, and Γ = 3.73 at h = 0.475), and it stays attached to the body. No strong
LEV separation is seen. The LEV does not undergo any direct interaction with the TEV;
see figures 18(b,c). Thus for φ = π/2, the flow field exhibits periodic vortex shedding

942 A40-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

38
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.385


Transition boundaries and an order-to-chaos map

0 0.2 0.4 0.6

Downstroke

t/T
0.8 1.0

–80

–60

–40

–20

0

20

40

60

α
ef

f (
de

g.
)

80 φ = π/2

φ = 2π

φ = 3π/2
φ = π

Figure 20. Effective AoA for a typical case h = 0.475 at four different φ values. The trend remains the same
at the other h values.

even at h = 0.475. The periodic formation and growth of the primary LEV becomes
quasi-periodic only at a significantly high h = 0.625, when the circulation of the primary
LEV also increases to Γ = 6.47.

As φ goes to π, the flow still remains attached at h = 0.25, and periodic vortex shedding
is seen at the trailing edge (figure 18e). With an increase in h, an LEV forms as seen in
figures 18( f –h). At this φ, although the maximum effective AoA is high (αmax

eff = 66.24◦

for h = 0.475, as in figure 20), the leading edge traverses the smallest distance. Hence the
LEV does not get separated from the body. However, it gradually gets convected along the
foil surface to affect the TEV shedding. As the LEV growth becomes aperiodic around
h ≥ 0.475, it triggers the entire near-field interactions to be aperiodic.

At φ = 3π/2, the kinematics being exactly the mirror image of those for φ = π/2,
the leading edge lags the trailing edge (figure 19), and αmax

eff takes the highest value
among all the other φ cases (αmax

eff = 77.24◦ for h = 0.475, see figure 20). As a result,
strong separation happens near the leading edge (figures 18i–l) and it becomes aperiodic
even near h = 0.25. The aperiodically shed LEV (with Γ = 5.75 at h = 0.375, Γ = 4.49
at h = 0.475, and Γ = 14.98 at h = 0.625), interacts with the TEV to trigger chaos.
Consequently, spontaneous formation and annihilation of vortices through some of the
fundamental interaction mechanisms sustains chaos in the far wake. Such interaction
mechanisms were discussed in detail by Bose & Sarkar (2018) and Majumdar et al.
(2020a).

At φ = 2π, plunge and pitch are in the same phase, and the leading edge traverses the
largest distance, giving a high maximum effective AoA (αmax

eff = 66.24◦ for h = 0.475,
see figure 20). A strong LEV gets separated even at low h, but with high LEV strength.
This can be seen from figures 18(n–p) (Γ = 2.71 at h = 0.25, Γ = 4.69 at h = 0.375,
Γ = 7.43 at h = 0.475, and Γ = 9.17 at h = 0.625). Once again, subsequent interactions
with the TEV usher in and sustain chaos.

The above discussion underlines the importance of the foil orientation in affecting the
growth and evolution of the primary LEV and in dictating its subsequent interactions with
the other vortices. Parameters such as the phase offset can influence this strongly. One can
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state from the above results that the φ = π/2 case should be preferred for a delayed onset
of chaos as it ensures no strong separation and an organised flow for a longer range of h.
Similarly, 3π/2 ≤ φ ≤ 2π should be avoided as the aperiodic onset gets advanced due to
the formation and shedding of strong aperiodic leading-edge vortices, even at low h.

At this juncture, it is important to identify new non-dimensional parameters that can
capture robustly the combined effects of the key kinematics on the LEV separation
behaviour discussed above. These novel non-dimensional parameters are to be utilised to
demarcate the different dynamical states of the wake without any loss of generality. With
this focus, the next section identifies two new non-dimensional parameters and proposes
a mathematical fit in terms of them to isolate the order-to-chaos transition region and
classify the dynamical states.

5. Dynamical transition boundaries and an order-to-chaos map

As already mentioned, none of the conventionally used existing non-dimensional
parameters (κh, StA, StD, Stc, Stτ ) can account for the combined effect of many
different kinematic quantities. The limitations of the earlier approaches using existing
non-dimensional parameters in demarcating different dynamical regimes are presented
in Appendix B. We remind readers that the current study considers a wide variety of
parametric combinations, some of which are being discussed for the first time. This brings
out the need for developing new non-dimensional quantities that can capture effectively the
effects of varying all the relevant kinematic parameters on the flow field. This is presented
in the following. Generalised order-to-chaos transition boundaries are also identified in the
present study in terms of the proposed non-dimensional quantities.

5.1. Introducing new non-dimensional quantities to capture the dynamics
As already demonstrated, the dynamical signature of the flow field is dictated primarily
by the LEV separation. This, in turn, is dependent on the flapping kinematics as well as
the inflow, i.e. the speed and relative orientation with which the leading edge interacts
with the incoming flow. The effective AoA should be a powerful measure in this regard
to define the degree of the flow separation. A novel and efficient mathematical model is
proposed here to represent the entire parametric space in terms of the maximum effective
AoA in one cycle (αmax

eff ) and a leading-edge amplitude-based Strouhal number (StA,LE).
The latter is defined as

StA,LE = fe ALE

U∞
, (5.1)

with ALE denoting the peak-to-peak amplitude of the leading edge. It can be estimated as

ALE = 2 × max{yp(t) + x0 sin(θ(t))}. (5.2)

These two key non-dimensional parameters, αmax
eff and StA,LE, are able to include both of

the critical aspects discussed above – the speed and the angle with which the foil interacts
with the inflow. The mathematical definitions of these two quantities include the effects of
all the key kinematic and flow parameters that affect the wake dynamics. Thus changes in
any of these parameters reflect directly on the αmax

eff –StA,LE pair, which is not true for the
conventionally used non-dimensional numbers defined for specific kinematic situations.

As a first step, the (StA,LE, αmax
eff ) pair values corresponding to all the parametric cases

presented in § 3, exhibiting periodic or chaotic dynamics, are computed and plotted
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Figure 21. An order-to-chaos map (αmax
eff versus StA,LE) exhibiting the three distinct regions corresponding to

qualitatively different dynamical states.

in the αmax
eff versus StA,LE plane. It is observed that the data points belonging to the

periodic and chaotic states are clustered individually in two distinct regions; see figure 21.
A best fit curve αmax

eff = 61.1 St−0.22
A,LE is obtained from the boundary data of the chaotic

cases using a power-law equation. This is considered as the lower boundary of the
chaotic regime since all the data points belonging to the region above this curve are
representative of robust chaos. Similarly, another best fit curve, αmax

eff = 45.8 St−0.2
A,LE, is

obtained from the boundary data of the periodic points, and all the data points below
this curve belong to the periodic regime. Thus the latter curve can be considered as the
upper boundary of the periodic regime. The philosophy behind the development of these
two boundaries is based on the motivation of identifying the loss of periodicity and the
onset of chaos. Interestingly, all the parametric data exhibiting quasi-periodicity (transition
state) in § 3 fall in the region bounded by the two above-mentioned boundary curves. Even
though these boundaries are developed from the information of periodic and chaotic data
points alone, the quasi-periodic points turn out to be well segregated and bounded by
them. Therefore, the αmax

eff versus StA,LE plot in figure 21 captures efficiently the three
distinct dynamical regimes, where the periodic and chaotic regimes are separated by the
transitional quasi-periodic regime. It is also worth mentioning that the choice of power-law
curves here is a methodological choice. Several other standard fittings were tried out as
well, but the power-law fitting gave the highest accuracy. However, the exponent values in
the power-law curves, i.e. −0.2 for the upper bound of the periodic cases, and −0.22 for
the lower bound of the chaotic cases, are not by choice but are outcomes of the best-fitting
process.

Dynamical transition from periodicity to robust chaos happens via local or global
bifurcation routes through one or more intermediate dynamical states. The transition
regime corresponds to those dynamical states for different kinematic conditions. The
success of the present classification approach lies in pinpointing the periodic and robust
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chaotic regions with reasonable accuracy. Fundamentally, a portion of the periodic regime
may still remain ‘entangled’ with a portion of the transition regime, and similarly a portion
of the chaotic regime with that of the transition regime. However, it is definitely possible
to identify distinct regions of periodicity and chaos, and an in-between ‘entangled’ regime
of transition dynamics. The transition regime is identified as a collection of all possible
transitional states. The exact dynamics for the entire transition regime may not be known
a priori from this classification, and one would need a case-by-case investigation to
comment on that. Note that the current model to define the order-to-chaos boundaries
is a first step based on the present simulations, and the main focus was to identify a
reduced-order parametric space by combining the effects of the most relevant kinematic
quantities and developing generalised transition boundaries in that reduced space.

In summary, a total of 100 different parametric cases were simulated in this study.
Among the 36 periodic points, 30 were classified correctly, and among the 40 chaotic
cases, 35 were classified correctly by the proposed transition boundaries in figure 21.
This gives an accuracy of more than 85 %, which is quite encouraging, especially in the
light of the severe limitations of the existing non-dimensional quantities. Here are the
main contributions made: (i) effective non-dimensional parameters were identified to track
the qualitative changes in the flow field; (ii) a transition regime was identified where all
transition states could be accommodated between order and chaos. Above this regime,
robust chaos can be expected, and below, regular periodic dynamics.

5.2. Verification with the existing literature
In this subsection, the robustness of the proposed transition model is tested with existing
data from the literature. This is demonstrated in figure 22 by calculating the αmax

eff and
StA,LE values for a series of data collected from the published results of different research
groups reporting dynamical transition in flapping systems. The cases are as follows.

(i) Lewin & Haj-Hariri (2003): pure plunging elliptic-shaped foil with 12 % thickness
at κh = 0.8, 1.0, 1.2 and 1.5, with fixed κ = 5.714, Re = 500; plotted as �.

(ii) Deng et al. (2016): pure plunging NACA0015 aerofoil at AD = 2.0 and Sr = 0.1 to
0.55 in steps of 0.05, Re = 1700; plotted as �.

(iii) Badrinath et al. (2017): pure plunging NACA0012 aerofoil at h = 0.4, 0.913 and 1.2,
with fixed κ = 2.0, Re = 1000; plotted as �.

(iv) Majumdar et al. (2020a,b): pure plunging elliptic-shaped foil with 12 % thickness at
h = 0.25, 0.375, 0.4125 and 0.475, with fixed κ = 4.0, Re = 300; plotted as +.

(v) Zaman et al. (2017): pure pitching NACA0012 aerofoil at θ0 = 20◦, 30◦, 38◦, 45◦,
50◦ and 58◦, with fixed κ = 8.0, with the pitching axis being at the quarter-chord
location, Re = 500; plotted as �.

(vi) Lentink et al. (2010): simultaneous pitching–heaving elliptic foil with 5 % thickness
at the dimensionless heave amplitude A∗(= A/c) = 1.0 and 2.0 (where A is the
heave amplitude), α0 = 15◦, dimensionless heave length λ∗(= U∞/fc) = 3 to 13
in steps of 2, φ = π/2, with the pitching axis being at the mid-chord location,
Re = 1000; plotted as ×.

(vii) Bose & Sarkar (2018): simultaneous pitching–plunging NACA0012 aerofoil at h =
0.5, 0.85 and 1.25, α = 15◦, κ = 2.0, φ = π/2, with the pitching axis being at the
quarter-chord location, Re = 1000; plotted as •.
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Transition boundaries and an order-to-chaos map

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

30

40

50

60

70

80

90

α
ef

f   
 (d

eg
.)

m
ax

StA,LE = feALE/U∞

αeff    = 61.1StA,LE
max –0.22

αeff    = 45.8StA,LE
max –0.2

Figure 22. Validating the proposed transitional boundaries with the reporting of earlier works by different
research groups. Markers are used as follows: �, Lewin & Haj-Hariri (2003); �, Deng et al. (2016) (pure
plunge); �, Badrinath et al. (2017); +, Majumdar et al. (2020a,b); �, Zaman et al. (2017); ×, Lentink et al.
(2010); and •, Bose & Sarkar (2018). Colourcode: green if the dynamical state corresponding to the data point
was reported to be periodic, red if it was reported to be chaos, and purple if the reported dynamical state
exhibited transitionary signature in the respective literature.

The mathematical symbols used in the above description are as given in their respective
articles. The markers in figure 22 are colour coded based on the dynamical states reported
in the respective literature, i.e. green if the data point was reported as periodic, red if it
was reported as chaotic, and purple if the data point was transitionary. As described in the
previous paragraph, the cases taken from the literature involve various combinations of
different kinematic parameters, flapping motions (pure plunge, pure pitch, simultaneous
pitch–plunge), foil shapes and thicknesses, etc. Despite the variety of the parametric
combinations, their dynamical states corroborate very well the proposed transitional
boundaries, giving credibility to the present order-to-chaos map. A few exceptions have
also been observed in the case of pure pitching at θ0 = 45◦ and 50◦ from Zaman et al.
(2017). Among the 42 cases taken from the literature, 15 data points have been identified
as periodic as per the present model, and all of them were also reported to be periodic in
their respective studies. On the other hand, out of the 13 data points that fall above the
shaded transition region as chaotic, only 11 were actually called chaotic in their respective
studies. Thus out of 28 cases, 26 have been classified correctly, demonstrating an accuracy
of around 93 %. These results strengthen the efficacy of the proposed transition boundaries
for demarcating the periodic and chaotic parametric sets in terms of αmax

eff and StA,LE.

6. Conclusions

Effects of a wide variety of kinematic conditions on the dynamical transition in the wake
of a flapping foil have been investigated by simulating a large number of parametric
combinations (a total of 100 different cases) using an IBM-based in-house Navier–Stokes
solver. It has been established already in the literature that the plunge amplitude and
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flapping frequency are two essential parameters that can dictate the dynamical nature of the
flow field. This study reveals that other parameters, such as pitch amplitude (θ0), pitching
axis location (x0), foil thickness, type of kinematics, and phase offset (φ) between pitch
and plunge motions, can also play very important roles in influencing the wake dynamics.
The present study has also established that the chaotic transition in the flow field is strongly
correlated with the strength of the primary LEV. Beyond a certain strength, the growth and
separation of the LEV structure become chaotic, which eventually gets propagated to the
trailing wake through LEV–TEV interactions in the subsequent cycles.

One of the main contributions of the present study is the introduction of two new
non-dimensional quantities (StA,LE and αmax

eff ) to capture the physical effect of the
parametric variations considered in the study. The proposed dimensionless parameters
can capture the important effects of the speed and the angle with which the foil interacts
with the inflow. Changes in key parametric quantities reflect directly on the αmax

eff –StA,LE
pair, which is not true for the conventionally used non-dimensional numbers defined in
the literature for specific kinematic situations. The other important contribution of the
study is to propose generalised transition boundaries and an order-to-chaos map in terms
of the newly proposed non-dimensional parameters. Published data from the existing
literature have also been utilised to confirm the proposed boundaries. Despite the wide
variety of parametric combinations, the dynamical states from both new and published
data corroborate very well the proposed transitional boundaries, giving credibility to the
order-to-chaos map.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2022.385.
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Appendix A

The derivation of αeff is given here. For any point on the chord line located at a distance s
from the leading edge, its position along the y-direction can be written as

ys = yp − (s − x0) sin θ. (A1)

Note that the pitch motion is clockwise positive, and plunge is positive along the positive
y-axis. The velocity at the s location can be obtained from the time derivation of (A1) as

ẏs = ẏp − (s − x0)θ̇ cos θ. (A2)

Hence the average downwash velocity induced by the entire chord can be estimated as

W = −

∫ c

0
ẏs ds

∫ c

0
ds

= −1
c

∫ c

0
{ẏp − (s − x0)θ̇ cos θ} ds = −

[
ẏp −

( c
2

− x0

)
θ̇ cos θ

]
.

(A3)
Finally, the effective AoA is given by

αeff = θ − tan−1
[

W
U∞

]
= θ − tan−1

[
1

U∞

{
ẏp −

( c
2

− x0

)
θ̇ cos θ

}]
. (A4)
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Figure 23. The parametric cases of § 3.3.1 presented in terms of the conventional non-dimensional numbers
used by different research groups.

Appendix B

Figure 23(a) presents a plot in terms of non-dimensional parameters κh versus κ for all
the parametric cases discussed in § 3.3.1. All those parametric cases collapse on just
four data points (κh = 1.0, 1.5, 1.9, 2.5). Evidently, the different dynamical states that
belong to these parametric combinations (φ variation) cannot be distinguished through
these non-dimensional parameters. Similarly, non-dimensional parameters AD and StD
(proposed by Godoy-Diana et al. 2009) are also not suitable. The AD versus StD plot for the
same cases is shown in figure 23(b). Here, the data points get mixed up and no pattern can
be identified for the different dynamical states involved. As in these parametric cases fe, D
and U∞ were not changed, a constant StD = 0.0764 appears for all the cases, and the AD
value hovers within the range 2.01 < AD < 12.57. Note that for a given κh, a φ pair that is
symmetric about the zero mean line (such as φ = π/4 & 7π/4 or φ = π/2 & 3π/2) result
in the same AD, even though the pair may exhibit very different dynamics. As was shown
in figure 8, φ = π/2 and φ = 3π/2 at κh = 0.375 manifest different dynamics (periodic
and chaotic, respectively), though both have the same AD value of 6.62. A τD versus 1/StD
plot has also been made here in figure 23(c), as proposed by Lagopoulos et al. (2019). No
clear demarcation between the different dynamical states can be found here either. Thus in
the light of the above discussion, the limitations of the earlier approaches in demarcating
different dynamical regimes encountered presently are evident.

Appendix C

The effect of pivot location on the dynamical states of the flow field is small at φ = π/2
and 3π/2, but it is quite tangible for φ = π and 2π. In order to understand the different
trends at different φ, one needs to look into the respective (StA,LE, αmax

eff ) pair values. This
is because these quantities capture the two critical aspects – the leading-edge speed and
the relative orientation with which the foil interacts with the incoming flow – that are
the fundamental factors that affect the LEV formation and growth, and in turn, dictate
the dynamical characteristics of the flow field. Figure 24 shows the (StA,LE, αmax

eff ) pairs
corresponding to the 12 parametric cases obtained by varying φ and x0 (as presented in
§ 3.3.3). The cases corresponding to x0 = 0.25, 0.5 and 0.75 are plotted using the markers
+, � and •, respectively. The markers are colour coded as green, purple or red if they
appear to be periodic, quasi-periodic or chaotic from the flow simulations, respectively.
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Figure 24. Variation in (StA,LE, αmax
eff ) pairs as the pivot location and phase offset are varied. Cases

corresponding to x0 = 0.25, 0.5 and 0.75 are plotted using the markers +, � and •, respectively. The markers
are colour coded as green, purple or red if they appear to be periodic, quasi-periodic or chaotic from the flow
simulations, respectively.

Note that in figure 24, the three data points at φ = π/2 are seen to be sufficiently
inside the periodic regime and are close to each other. This implies that these three
cases correspond to sufficiently low leading-edge speed and effective AoA, and are thus
associated with a stable periodic LEV behaviour. This results in periodic flow fields. At
φ = 3π/2, the three data points corresponding to three different x0 values are sufficiently
inside the chaotic regime and are close to each other (figure 24). These cases correspond
to substantially high leading-edge speed and effective AoA, and as a result are associated
with chaotic LEV growth resulting ultimately in chaotic flow fields. Hence the dynamics
at φ = π/2 and φ = 3π/2 look largely independent of the pivot location.

The cases of φ = π and φ = 2π fall in the transition regime. At φ = π, as the pivot
point is moved from the quarter-chord to the three-quarter-chord location, both StA,LE
and αmax

eff gradually decrease, and the data points move towards the periodic regime; see
figure 24. This is because the flapping motion at this φ is such that the leading edge
traverses comparatively smaller distance with a lower leading-edge speed, and takes lower
effective AoA values as the pivot point moves towards the trailing edge. As a result,
gradually more stable primary LEV structures are formed with increasing x0, and therefore
the flow field turns from quasi-periodic to periodic. At φ = 2π, StA,LE and αmax

eff increase,
and the data points move towards the chaotic regime with an increase in x0 (figure 24).
At this φ, the leading edge traverses higher distances with increased leading-edge speed,
and the foil takes comparatively higher effective AoA values as x0 increases. This leads
to irregular formation of the primary leading-edge vortices having higher strength and
more agility, which eventually make the overall flow field more irregular, as observed in
§ 3.3.3. In conclusion, movement of the pivot location from the leading edge towards the
trailing edge affects the leading-edge flapping speed and the foil’s relative orientation with
respect to the incoming flow conversely for φ = π and 2π. Hence the flow field behaves
contrastingly at these two φ values. It gets regularised at φ = π, but becomes more and
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more irregular at φ = 2π with increasing x0. This explains the underlying reason behind
the opposite trends of the dynamical states at φ = π and 2π observed in § 3.3.3.
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