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Abstract

In this work, we consider the periodic boundary value problem{
x ′′

+ a(t)x = f (t, x) + c(t),
x(0) = x(T ), x ′(0) = x ′(T ),

where a, c ∈ L1(0, T ) and f is a Carathéodory function. An existence theorem for positive periodic
solutions is proved in the case where the associated Green function is nonnegative. Our result is valid
for systems with strong singularities, and answers partially the open problem raised in Torres [‘Weak
singularities may help periodic solutions to exist’, J. Differential Equations 232 (2007), 277–284].
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1. Introduction and preliminaries

Consider the periodic boundary value problem

x ′′
+ a(t)x = f (t, x) + c(t), (1)

x(0) = x(T ), x ′(0) = x ′(T ), (2)

where a, c ∈ L1(0, T ) and f : [0, T ] × (0, ∞) → R is a function of L1-Carathéodory
type, that is, it is continuous in the second variable and for every 0 < r < s there exists
hr,s ∈ L1(0, T ) such that | f (t, x)| ≤ hr,s(t) for all x ∈ [r, s] and almost every t ∈

[0, T ]. We are interested in equation (1) with a singularity in x = 0, which means

lim
x→0+

f (t, x) = +∞ uniformly almost every t ∈ [0, T ].

The singularities appear when electrostatic or gravitational forces are considered.
In recent years, the periodic boundary value problem (1)–(2) has attracted attention

from many specialists in differential equations. Lazer and Solimini [6] studied this
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problem in the special case f (t, x) = 1/xλ. They showed that the strong force
assumption λ ≥ 1 is necessary in some sense for the existence of positive periodic
solutions. Since then, the strong force condition has become standard in related work;
see, for instance, [1, 3–5, 7–9, 13, 14] and the references therein. Compared with
the case of strong singularities, the study of the existence of periodic solutions under
the presence of weak singularities is much more recent. Here we refer the reader
to [2, 9–11].

In [12], the boundary value problem (1)–(2) is studied by using Schauder’s
fixed point theorem, and some existence results prove that in some situations weak
singularities may help create periodic solutions. However, ‘the validity of such results
under a strong force assumption remains as an open problem’ (see [12]). The purpose
of this paper is to give a partial answer to this open problem, namely, we prove that
[12, Theorem 2] is valid under a strong force assumption if a � 0 and ‖a‖1T < 1
(see Theorem 1 below).

Let us fix some notation. Given a ∈ L1(0, T ), we write a � 0 if a ≥ 0 for almost
every t ∈ [0, T ] and it is positive in a set of positive measure. We denote by a∗ and
a∗ the essential infimum and supremum of a, respectively. The usual supremum norm
and L1-norm are denoted by ‖ · ‖ and ‖ · ‖1, respectively.

2. Main results

Throughout this paper, we assume the following hypothesis:

(H1) Green’s function G(t, s) of the linear equation x ′′
+ a(t)x = 0 with periodic

condition (2) is nonnegative for every (t, s) ∈ [0, T ] × [0, T ].

Under condition (H1), the unique T -periodic solution of x ′′(t) + a(t)x = h(t) is given
by

x(t) =

∫ T

0
G(t, s)h(s) ds.

We remark that, when a(t) = k2 > 0, it is not hard to see that condition (H1) is
equivalent to 0 < k2

≤ (π/T )2. For a nonconstant a(t), we refer to an L p-criterion
given as [12, Lemma 1], where the condition a � 0 is needed. So the assumption
a � 0 in this paper is natural.

The following theorem is [12, Theorem 1], and will be used in the proof of our
main result.

THEOREM A. Assume (H1) and that there exist b � 0 and λ > 0 such that

0 ≤ f (t, x) ≤
b(t)

xλ
for all x > 0, for almost every t.

If γ∗ > 0, then there exists a positive T -periodic solution of (1).
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LEMMA 1. Assume that a � 0. There exists 0 < η < 1 such that, for any t0, t1 ∈

[0, T ],

0 ≤

∫ t1

t0

∫ r

t0
a(s) ds dr ≤ ηT ‖a‖1. (3)

PROOF. The first part of inequality (3) is clear. So it suffices to prove the second part.
We can easily see that there exist T1, T2, T3 ∈ (0, T ), T1 < T2 < T3, such that∫ Ti

0
a(s) ds =

i‖a‖1

4
, i = 1, 2, 3.

Let l = min{T1, T2 − T1, T3 − T2, T − T3}. For any t ∈ [0, T ], set

A(t) =

{
δ(t) :

∣∣∣∣∫ t+δ(t)

t
a(s) ds

∣∣∣∣ =
‖a‖1

2

}
.

Then |δ(t)| ≥ l for any δ(t) ∈ A(t), t ∈ [0, T ].
Without loss of generality, we may assume that t0 < t1. If there does not exist any

δ(t0) in A(t0) such that t0 + δ(t0) ∈ [t0, t1], we can get easily that, for any r ∈ [t0, t1],∫ r
t0

a(s) ds ≤ ‖a‖1/2. So ∫ t1

t0

∫ r

t0
a(s) ds dr ≤

1
2

T ‖a‖1.

If there exists δ(t0) ∈ A(t0) such that t0 + δ(t0) ∈ [t0, t1], then δ(t0) > l, and∫ t1

t0

∫ r

t0
a(s) ds dr =

(∫ t0+δ(t0)

t0
+

∫ t1

t0+δ(t0)

) ∫ r

t0
a(s) ds dr

≤ δ(t0)‖a‖1/2 + |t1 − t0 − δ(t0)|‖a‖1

≤ δ(t0)‖a‖1/2 + (T − δ(t0))‖a‖1

= (T − δ(t0)/2)‖a‖1

≤ (T − l/2)‖a‖1.

Let η = max{(1/2), 1 − (l/2T )}. Then (3) is true. 2

Now we are in a position to give our main result.

THEOREM 1. Let us assume (H1) and that there exist b, b̂ � 0 and λ > 0 such that

(H2) 0 ≤
b̂(t)

xλ
≤ f (t, x) ≤

b(t)

xλ
for all x > 0, for almost every t.

If γ∗ = 0, a � 0 and T ‖a‖1 < 1, then there exists a positive T -periodic solution of (1).

PROOF. We consider the following family of systems,

x ′′
+ a(t)x(t) = f (t, x) + c(t) +

a(t)

n
, (4)
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with n any natural number. Noticing that
∫ T

0 G(t, s)a(s) ds = 1 and replacing c(t) by
c(t) + a(t)/n, it is easy to get from Theorem A that there exists a positive T -periodic
solution xn of (4) for each n.

For the sake of convenience, we assume that

γ (t) =

∫ T

0
G(t, s)c(s) ds, β(t) =

∫ T

0
G(t, s)b(s) ds,

β̂(t) =

∫ T

0
G(t, s)b̂(s) ds.

Now we complete the proof in the following two steps.

STEP 1. Suppose that xn(t) ≥ (1 − ‖a‖1T )‖xn‖ for all t ∈ [0, T ]. Clearly, the T -
periodic solution xn of (4) satisfies

xn(t) =

∫ T

0
G(t, s)[ f (s, xn(s)) + c(s) + a(s)/n] ds.

So by (H2),

xn(t) ≤

∫ T

0
G(t, s) f (s, xn(s)) ds + γ (t) + 1/n

≤

∫ T

0

G(t, s)b(s)

xλ
n (s)

ds + γ (t) + 1/n

≤
β∗

((1 − ‖a‖1T )‖xn‖)λ
+ γ ∗

+ 1.

This implies that the sequence {xn} is uniformly bounded, that is, there exists R < ∞

such that ‖xn‖ ≤ R for all n. As a result,

xn(t) =

∫ T

0
G(t, s)[ f (s, xn(s)) + c(s) + a(s)/n] ds

≥

∫ T

0
G(t, s)

b̂(s)

Rλ
ds

≥
β̂∗

Rλ
=: r.

We note that β̂∗ > 0 as a consequence of (H1) and b̂ � 0. Thus 0 < r ≤ xn(t) ≤ R for
all n and t ∈ [0, T ].

On the other hand, since x ′
n(0) = x ′

n(T ), by (4),∫ T

0
a(s)xn(s) ds =

∫ T

0
[ f (s, xn(s)) + c(s) + a(s)/n] ds.
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Meanwhile, there exists tn0 ∈ [0, T ] such that x ′
n(tn0) = 0 since xn(0) = xn(T ). Then,

by (4) again,

x ′
n(t) =

∫ t

tn0

[ f (s, xn(s)) + c(s) + a(s)/n − a(s)xn(s))] ds.

Hence,

‖x ′
n‖ = max

t∈[0,T ]

∣∣∣∣∫ t

tn0

[ f (s, xn(s)) + c(s) + a(s)/n − a(s)xn(s)] ds

∣∣∣∣
≤

∫ T

0
[ f (s, xn(s)) + c(s) + a(s)/n] ds +

∫ T

0
a(s)xn(s) ds

= 2
∫ T

0
a(s)xn(s) ds

≤ 2R‖a‖1.

Therefore, the sequence {xn} is uniformly bounded and equicontinuous. By the
Arzelà–Ascoli theorem, there exists a subsequence {xnk } of {xn} such that {xnk }

converges uniformly to a continuous function x , and 0 < r ≤ x(t) ≤ R, t ∈ [0, T ].
Moreover,

xnk (t) =

∫ T

0
G(t, s)[ f (s, xnk (s)) + c(s) + a(s)/n] ds

→

∫ T

0
G(t, s)[ f (s, x(s)) + c(s)] ds

as k → ∞. So x(t) is a positive T -periodic solution of (1).

STEP 2. Suppose that xn(t) < (1 − ‖a‖1T )‖xn‖ for some t ∈ [0, T ]. We first prove
that there exists tn0 ∈ [0, T ] such that

xn(tn0) = ‖xn‖, x ′
n(tn0) = 0. (5)

If xn(0) 6= ‖xn‖, it is clear that there exists tn0 ∈ (0, T ) such that (5) holds. If
xn(0) = ‖xn‖, it is sufficient to prove that x ′

n(0) = 0. In fact, we can see easily
that x ′

n(0) > 0 contradicts the fact that 0 is the maximum point of xn . If x ′
n(0) < 0,

then x ′
n(T ) = x ′

n(0) < 0, which is also in contradiction to xn(0) = xn(T ) = ‖xn‖ =

max{|xn(t)| : t ∈ [0, T ]}. Therefore, x ′
n(0) = 0, and (5) is true.

Meanwhile, it follows from the assumption of this step that there exists tn1 ∈ [0, T ]

such that xn(tn1) = (1 − ‖a‖1T )‖xn‖ and xn(t) ≥ (1 − ‖a‖1T )‖xn‖ if t is between tn0
and tn1. Then by (4) and (5),

x ′
n(t) =

∫ t

tn0

[ f (s, xn(s)) + c(s) + a(s)/n − a(s)xn(s)] ds
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and

xn(t) − ‖xn‖ =

∫ t

tn0

∫ r

tn0

[ f (s, xn(s)) + c(s) + a(s)/n − a(s)xn(s)] ds dr.

Therefore, by Lemma 1 we can get

‖a‖1T ‖xn‖ = |xn(tn1) − ‖xn‖|

=

∣∣∣∣∫ tn1

tn0

∫ r

tn0

[ f (s, xn(s)) + c(s) + a(s)/n − a(s)xn(s)] ds dr

∣∣∣∣
≤

∫ tn1

tn0

∫ r

tn0

[
b(s)

xλ
n (s)

+ c(s) +
a(s)

n

]
ds dr +

∫ tn1

tn0

∫ r

tn0

a(s)xn(s) ds dr

≤

∫ tn1

tn0

(
‖b‖1

((1 − ‖a‖1T )‖xn‖)λ
+ ‖c‖1 + ‖a‖1

)
dr + ηT ‖a‖1‖xn‖

≤

(
‖b‖1

((1 − ‖a‖1T )‖xn‖)λ
+ ‖c‖1 + ‖a‖1

)
T + ηT ‖a‖1‖xn‖,

that is,

(1 − η)‖a‖1‖xn‖ ≤
‖b‖1

((1 − ‖a‖1T )‖xn‖)λ
+ ‖c‖1 + ‖a‖1.

This also implies the uniform boundedness of {xn} since λ > 0, and by the same
argument at the end of step 1 we can get a positive T -periodic solution of (1). The
proof is complete. 2

REMARK. Theorem 1 gives a partial answer to the open problem given in [12]:
our result is valid under the strong force assumption λ ≥ 1 if a � 0 and ‖a‖1T < 1.
However, the case ‖a‖1T ≥ 1 under the strong force assumption still remains an
open problem.
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[9] I. Rachunková, M. Tvrdý and I. Vrkoc̆, ‘Existence of nonnegative and nonpositive solutions for
second order periodic boundary value problems’, J. Differential Equations 176 (2001), 445–469.

[10] M. Ramos and S. Terracini, ‘Noncollision periodic solutions to some singular dynamical systems
with very weak forces’, J. Differential Equations 118 (1995), 121–152.

[11] P. J. Torres, ‘Existence of one-signed periodic solutions of some second order differential equations
via a Krasnoselskii fixed point theorem’, J. Differential Equations 190 (2003), 643–662.

[12] , ‘Weak singularities may help periodic solutions to exist’, J. Differential Equations 232
(2007), 277–284.

[13] P. J. Torres and M. Zhang, ‘Twist periodic solutions of repulsive singular equations’, Nonlinear
Anal. 56 (2004), 591–599.

[14] M. Zhang, ‘A relationship between the periodic and the Dirichlet BVPs of singular differential
equations’, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 1099–1114.

HONG-XU LI, Department of Mathematics, Sichuan University, Chengdu,
Sichuan 610064, PR China
e-mail: hoxuli@sohu.com

https://doi.org/10.1017/S0004972708000592 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000592

