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Abstract

We specify a model for a catastrophe loss index, where the initial estimate of each
catastrophe loss is reestimated immediately by a positive martingale starting from the
random time of loss occurrence. We consider the pricing of catastrophe insurance options
written on the loss index and obtain option pricing formulae by applying Fourier transform
techniques. An important advantage is that our methodology works for loss distributions
with heavy tails, which is the appropriate tail behavior for catastrophe modeling. We also
discuss the case when the reestimation factors are given by positive affine martingales
and provide a characterization of positive affine local martingales.
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1. Introduction

Over the past decades the rise in insured losses has exploded from 2.5 billion dollars per year
to an average value of the aggregated insurance losses of 30.4 billion dollars per year (2006
prices); see [20] for more details. Table 1 gives a summary of the 10 most expensive natural
catastrophes for the last 30 years.

In order to securitize the catastrophe risk, insurance companies have tried to take advantage
of the vast potential of capital markets by introducing exchange-traded catastrophe insurance
options. Exchange-traded insurance instruments present several advantages with respect to
reinsurance, for example, they offer low transaction costs, because they are standardized, and
include minimal credit risk, because the obligations are guaranteed by the exchange. See [18]
and [19] for the comparison of insurance securities. In particular, catastrophe options are
standardized contracts based on an index of catastrophe losses, for example, compiled by the
Property Claim Service (PCS), an internationally recognized market authority on property
losses from catastrophes in the US.

The first index-based catastrophe derivatives were introduced at the Chicago Board of Trade
in 1992, but there was only little activity in the market. A second version of the index, compiled
by the PCS, was introduced in 1995. At the peak, the total capacity created by this version
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Table 1: Top 10 insured catastrophe losses (source: Swiss Re, sigma Nr. 2/2007).

Insured loss
(×109 dollars) Year Event Country

66.3 2005 Hurricane Katrina: US
floods Gulf of Mexico
dams burst Bahamas
damage to oil rigs North Atlantic

23.0 1992 Hurricane Andrew: US
flooding Bahamas

21.4 2001 Terrorist attack on World Trade Center, US
Pentagon, and other buildings

19.0 1994 Northridge earthquake US
13.7 2004 Hurricane Ivan: US

damage to oil rigs Caribbean
13.0 2005 Hurricane Wilma: US

torrential rain Mexico
floods Jamaica

Haiti
10.4 2005 Hurricane Rita: US

floods Gulf of Mexico
damage to oil rigs Cuba

8.6 2004 Hurricane Charley US
Caribbean

8.4 1991 Typhoon Mireille Japan
7.4 1989 Hurricane Hugo US

Puerto Rico

of the PCS options amounted to 89 million. Trading in these options slowed down in 1999.
In a separate initiative, the Bermuda Commodities Exchange (BCE) was launched in 1997 to
trade property catastrophe-linked option contracts. The BCE suspended its operations in 1997.
Trading in the PCS options slowed down in 1999, because of the lack of market liquidity and
of qualified personnel (see, e.g. [18]).

However, the record losses caused by hurricanes Katrina, Rita, and Wilma in 2005 have been
a catalyst in creating new derivative instruments to trade the catastrophe risks in the capital mar-
kets. In March 2007, the NewYork Mercantile Exchange (NYMEX) began trading catastrophe
futures and options again. These new contracts were designed to bring the transparency and
liquidity of the capital markets to the insurance sector, providing effective ways of protecting
against property catastrophe risk and providing the investors with the opportunity to trade a
new asset class which has little or no correlation to other exchange-traded asset classes. The
NYMEX catastrophe options are settled against the Re-Ex loss index, which is created from
the data supplied by the PCS.

Following the descriptions in [12], [17], and [18], the structure of catastrophe insurance
options is described as follows. The options are written on a loss index that evolves over two
periods: the loss period [0, T1] and the consecutive development period [T1, T2]. During the
contract specific loss period, the index measures catastrophic events that may occur. However,
at the time of catastrophe occurrence, the reported losses are only estimates of the true losses,
and these estimates are consecutively reestimated until the end, T2, of the development period.
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The loss index thus provides, at any t ∈ [0, T2], an estimation of the accumulation of the final
time (T2) amounts of catastrophe losses that have occurred during the loss period. Let Nt, t ∈
[0, T1], denote the number of catastrophes up to time t , and let Ui, i = 1, . . . , Nt , denote the
corresponding final amounts of losses at time T2 (which are unknown at time 0 ≤ t < T2).
Then the value Lt of the loss index can be expressed as

Lt =
Nt∧T1∑
i=1

E[Ui | Ft ], t ∈ [0, T2], (1.1)

where the filtration {Ft , t ∈ [0, T2]} represents the information available. If the number Nt
of catastrophes is assumed to follow a Poisson process, the structure of the index is thus a
compound Poisson sum with martingales as summands.

In the literature, a few models have been proposed in order to model the catastrophe loss
index and to price catastrophe options written on this index. In [12], [13], and [14] the under-
lying catastrophe index was represented as a compound Poisson process with nonnegative
jumps. In this model, reestimation is not taken into account at all. In [2] and [11] the authors
distinguished between a loss and a reestimation period and modeled the index as an exponential
Lévy process over each period. However, reestimation is assumed to start exactly at T1 by a
common reestimation factor. This assumption is not realistic because loss reestimation happens
individually for each catastrophe and begins almost immediately after the catastrophic event.
In addition, the assumption of an exponential model for accumulated losses during the loss
period is rather unrealistic. For example, this implies that later catastrophes are more severe
than earlier catastrophes, and that the index starts at a positive value (instead of starting at 0).
In [1] a more realistic model for the loss index was proposed and analytical catastrophe option
pricing formulae were developed, but reestimation was also done by a common factor over
the development period only. In [16] a model including immediate reestimation was assumed,
where the reestimation was modeled through individual reestimation factors given by geometric
Brownian motion. However, no efficient pricing methods were obtained.

In this paper we specify a realistic model for the loss index that is consistent with (1.1).
As a particular case, it comprises the model proposed in [16]. We assume that catastrophe
occurrence is modeled by a Poisson process, and consider individual reestimation for each
catastrophe where the initial estimate of the ith catastrophe loss is reestimated immediately by
a positive martingale starting from the random time of loss occurrence. We then consider the
pricing of catastrophe options written on the index. The main contribution of this paper is to
employ Fourier transform techniques in order to obtain option pricing formulae. To this end, we
manage to reduce the calculation of the characteristic function of the index to the computation
of an expectation of the characteristic function of the reestimation factor, evaluated in two
independent random variables. We mention, in particular, that our methodology also works
for loss distributions with heavy tails, which is the appropriate tail behavior for catastrophe
modeling. We then proceed to discuss the case when the reestimation factors are given by
positive affine martingales. In this situation we provide a characterization of positive affine
(local) martingales.

We believe that the use of exchange-traded insurance derivatives will play a crucial role in
the securitization of the increasing catastrophe risk in the future. For this purpose, one essential
task is to develop quantitative tools that help to establish liquid trading of these instruments.
We hope that this paper contributes to this aim in that it sets new insights in the pricing of
catastrophe options.
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The remaining parts of the paper are organized as follows. In Section 2 we present the model
for the loss index. In Section 3 we consider the pricing of European options in the general model
by using Fourier transform techniques, and in Section 4 we discuss the special case of positive
affine martingales as reestimation factors. We conclude with Section 5, where we explicitly
compute prices for spread options, which are the typical instruments in the market.

2. Modeling the loss index

Let (�,F ,P) be a complete probability space. We consider a financial market endowed with
a risk-free asset with deterministic interest rate rt , and the possibility of trading catastrophe
insurance options, written on a loss index. Following the description in the introduction, we
distinguish two time periods:

• a loss period [0, T1];
• a development period [T1, T2], T1 < T2 < ∞.

During the contract specific loss period [0, T1], the catastrophic events occur. After the loss
period, option users can choose either a six month or a twelve month development period
[T1, T2], where the reestimates of catastrophe losses that occurred during the loss period
continue to affect the index. The option contract matures at the end of the chosen development
period T2.

Motivated by the index structure (1.1) discussed in the introduction, we model the stochastic
process L = (Lt )0≤t≤T2 , representing the loss index as follows:

Lt =
Nt∧T1∑
j=1

YjA
j
t−τj , t ∈ [0, T2],

where the following notation and hypotheses have been used.

(H1) Ns, s ∈ [0, T2], is a Poisson process with intensity λ > 0 and jump times τj that models
the number of catastrophes occurring during the loss period.

(H2) Yj , j = 1, 2, . . . , are positive independent and identically distributed (i.i.d.) random
variables with distribution function FY that represent the first loss estimation at the time
the j th catastrophe occurs.

(H3) Ajs , s ∈ [0, T2], and j = 1, 2, . . . , are positive i.i.d. martingales such that

A
j
0 = 1 for all j = 1, 2, . . . .

(H4) Aj , Yj , j = 1, 2, . . . , and N are independent.

In the sequel we will drop the index j and simply write Y and A in some formulae, when only
the probability distribution of the objects matters.

The martingales Ajt represent the unbiased reestimation factors. Here we assume that
reestimation begins immediately after the occurrence of the j th catastrophe with initial loss
estimate Yj , individually for each catastrophe.

Here we suppose that market participants observe the evolution of the individual catastrophe
losses. Note that observing the market quotes of the catastrophe index L alone is in general
not sufficient for the knowledge of the single reestimation factors, A. However, it might not be
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unrealistic to assume that market participants are able to obtain additional information about the
evolution of individual catastrophes. Therefore, we assume that the market information filtration
(Ft )0≤t≤T2 is the right continuous completion of the filtration generated by the catastrophe
occurrencesN , the corresponding initial loss estimates Yj , and the corresponding reestimation
factors Aj .

3. Pricing of insurance derivatives

We now consider the problem of pricing a European option with payoff depending on the
value LT2 of the loss index at maturity T2. In the catastrophe insurance market, the underlying
index L is not traded. Hence, the market is highly incomplete and the choice of the pricing
measure is not clear.

Here we suppose the common approach that the risk neutral pricing measure is structure
preserving for the model, except for the fact that the pricing measure might introduce a drift into
the reestimation martingalesAj , j = 1, 2, . . . . Here we do not discuss further the choice of the
pricing measure, and, without loss of generality, perform pricing with the model specification
given under P, where we substitute hypothesis (H3) with

(H3′) Ajs , s ∈ [0, T2], and j = 1, 2, . . . , are positive i.i.d. semimartingales such that

A
j
0 = 1 for all j = 1, 2, . . . .

Consider a European derivative written on the loss index with maturity T2 and payoff
h(LT2) > 0 for a payoff function h : R �→ R+. Since we have assumed that the interest
rate r is deterministic, without loss of generality, we can express the price process of the
insurance derivative in discounted terms, i.e. we can set r ≡ 0. Then the price process of the
option is given by

πt = E[h(LT2) | Ft ], t ∈ [0, T2]. (3.1)

In the following we will calculate the expected payoff in (3.1) using Fourier transform tech-
niques. To this end, we impose the following conditions.

(C1) The payoff function h(·) is continuous.

(C2) h(·)− k ∈ L2(R) = {g : R → C measurable | ∫ ∞
−∞ |g(x)|2 dx < ∞} for some k ∈ R.

Remark 3.1. In [1] we could have considered more general options that did not necessarily
fulfill condition (C2) by considering dampened payoffs. However, the cost of this approach
is that treating heavy-tailed distributions of claim sizes Y becomes more complicated. The
approach in this paper allows for general claim size modeling, including distributions with
heavy tails. Furthermore, as we will see in Section 5, condition (C2) is, for example, satisfied
by call and put spread catastrophe insurance options, the typical options traded in the market.

Now let

ĥ(u) = 1

2π

∫ ∞

−∞
e−iuz(h(z)− k) dz for all u ∈ R

be the Fourier transform of h(·)− k and assume that

(C3) ĥ(·) ∈ L1(R).
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Note that condition (C2) does not necessarily imply condition (C3). Since conditions (C2)
and (C3) are in force, the following inversion formula holds (cf. [9, Section 8.2]):

h(x)− k =
∫ ∞

−∞
eiuxĥ(u) du. (3.2)

Remark 3.2. Note that the equality in (3.2) is everywhere, not only almost everywhere, because
of condition (C1). If the probability distribution of LT2 had a Lebesgue density, an almost
everywhere equality in (3.2) would have been sufficient for the following computations. How-
ever, since the loss index is driven by a compound Poisson process, the distribution of LT2 has
atoms and we need an everywhere equality to guarantee (3.3), below.

By (3.2), and condition (C3), we obtain

πt = E[h(LT2) | Ft ]
= E[h(LT2)− k | Ft ] + k

= E

[∫ ∞

−∞
exp{iuLT2}ĥ(u) du

∣∣∣∣ Ft

]
+ k (3.3)

=
∫ ∞

−∞
E[exp{iuLT2} | Ft ]ĥ(u) du+ k, (3.4)

where in the last equation we could apply Fubini’s theorem, because condition (C3) holds.
Hence, in order to calculate the price process (πt )t∈[0,T2] in (3.4), the essential task is to
compute the conditional characteristic function of LT2 ,

ct (u) := E[exp{iuLT2} | Ft ] = E

[
exp

{
iu

NT1∑
j=1

YjA
j
T2−τj

} ∣∣∣∣ Ft

]
, u ∈ R, (3.5)

for t ∈ [0, T2]. We define the conditional characteristic function of the reestimation martingale
Aj as

ψA
j

t (s, u) := E[exp{iuAjs } | F Aj

t ], 0 ≤ t ≤ s ≤ T2,

where F Aj

t := σ(A
j
s , 0 ≤ s ≤ t) is the filtration generated by the j th reestimation factor. Then

our main result is as follows.

Theorem 3.1. The conditional characteristic function, (3.5), of the loss index LT2 is given,

1. for t < T1, by

ct (u) = exp{−λ(T1 − t)(1 − E[ψA0 (T2 − U, uY )])}

×
Nt∏
j=1

ψA
j

t−sj (T2 − sj , uyj )|sj=τj , yj=Yj , u ∈ R;

2. for t ∈ [T1, T2], by

ct (u) =
NT1∏
j=1

ψA
j

t−sj (T2 − sj , uyj )|sj=τj , yj=Yj , u ∈ R.
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Here U is a uniformly distributed random variable on [t, T1] and Y is a random variable with
distribution function FY , independent of U .

Note that, in Theorem 3.1, the times of catastrophe occurrence, τj , and the initial loss
estimates, Yj , up to time t are known data.

3.1. Proof of Theorem 3.1

We distinguish the computations over the two periods.

1. For t ∈ [0, T1], we obtain, by hypothesis (H4) and by the independent increments of Nt ,

ct (u) = E

[
exp

{
iu

( Nt∑
j=1

YjA
j
T2−τj +

NT1∑
j=Nt+1

YjA
j
T2−τj

)} ∣∣∣∣ Ft

]

= E

[
exp

{
iu

Nt∑
j=1

YjA
j
T2−τj

} ∣∣∣∣ Ft

]
︸ ︷︷ ︸

:=at (u)

E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−τj

} ∣∣∣∣ Ft

]
︸ ︷︷ ︸

:=bt (u)

. (3.6)

We compute separately the terms at and bt in (3.6). By hypothesis (H4) we have, for at (u), u ∈
R,

at (u) = E

[
exp

{
iu

Nt∑
j=1

YjA
j
T2−τj

} ∣∣∣∣ Ft

]

= E

[
exp

{
iu

n∑
j=1

yjA
j
T2−sj

} ∣∣∣∣ Ft

]
n=Nt , sj=τj , yj=Yj

=
Nt∏
j=1

E[exp{iuyjAjT2−sj } | Ft ]sj=τj , yj=Yj

=
Nt∏
j=1

E[exp{iuyjAjT2−sj } | F Aj

t−sj ]sj=τj , yj=Yj

=
Nt∏
j=1

ψA
j

t−sj (T2 − sj , uyj )

∣∣∣∣
sj=τj , yj=Yj

.

Note that, for at (u), the Yj s, the τj s, and Nt are known data, because the corresponding
catastrophes happened before time t .

For the second term, bt (u), u ∈ R, we obtain, again by hypothesis (H4) and the independent
increments of the Poisson process N ,

bt (u)

= E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−τj

} ∣∣∣∣ Ft

]

= E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−τj

}]
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= E

[
E

[
exp

{
iu

n∑
j=1

yjA
j
T2−sj

} ∣∣∣∣ NT1 −Nt, Y1, τ1, . . . , τNT1−Nt , . . . , YNT1−Nt
]
n=NT1−Nt
yj=Yj
sj=τj

]

= E

[
E

[ n∏
j=1

ψA
j

0 (T2 − sj , uyj )

∣∣∣∣ NT1 −Nt, Y1, τ1, . . . , τNT1−Nt , . . . , YNT1−Nt
]
n=NT1−Nt
yj=Yj
sj=τj

]

= E

[ NT1∏
j=Nt+1

ψA0 (T2 − τj , uYj )

]
. (3.7)

By Theorem 5.2.1 of [15] we obtain the following result.

Lemma 3.1. Let Nt be a Poisson process with jump times τj , j = 1, 2, . . . . Then, for all
0 ≤ t ≤ T ,

(τNt+1 , . . . , τNT | NT −Nt = n)

has the same distribution as the order statistics (U(1), . . . , U(n)), where Uj , j = 1, . . . , n, are
i.i.d. uniformly distributed on the interval [t, T ].

Using Lemma 3.1, and hypothesis (H4) again, we can replace the τj s in (3.7) with the order
statistics U(j) of i.i.d. uniformly distributed random variables on the interval [t, T1] and obtain

bt (u) = E

[ NT1∏
j=Nt+1

ψA0 (T2 − U(j), uYj )

]
, u ∈ R.

Next, we note the following simple, helpful lemma.

Lemma 3.2. Consider the order statistics U(1), . . . , U(n) of n i.i.d. random variables U1, . . . ,

Un and a bounded measurable function f (x1, . . . , xn) symmetric in its arguments. Then

E[f (U(1), . . . , U(n))] = E[f (U1, . . . , Un)].

Proof. We denote by �n the set of all permutations of {1, . . . , n}. We have

E[f (U(1), . . . , U(n))] = E

[ ∑
σ∈�n

f (Uσ(1), . . . , Uσ(n)) 1{Uσ(1)<···<Uσ(n)}
]

= E

[
f (U1, . . . , Un)

∑
σ∈�n

1{Uσ(1)<···<Uσ(n)}︸ ︷︷ ︸
1

]

= E[f (U1, . . . , Un)].

By the i.i.d. assumption of the Yj s and Aj s, we see that the function

f nu (s1, . . . , sn) := E

[ n∏
j=1

ψA0 (T2 − sj , uYj )

]
, u ∈ R,
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is symmetric in s1, . . . , sn. It is then not difficult to see, using Lemma 3.2, that

bt (u) = E

[
E

[ n∏
j=1

ψA0 (T2 − sj , uYj )

∣∣∣∣ NT1 −Nt,U(1), . . . , U(NT1−Nt )
]
n=NT1−Nt , sj=U(j)

]

= E[f nu (s1, . . . , sn)|n=NT1−Nt , sj=U(j) ]
= E[f nu (U(1), . . . , U(n))|n=NT1−Nt ]
= E[f nu (U1, . . . , Un)|n=NT1−Nt ]

= E

[ NT1∏
j=Nt+1

ψA0 (T2 − Uj , uYj )

]

= E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−Uj

}]
, (3.8)

where we substituted the order statistics U(j) with the i.i.d. uniform variables Uj .
Note that (3.8) coincides with the characteristic function of a compound Poisson process of

the form
NT1∑

j=Nt+1

Zj ,

where Zj = YjA
j
T2−Uj , j = 1, 2, . . . , are i.i.d. The form of the characteristic function is in

this case well known. Thus, we can rewrite (3.8) as

E

[
exp

{
iu

NT1∑
j=Nt+1

YjA
j
T2−Uj

}]
= exp{−λ(T1 − t)(1 − E[exp{iuZ1}])}

= exp{−λ(T1 − t)(1 − E[ψA0 (T2 − U, uY )])}.
This completes the proof for the case in which t ≤ T1.

2. For the case in which t > T1, we obtain

ct (u) =
NT1∏
j=1

ψA
j

t−sj (T2 − sj , uyj )|sj=τj , yj=Yj , u ∈ R,

as for the term at in the case in which 0 ≤ t ≤ T1.
This completes the proof of Theorem 3.1.

Remark 3.3. In [17] a special case of our model was presented, where the reestimation factor
A was geometric Brownian motion. In this case the conditional characteristic function of the
reestimation factor can be computed by numeric integration by

ψAt (s, u) = E
[
exp

{
iu exp

{
Bs − 1

2 s
}} ∣∣ Ft

]
= E

[
exp

{
iu exp

{
Bt − 1

2 t
}}

exp
{
Bs − Bt − 1

2 (s − t)
}]

= E
[
exp

{
iuwt exp

{
Bs−t − 1

2 (s − t)
}}]∣∣

wt=exp{Bt−t/2}

=
∫

exp{iuwtey} exp

{
− (y − (1/2)(s − t))2

2(s − t)

}
dy

∣∣∣∣
wt=exp{Bt−t/2}

.
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For further results about the characteristic function of lognormal random variables, we refer
the reader to [10].

In the next section we turn our attention to a class of reestimation processes where the
conditional characteristic function is numerically tractable and in some cases analytically
obtainable: affine processes. For further information on affine processes and their applications
to mathematical finance, we refer the reader to [5], [6], and [7].

4. Reestimation with positive affine processes

We suppose that the reestimation factors are given by positive affine processes. Affine
processes constitute a reach class of processes suitable to model a wide range of phenomena.
At the same time, the advantage is that the conditional characteristic function can be obtained
explicitly up to the solution of two Riccati equations.

Definition 4.1. A Markov process A = (At ,Px) on [0,∞] is called an affine process if there
exist C-valued functions φ(t, u) and ψ(t, u), defined on R+ × R, such that

E[exp{iuAT2} | Ft ] = exp{φ(T2 − t, u)+ ψ(T2 − t, u)At } for t ≥ 0. (4.1)

We assume that

(A1) A is conservative, i.e. for every t > 0 and x ≥ 0

Px[At < ∞] = 1;
(A2) A is stochastically continuous for every Px .

By Proposition 1.1 of [8], assumption (A2) is equivalent to the assumption that φ(t, u) and
ψ(t, u) are continuous in t for each u.

In the framework of our model, the computation of the conditional characteristic function
reduces to the computation ofφ andψ . In some cases these are explicitly known, otherwise they
can be obtained numerically. In the particular case when the reestimation factors remain positive
affine martingales under the pricing measure, we are able to prove the following characterization,
which provides a useful simplification of the conditional characteristic function.

Theorem 4.1. Let A be an affine process satisfying assumptions (A1) and (A2). The affine
process A is a positive local martingale if and only if A admits the following semimartingale
characteristics (B,C, ν):

Bt = β

∫ t

0
As ds, Ct = α

∫ t

0
As ds, and ν(dt, dy) = Atµ(dy) dt,

where

β = µ[1,∞)−
∫ ∞

1
yµ(dy),

α ≥ 0, and µ is a Lévy measure on (0,∞).

Proof. Since At satisfies assumptions (A1) and (A2), by [6, Theorem 2.12] and [8, The-
orem 1.1], At is a positive affine semimartingale if and only if At admits the following
characteristics (B,C, ν):

Bt =
∫ t

0
(b̃ + βAs) ds, Ct = α

∫ t

0
As ds, and ν(dt, dy) = (m(dy)+ Atµ(dy)) dt,
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for every Px , where

b̃ = b +
∫
(0,∞)

(1 ∧ y)m(dy),

α, b ≥ 0, β ∈ R, and m and µ are Lévy measures on (0,∞), such that∫
(0,∞)

(y ∧ 1)m(dy) < ∞.

See also [8]. By assumption (A2) and Theorem 7.16 of [3], the operator L,

Lf (x) = 1

2
αxf ′′(x)+ (b + βx)f ′(x)+

∫
(0,∞)

(f (x + y)− f (x))m(dy)

+ x

∫
(0,∞)

(f (x + y)− f (x)− f ′(x)(1 ∧ y))µ(dy) (4.2)

onC2(R+), is a version of the restriction of the extended infinitesimal generator ofA toC2(R+).
(An operator L with domain DL is said to be an extended generator for A if DL consists of
those Borel functions f for which there exists a Borel function Lf such that the process

L
f
t = f (At )− f (A0)−

∫ t

0
Lf (Xs) ds

is a local martingale.) Then A is a local martingale if and only if

Lf (x) ≡ 0 for f (x) = x.

Substituting f (x) = x into (4.2), we obtain

Lx = b + βx +
∫
(0,∞)

ym(dy)+ x

∫
(0,∞)

(y − (1 ∧ y))µ(dy)

=
(
β +

∫ ∞

1
(y − 1)µ(dy)

)
x + b +

∫
(0,∞)

ym(dy).

Hence, A is a local martingale if and only if(
β +

∫ ∞

1
(y − 1)µ(dy)

)
x + b +

∫
(0,∞)

ym(dy) = 0 for any x ∈ R+. (4.3)

Since b ≥ 0 and m is a nonnegative measure, condition (4.3) means that

b = 0, m ≡ 0, and β = µ[1,∞)−
∫ ∞

1
yµ(dy). (4.4)

Let A be an affine process satisfying assumptions (A1) and (A2). By Theorem 4.3 of [7],
the conditional characteristic function of A satisfies (4.1), where φ(t, u) and ψ(t, u) solve the
equations

φ(t, u) =
∫ t

0
F(ψ(s, u)) ds, (4.5)

∂tψ(t, u) = R(ψ(t, u)), ψ(0, u) = iu, (4.6)
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where, for z ∈ {C | Re z ≤ 0},

R(z) = 1

2
αz2 + βz+

∫
(0,∞)

(ezy − 1 − z(y ∧ 1))µ(dy), (4.7)

F(z) = bz+
∫
(0,∞)

(ezy − 1)m(dy), (4.8)

and α, β, b,m, and µ are parameters of infinitesimal generator (4.2) of A. If A is a local
martingale then by (4.4) we can simplify (4.7) and (4.8) as follows:

R(z) = 1

2
αz2 +

∫
(0,∞)

(ezy − zy − 1)µ(dy), (4.9)

F(z) ≡ 0. (4.10)

From (4.5) and (4.10), we immediately obtain, for positive affine local martingales,

φ(t, u) ≡ 0.

In order to determine ψ , we have to, in general, solve (4.5) numerically. For some special
cases, however, we can compute ψ analytically. We give two examples.

Example 4.1. If A has no jump part then A is called a Feller diffusion (see, e.g. [6]). In this
case the positive affine martingale dynamics are given by

dAt = √
αAt dWt,

where Wt is a standard Brownian motion. Consequently, we have µ = 0 in (4.9), and we can
rewrite (4.6) as

ψ ′
t = 1

2αψ
2
t . (4.11)

Solving the differential equation (4.11), we obtain

ψ(t, u) ≡ 0 or ψ(t, u) = − 1

αt/2 + C(u)
, u ∈ R,

where C(u) can be found from the boundary condition ψ(0, u) = iu. Substituting C(u) into
the expression for ψ , we obtain

ψ(t, u) ≡ 0 or ψ(t, u) = − 1

αt/2 + i/u
, u ∈ R.

Note that if we have no jump part then A has positive probability of being absorbed at 0.
However, it may still be of interest to also consider the case of positive probability of absorption
at 0, if we wish to include the possibility of fraud or falsified reporting of claims into the model.
In this case, reestimation might discover the fraud and the previous fake evaluation will be set
to 0.

Example 4.2. In order to give an example of a positive affine martingale including jumps
where we can solve for ψ explicitly, we specify the jump density µ(dy) in the semimartingale
characteristics in Theorem 4.1 as

µ(dy) = 3

4
√
π

dy

y5/2
.
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Then some calculations give R(z) in (4.7):

R(z) = 1

2
αz2 + 3

4
√
π

∫
(0,∞)

(ezy − zy − 1)
dy

y5/2

= 1
2αz

2 + (−z)3/2 for z ∈ {C | Re z ≤ 0}.
Consider η(t, u) := −ψ(t, u). By (4.6) we then have

−η′
t = 1

2αη
2 + η3/2. (4.12)

The solutions to (4.12) are η(t, u) ≡ 0 and

η(t, u) = 4

α2 (1 +W(−C(u)e−t/α))−2, (4.13)

where W(·) is the Lambert W function. (The Lambert W function, W(z), is defined to be
the function satisfying W(z)eW(z) = z, z ∈ C. See also [4] for more details on the Lambert
function.) The boundary condition η(0, u) = −ψ(0, u) = iu yields

C(u) = −
(

−1 + 2

α

√
i

u

)
exp

{
−1 + 2

α

√
i

u

}
.

Substituting C(u) into (4.13), we obtain, for ψ(t, u) = −η(t, u),

ψ(t, u) ≡ 0 or ψ(t, u) = − 4

α2

(
1 +W

((
−1 + 2

α

√
i

u

)
exp

{
− t

α
− 1 + 2

α

√
i

u

}))−2

.

5. Pricing of call and put spreads

We conclude this paper by showing that we can apply the developed pricing method to spread
options, which are the typical catastrophe options traded in the market. A call spread option
with strike prices 0 < K1 < K2 is a European derivative with the payoff function at maturity
given by

h(x) =

⎧⎪⎨
⎪⎩

0 if 0 ≤ x ≤ K1,

x −K1 if K1 < x ≤ K2,

K2 −K1 if x > K2.

The integrability condition h(·) − k ∈ L2(R+) is satisfied for k := K2 − K1. In particular,
h(·)− k ∈ L1(R+).

To satisfy conditions (C1) and (C3), we continuously extend h from R+ to R by

h̄(x) :=
{
h(−x) if x < 0,

h(x) if x ≥ 0.

Note that the price processes of the two corresponding options with payoffs h(LT2) and h̄(LT2)

remain the same, because LT2 ≥ 0.
Let

ˆ̄h(u) := 1

2π

∫ ∞

−∞
e−iuz(h̄(z)− k) dz for all u ∈ R
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be the Fourier transform of h̄− k. Then

ˆ̄h(u) = 1

2π

(∫ −K1

−K2

e−iux(−x −K2) dx +
∫ K1

−K1

e−iux(K1 −K2) dx

+
∫ K2

K1

e−iux(x −K2) dx

)

= 1

2π

1

u2 (exp{−iuK2} + exp{iuK2} − exp{−iuK1} − exp{iuK1})

= 1

π

1

u2 (Re(exp{iuK2})− Re(exp{iuK1}))

= 1

π

1

u2 (cos uK2 − cos uK1) ∈ L1(R),

and, by applying the inversion formula (3.2) to h̄(x) for x ≥ 0, we find that (3.2) also holds for
h, since h(x) = h̄(x) for x ≥ 0.

In particular, since LT2 ≥ 0 almost surely for the price of the call spread, we can write

πCS
t = E[h(LT2)− k | Ft ] + k

= E[h̄(LT2)− k | Ft ] + k

= E

[∫ ∞

−∞
exp{iuLT2} ˆ̄h(u) du

∣∣∣∣ Ft

]
+ k

=
∫ ∞

−∞
E[exp{iuLT2} | Ft ] ˆ̄h(u) du+ k

=
∫ ∞

−∞
ct (u)

ˆ̄h(u) du+ k

= 1

π

∫ ∞

−∞
ct (u)

u2 (cos uK2 − cos uK1) du+K2 −K1, (5.1)

where ct (u) is defined in (3.4). Note that the integral in (5.1) is real, since Im(ct (−u)) =
− Im(ct (u)) by definition of ct .

Analogously, for the put spread catastrophe option with payoff at the maturity given by

g(x) =

⎧⎪⎨
⎪⎩
K2 −K1 if 0 ≤ x ≤ K1,

K2 − x if K1 < x ≤ K2,

0 if x > K2,

we obtain

πPS
t = 1

π

∫ ∞

−∞
ct (u)

u2 (cos uK1 − cos uK2) du.

Note that the call–put parity is satisfied:

πPS
t = K2 −K1 − πCS

t .
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