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The structure of viscous and thermal boundary layers at the heated and cooled plates
in turbulent thermally driven flows are of fundamental importance for heat transfer and
its dependence on the thermal forcing (the Rayleigh number Ra in non-dimensional
form). The paper by Shi, Emran & Schumacher (J. Fluid Mech., this issue, vol. 706,
2012, pp. 5–33) stresses the deviations of the boundary layer vertical profiles from
the Prandtl–Blasius–Pohlhausen theory. Recent papers showing very similar results, in
contrast, focus more on the similarities.
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1. Introduction

A typical model problem of natural convection is the Rayleigh–Bénard flow in
which a fluid layer of thickness h is vertically bounded by two horizontal plates at
different temperatures, the hotter being below the colder. If g is the magnitude of
the acceleration due to gravity, ∆ = Thot − Tcold the temperature difference between
the plates, α the isobaric thermal expansion coefficient and ν and κ , respectively, the
kinematic viscosity and thermal diffusivity, then the flow is governed by the Rayleigh
Ra= gα∆h3/(νk) and Prandtl Pr = ν/k numbers. A third parameter is the geometrical
aspect ratio of the tank Γ = d/h, where d is some relevant horizontal dimension. The
response of the system is the specific heat transfer q that in non-dimensional form is
represented by the Nusselt number Nu = qh/(λ∆) (λ is the thermal conductivity of
the fluid) and the strength of the flow is quantified by a velocity U or through the
Reynolds number Re= Uh/ν.

As the Rayleigh number increases the flow undergoes several transitions and
it becomes eventually turbulent. The self-organization of the flow into large-scale
structures induces a ‘wind’ sweeping the horizontal plates and generating viscous
and thermal boundary layers. In the last two decades turbulent thermal convection
has been investigated theoretically, numerically and experimentally and a wide range
of the Ra–Pr–Γ parameter space has been spanned (see Ahlers et al. 2009 for a
comprehensive review); the structures of the boundary layers have been extensively
investigated although a consensus has not yet been reached.
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2. Overview

All the theoretical models, in one way or another, make assumptions on the
boundary layers that can be satisfied to a greater or lesser extent.

Malkus (1954) predict Nu ∼ Ra1/3 by assuming that the heat transfer is independent
of the thickness of the fluid layer, thus implying that the lower and upper boundary
layers evolve independently of each other. Shraiman & Siggia (1990) assume a
turbulent viscous boundary layer and a thermal boundary layer deeply nested within
the viscous one (Pr > 1) to obtain the correlation Nu ∼ Ra2/7. Kraichnan (1962)
for very large Rayleigh numbers (Ra > RaT) predicts an elusive asymptotic regime
for arbitrary Prandtl number in the form Nu ∼ Ra1/2/ (lnRa)3/2 by using classical
mixing-length arguments for a turbulent boundary layer.

Grossmann & Lohse (2000) proposed a unifying model that divides the Ra–Pr space
into different regimes depending on the dominant contribution (boundary layer or bulk)
to the energy and temperature variance dissipation rates and on the nature (laminar or
turbulent) of the boundary layers. This model has predicted successfully the Nusselt
and Reynolds numbers for a wide range of Ra and Pr . In this model the boundary
layers have been assumed laminar and of Blasius type (Blasius 1908), thus many
recent investigations have focused their attention on the boundary layer structure.

It is worth mentioning that for this flow the thickness of the thermal boundary layer
can be estimated as δT ' h/(2Nu). The thickness of the viscous boundary layer δv can
be smaller than δT for Pr < 1 and vice versa for Pr > 1. Assuming the correlation
Nu ' 0.08Ra0.32 it is trivial to estimate that for Pr = O(1) at Ra = 108 one obtains
δT ≈ δv ' h/60 and at Ra = 1012 the result is δT ≈ δv ' h/1100; the analysis of the
boundary layer structure, therefore, requires large experimental setups (du Puits et al.
2007) or high-resolution particle image velocimetry (Sun et al. 2008) or high-fidelity
direct numerical simulations (Shi, Emran & Schumacher 2012; Stevens et al. 2012) for
the highest Rayleigh numbers.

In the paper by Shi et al. (2012) the flow in a cylindrical cell of aspect ratio
Γ = 1 at Pr = 0.7 is simulated for Ra = 3 × 109 and Ra = 3 × 1010; the structure
of the boundary layers has been analysed by collecting time series of temperature
and velocity components on various vertical arrays for different positions over the
plates. The main findings of this study are that the boundary layer vertical structure
has some analogies with the Blasius profile although there are also evident differences.
The quality of the agreement improves if a dynamic rescaling of the profiles with
the time-dependent boundary layer thicknesses is performed as suggested in Zhou &
Xia (2010). It is also found that the differences with respect to the Prandtl–Blasius
solution are smaller for the lower value of Ra when the flow is smoother in space
and less unsteady in time. The flow unsteadiness has two distinct sources. The first
is the azimuthal tilting and twisting of the large-scale circulation (LSC) that changes
the direction of the wind sweeping the plates. The second reason for the unsteadiness
is the emission of thermal plumes from the plates that tend to generate wall-normal
velocity components inducing additional velocity orthogonal to the main plane of the
wind. The plume emission is followed by a recovery phase in which the flow becomes
more steady.

The above results, summarized in figure 1(a,b), are not surprising if one recalls
that the Blasius solution holds for a steady, laminar, strictly two-dimensional flow
over a flat plate with zero streamwise pressure gradient. In contrast, in the confined
Rayleigh–Bénard flow the wind induced by the LSC is inherently three-dimensional
and unsteady with wind velocity that is hardly parallel to the wall at any point. In
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FIGURE 1. Vertical profiles of viscous and thermal boundary layers. (a,b) Probe array at the
cell centre and upper plate, Pr = 0.7 and a cylindrical cell of Γ = 1 (adapted from Shi et al.
2012). The solid lines show the Prandtl–Blasius solution. (c) Array near the centre of the bottom
plate at Pr = 4.3 and Ra = 1.9 × 1011. The cell is a parallelepiped with width/height Γ ' 1
and depth/height '1/4. Blue triangles: ‘raw’ data (laboratory frame); red circles: coordinate
rescaled with the instantaneous boundary layer thickness (dynamical frame) (adapted from
Zhou & Xia 2010, copyright (2010) by the American Physical Society). (d) Array near the
centre of the bottom plate at Pr = 0.7, Ra = 2 × 1012 and a cylindrical cell of Γ = 1/2
(PB: Prandtl–Blasius) (adapted from Stevens et al. (2012), copyright (2012) by the American
Physical Society). Ξt = (Tm − T(z))/(Tm − Tcold), Ξb = 1− (Tm − T(z))/(Tm − Thot).

addition, the horizontal flow is generated by the vertical hot/cold current that bends at
the plates and bends again after having swept them; this phenomenon is accompanied
by a streamwise pressure gradient that, in fact, is found in the numerical simulations
by Shi et al. (2012). In view of how different the conditions of the Rayleigh–Bénard
flow are with respect to the Blasius boundary layer it is surprising how much the
boundary layer profiles resemble each other. This statement is reinforced by observing
that in a laboratory setup it is not trivial to reproduce the Blasius boundary layer
profile over a flat plate owing to small disturbances and pressure gradients that are
difficult to suppress (Schlichting 1979).

3. Future

There are several papers (e.g. Zhou & Xia 2010 and Stevens et al. 2012) which
for the same problem report boundary layer vertical profiles with the same level
of agreement with the Prandtl–Blasius solution as the present study, even if the
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previous work tends to focus more on the similarities. Two examples are shown in
figure 1(c,d) and indeed it can be appreciated that the results are very similar and
that in the region closest to the wall the profiles are always indistinguishable. It seems
that rather than different results there are different interpretations; this point however
deserves further investigation. When the Rayleigh number exceeds a threshold (≈1013)
there are indications that the transition to turbulence of the boundary layers occurs
(Gauthier & Roche 2008); in view of the possible appearance of the asymptotic state
(Kraichnan 1962) it would be crucial to characterize the structure and the dynamics
of the boundary layers in this regime. The extreme thinness of the boundary layers
poses difficult challenges to the experimental techniques while numerical simulations
need to use the largest computers now available to attack this parameter range.
Another point deserving investigation is the structure of the boundary layers in the
presence of background rotation that introduces the Rossby number as additional input
and increases the complexity of the physics with the Ekman and Stewartson layers
(Kunnen et al. 2011). All these topics are being clarified thanks to the combination of
theoretical models, laboratory experiments and numerical simulation all involved in the
joint effort to unravel the complex dynamics of the turbulent Rayleigh–Bénard flow.
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