ON SUMS OF VALENCIES IN PLANAR GRAPHS

Robert Bowen

Planarity in graphs implies relatively small valencies and numbers of edges. In this note we find the maximum sum of valencies and the maximum number of incident edges for a set of n vertices in a planar graph with v vertices. Graphs considered are without multiple edges or loops.

THEOREM. Let G be a planar graph with vertices $A_{1}, \ldots, A_{n}, \ldots, A_{v}$ where $v>n \geq 3$. Denote by G_{1} the graph obtained from G by deleting A_{n+1}, \ldots, A_{V}. Let the total number of edges of G be e and of $G 1$ be e_{1}, e_{2} the number of edges of G joining vertices of the set $\left\{A_{1}, \ldots, A_{n}\right\}$ to those of $\left\{A_{n+1}, \ldots, A_{v}\right\}$, and s the sum of the valencies of A_{1}, \ldots, A_{n} in G. Then
(i) $e_{1} \leq 3 n-6$ and $e_{1}=3 n-6$ iff G_{1} triangulates the plane.
(ii) $e_{2} \leq n<2 v-4$ when $v=n+1$, and $e_{2} \leq 2 v-4$ when $v \geq n+2 \quad\left(e_{2}=n\right.$ can hold when $v=n+1, e_{2}=2 v-4$ can hold for each $v \geq n+2$).
(iii) $e_{1}+e_{2} \leq 3 v-6$, and when $v \leq 3 n-4, e_{1}+e_{2}=3 v-6$ iff no two of A_{n+1}, \ldots, A_{v} are joined by an edge in G and G triangulates the plane.
(iv) $s \leq 3 n+3 v-12$, and when $v \leq 3 n-4, s=3 n+3 v-12$ iff G_{1} triangulates the plane and $v-n$ of the regions of G_{1} each contain exactly one vertex from among A_{n+1}, \ldots, A_{v}, this vertex being joined by an edge to all three vertices of G_{1} adjacent to the region.
(v) When $v \geq 3 n-4, \quad e_{1}+e_{2} \leq 3 n+2 v-10$ and $e_{1}+e_{2}=3 n+2 v-10$ iff G_{1} triangulates the plane, each of the 2n-4 regions of G_{1} contains one vertex from among A_{n+1}, \ldots, A_{v} joined by an edge to all three vertices of G_{1} adjacent to the region, and each of the remaining $v-3 n+4$ vertices from among A_{n+1}, \ldots, A_{v} is joined by an edge to two vertices of G_{1}.
(vi) When $v \geq 3 n-4, s \leq 6 n+2 v-16$ and $s=6 n+2 v-16$ iff G has the structure described in (v).

Proof. The proof of this theorem is based on the following well known results.
(1) Any planar graph with $w \geq 3$ vertices triangulates the whole plane iff the total number of edges is $3 w-6$; in this case the number of regions into which the graph divides the plane is $2 \mathrm{w}-4$. Any planar graph with $w \geq 3$ vertices either triangulates the plane or is obtained from a planar graph with w vertices which triangulates the plane by deleting edges.
(2) If a planar graph has w vertices and e edges and divides the plane into r connected regions, then $w-e+r \geq 2$.

Proof of (i). (i) follows directly from (1) with $w=n$.
Proof of (ii). If $v=n+1$ then obviously $e_{2} \leq n$ and equality may hold; also $n<2 v-4$, since $v>n \geq 3$ by hypothesis. If $e_{2} \leq 3$ then $e_{2} \leq n<2 v-4$ since $v>n \geq 3$. It only remains to assume that $v \geq n+2$ and $e_{2} \geq 4$. Then let G^{\prime} denote the graph obtained from G by deleting all edges except the e_{2} edges joining vertices of $\left\{A_{1}, \ldots, A_{n}\right\}$ to vertices of $\left\{A_{n+1}, \ldots, A_{v}\right\}$; $G^{\prime}=G$ possibly. Let r denote the number of connected regions into which G^{\prime} divides the plane. By (2) applied to G we have

$$
v-e_{2}+r \geq 2
$$

Each of the connected regions into which G^{\prime} divides the
plane is adjacent to at least four edges of G^{\prime}, because $e_{2} \geq 4$ and every circuit of G^{\prime} (if any) contains an even number of edges and vertices since G^{\prime} is bipartite. Also each edge of G^{\prime} is adjacent to at most two regions. Hence

$$
4 r \leq 2 e_{2}
$$

because on the left each edge of G is counted at most twice.
Eliminating r from the two inequalities we have $e_{2} \leq 2 v-4$. $e_{2}=2 v-4$ if, for example, two of A_{n+1}, \ldots, A_{v} are joined by an edge to all of A_{1}, \ldots, A_{n} and the rest of A_{n+1}, \ldots, A_{v} to two of A_{1}, \ldots, A_{n}.

Proof of (iii). By (1) applied to $G, e_{1}+e_{2} \leq e \leq 3 v-6$, and $e_{1}+e_{2}=3 v-6$ iff G triangulates the plane and $e_{1}+e_{2}=e$, which is the case iff G triangulates the plane and no edge of G joins two of A_{n+1}, \ldots, A_{v}. If G has such a structure, then each of the connected regions into which G divides the plane contains at most one of A_{n+1}, \cdots, A_{v}; by (1) this implies $2 n-4 \geq v-n$, i.e. $v \leq 3 n-4$.

$$
\text { Proof of (iv). } s=2 e_{1}+e_{2}=e_{1}+\left(e_{1}+e_{2}\right) \cdot e_{1} \leq 3 n-6 \text { by (i) }
$$

and $e_{1}+e_{2} \leq e \leq 3 v-6$ by (1); hence $s \leq 3 n+3 v-12$ with equality iff $e_{1}=3 n-6$ and $e_{1}+e_{2}=3 v-6$. By (i) and (iii) this is the case iff G_{1} and G both triangulate the plane and no two of A_{n+1}, \ldots, A_{v} are joined by an edge; consequently $s=3 n+3 v-12$ iff G is as described in (iv) and then $v \leq 3 n-4$.

Proof of (v). By (i) and (ii) $e_{1}+e_{2} \leq 3 n+2 v-10$ with equality iff $e_{1}=3 n-6$ and $e_{2}=2 v-4$. By (i) $e_{1}=3 n-6$ iff G_{1} triangulates the plane; e_{2} is clearly maximal, consistent with G_{1} triangulating the plane, iff G has the structure described in $(v) ; e_{2}$ is then equal to $3(2 n-4)+2(v-3 n+4)=2 v-4$ provided
$v \geq 3 n-4$. Hence when $v \geq 3 n-4, \quad e_{1}+e_{2}=3 n+2 v-10$ iff G is as described in (v).

Proof of (vi). $s=e_{1}+\left(e_{1}+e_{2}\right)$. Hence, by (i) and (v), $s \leq 6 n+2 v-16$ and $s=6 n+2 v-16$ iff G has the structure described in (v). This completes the proof of the theorem.

The author is indebted to the referee for many suggestions.

Univessity of California, Berkeley

