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Finitely generated cyclic extensions
of free groups are residually finite

Gilbert Baumslag

We establish the result that a finitely generated cyclic

extension of a free group is residually finite. This is done,

in part, by making use of the fact that a finitely generated

module over a principal ideal domain is a direct sum of cyclic

modules.

1. Introduction

The purpose of this note, as the title suggests, is to prove the

following

THEOREM. A finitely generated ayelie extension of a free group is

residually finite.

There are a host of finitely generated groups with a single defining

relation to which this theorem applies. These groups include the

fundamental groups of two-dimensional surfaces (both orientable and

non-orientable) as well as the groups

gp(a, b, a : on = [a, b]} (n = l', 2, ...) .

The residual finiteness of these groups is well-known (see for example,

['], [2], [4] and [5]). However the proof of the theorem provides

essentially.new information, even about these groups. An explicit example

of a one-relator group which was not known to be residually finite until
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now i s the group

G = gpja, b, c : [a2, b] [a, a'Ha]\ .

It is not difficult to show that a finitely generated group G which is

an infinite cyclic extension of a free group is not always a one-relator

group. So our theorem has meaning apart from groups with a single defining

relation, even in this case.

2 . Some use fu l lemmas

The proof of the theorem depends in large measure on the following

lemmas.

LEMMA 1. A finitely generated module over a principal ideal domain

R is a direct sum of a finite number of cyclic modules.

Lemma 1 is a celebrated classical theorem (see for example [£], p. 86

for a proof). We shall apply it in the case where R is the group algebra

of an infinite cyclic group over a field of p elements ( p a prime).

The second result we shall nee* (and which can be proved directly

without too much difficulty {of. for example [3])) is

LEMMA 2. Let V_ be a nilpotent variety of prime exponent.

Furthermore let F be a free group in V. . Then any set of elements of F

which are independent modulo the derived group F' of F freely generate

a free group in V, .

Finally we shall make use of

LEMMA 3. Let F be a free group and let f i F (f + l) . Then

there exists a nilpotent variety V_ of prime exponent such that f | V{F)

{where, as usual, V(F) is the unique minimal normal subgroup of F

satisfying F/V(F) € V j.

The proof of Lemma 3 is a consequence of two theorems, one due to

Magnus [9], the other due to Higman [7]. More illuminatingly, denoting the

n-th term of the lower central series of F by X F , there exists an

integer n such that / j 1 f1 (Magnus [9]). Moreover F/X F is

torsion-free (Magnus [9]). Now the subgroups of prime index in a finitely

generated torsion-free nilpotent group have trivial intersection (Higman
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[7]). It follows that there is a nilpotent variety V of prime exponent

such that

f\nF f V{F/\nF) .

Hence

/ t V(F)

as desired.

3. A crucial proposition

The main (indeed essentially the only) step in the proof of the

theorem is the proof of the following proposition.

PROPOSITION. Let G be a finitely generated group with a normal

subgroup N such that G/N is infinite ayolia. If N is free in a

nilpotent variety V_ of prime exponent p then G is residually finite.

Proof. We make use of Lemma 1 and Lemma 2 to describe this extension

G of N by an infinite cyclic group in sufficiently concise terms so as

to be able to deduce the residual finiteness of G .

To this end we begin by choosing t € G so that

G = gp(ff, t) .

Since G/N is infinite cyclic, G is a split extension of N by gp(t) :

G = Ngp(t) and N n gp(t) = 1 .

We put

M = N/N' .

Let us denote the group algebra of gp(t) over the field of p elements

by R . Then, writing M additively, we have par = 0 for every x i M .

So M may be regarded as an i?-module once the action of t on M is

defined (by conjugation):

aN'-t = t~XaW (a € N) .

Now G is finitely generated. It follows that the fl-module M is

finitely generated. Hence, by Lemma 1, M is the direct sum of a finite

number of cyclic modules:
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M = M1 © ... © Mk © Mk+1 ® ... ®Mt (Z >

Our notation here has been chosen in such a way that M, , . . ., M, are free

whereas M, , ••., My are all torsion-modules.

Let E. be a generator of M. for each i = X, 2, ..., I .

Furthermore let us denote the set of all integers by Z . Now put

E. . = z.-tP U € Z, i = 1, 2, ...,£) .

Since W. is free {i = 1, 2, ..., k) it follows that the elements

are a basis for M. , where here we regard M. as a vector space over the

field of p elements.

Consider now the submodules M, . , . .. , M. . We choose positive

integers nv+\» • • • > n7 s o that the elements

constitute a basis for the vector space M. where here

It follows that, for i = k+1 I ,

(l) E. .•
•Ln-X ^,0^,0

where here 0 < m . < p .
X. ,U

This information can be re-expressed directly in terms of N and t

To this end let us choose e. f N so that

e. = eJ,> .

Now, putting
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it follows from the comments above that the following statements hold.

(i) The elements

(2) ..., eit_lt e^Q, eiA, ...

are linearly independent modulo N' for £ = 1, 2, ..., k , and similarly

so too are the elements

( 3 ) ei,0> ei,l> • " • ei,nrl

for i = k+1, . .., I .

(ii) The set E of all elements given by (2) and (3) generate Ii

modulo N' and hence, remembering N is nilpotent, these elements

actually generate N itself.

(iii) Since E is comprised of elements which are linearly

independent modulo N' , E freely generates N (Lemma 2).

(iv) For each i satisfying k+1 £ i S I we have

m.
, m. x,n.-X

t,n.-l ^,0 ^,n.-l Ji w i J

where the m. . are those given by (l).

This information given by (i), (ii), (iii) and (iv) is sufficient for

us to be able to deduce that G is residually finite. Thus suppose g d G

{g # l) . Our objective is to find a homomorphism <p of G into a finite

group such that gy + 1 . If j j J the existence of such a homomorphism

is easily verified. Thus for the remainder of the proof of the proposition

we shall assume that g d N . We shall choose a homomorphic image G of

G so that there is a homomorphism of G to G of the desired kind.

We repeat that g € N . Since E generates N (see (ii)} there

exists a positive integer n such that

.,-??' •••' el,0' ••"' el,n; "'; efc,-n' '••' efc,O' '••' ek,n'

e k + l , O ' •••' e k + l , n k + 1 - l ' ••' e l , 0 > • • • ' e l , n r

contains all the elements
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9, fk+1, •••» fz •

It follows from (iii) that N is a free group in \f freely generated by

the elements exhibited.

Our next move is to define an automorphism T of N which mimics the

action of t on N . The effect of T on the generators of N -is

defined by

1,-n 1,-rc+l' ' 1,0 1,1' l,w 1,-n

ek,-nT ek,-n+l> •••' ek,0X ek,l ek,nT ek,-n

0 efc+ll' •••' efc+l,nfe+1-l
T ek+l,0 ••• ek+l,nk+1-l

E,0 r
eZ,0 T " eZ,l' •••' e Z , « r l

T " el,0 ••• eZ,nz-l ^ *

To see that T does indeed define an automorphism, observe that the

images of the given free generators of N generate N modulo N' . Hence

they generate N since N is nilpotent. But N is finite. So T is an

automorphism of N (of finite order). Let t be of order r and let

gp(?) be a cyclic group of order r generated by ? . Finally let 5 be

the split extension of N by gp(£) with I inducing the automorphism x

of N :

G = sp(N, I; r\i = ux {u € N)) .

The group G is clearly finite.

There is a natural homomorphism ip of G onto G defined by

V : t + l , eifi - e.^ (I5isl) .

To see that this mapping does define a homomorphism of G onto G it is

enough to observe that the relations in G between the elements e. _ and
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t are satisfied by the elements e. and ? - this follows from (2),
t ,U

(3) and {k). Clearly

g<P = 9 •

Hence g<p # 1 and the proof of the proposition is now complete.

4. Some final remarks

The proof of the theorem is now an immediate consequence of Lemma 3

and the Proposition once one observes that a finite extension of a

residually finite group is residually finite.

It is worth pointing out that a finitely generated cyclic extension of

a residually finite group need not be residually finite. Indeed if G is

the wreath product of a free group U of rank two by an infinite cyclic

group then G is not residually finite (Gruenberg [6], Theorem 3.2). But

G is a finitely generated cyclic extension of a direct product F of free

groups. Of course F is residually finite, but as we remarked G is not.
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