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Abstract. The quotient of a real analytic manifold by a properly discontinuous group action is,
in general, only a semianalytic variety. We study the boundary of such a quotient, i.e., the set of
points at which the quotient is not analytic. We apply the results to the moduli spaceMg/R of
nonsingular real algebraic curves of genusg (g > 2). This moduli space has a natural structure
of a semianalytic variety. We determine the dimension of the boundary of any connected component
of Mg/R. It turns out that every connected component has a nonempty boundary. In particular, no
connected component ofMg/R is real analytic. We conclude thatMg/R is not a real analytic variety.
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1. Introduction

Let Mg/R be the moduli space of nonsingular real algebraic curves of genusg,
whereg is an integer greater than or equal to 2. It is well known thatMg/R has
g + 1 + [12(g + 2)] connected components [11]. These connected components
correspond to the different topological types a nonsingular real algebraic curve can
have.

Any connected component ofMg/R has a natural structure of a semianalytic
variety. This can be seen by Teichmüller theory: LetX be a nonsingular real al-
gebraic curve of genusg. Then, there is a connected real analytic manifoldT (X),
called the real Teichmüller space ofX of marked real algebraic curves modeled
onX (cf. [4, 6, 11] or Section 5). Also, there is a group Mod(X), called the real
modular group ofX, which acts properly discontinuously onT (X). The quotient
R(X) = T (X)/Mod(X) is the moduli space of the real algebraic curveX. In fact,
R(X) consists of the isomorphism classes of all nonsingular real algebraic curves
Y of genusg having the same topological type asX. Hence,R(X) is the connected
component of the moduli spaceMg/R that containsX.
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Since the action of Mod(X) on the(3g − 3)-dimensional real analytic mani-
fold T (X) is properly discontinuous, the moduli spaceR(X) of the real algebraic
curveX is a semianalytic variety of the same dimension. Therefore, any connected
component ofMg/R – hence, alsoMg/R itself – acquires a natural structure of
a semianalytic variety of dimension 3g − 3. In fact, equipped with this structure,
Mg/R is the coarse moduli space of nonsingular real algebraic curves of genusg [6].

In general, one can define, for a semianalytic varietyN , its boundary∂N as the
subset of points at which the germ ofN is not real analytic. It is known that the
boundary∂N is itself semianalytic [7], Proposition 16.1, so that it makes sense to
speak of its dimension.

We concentrate on the following situation. LetM be a real analytic manifold
andG a group acting properly discontinuously onM. LetN be the quotientM/G.
Then,N is semianalytic. This is the statement of Proposition 3.1. We determine
the boundary∂N in terms of the action ofG onM (see Proposition 3.2). As an
example, in the case thatM is connected andG acts faithfully, the image inN of
an elementx of M belongs to the boundary ofN if and only if there is an element
α of order 2 inG such thatα · x = x.

We also determine the dimension of the boundary∂N in terms of the action ofG
onM. When applied to the moduli spaceR(X) of any nonsingular real algebraic
curveX of genusg > 2, it will follow that the boundary∂R(X) is of positive
dimension (cf. Theorems 5.2 and 5.4). Consequently,

THEOREM 1.1. Let g > 2. No connected component of the moduli spaceMg/R
of nonsingular real algebraic curves of genusg is real analytic. In particular, the
semianalytic varietyMg/R is not real analytic.

This result refutes [11], Theorem 2.2, to the effect that all connected compon-
ents ofMg/R would be real analytic (cf. Remark 3.4).

The paper is organized as follows. In Section 2 we address the question when
real quotient singularities are analytic. In Section 3 we apply the results of Section 2
to quotients of real analytic manifolds by properly discontinuous group actions.
The main result there determines the boundary of such quotients, and expresses
its dimension in terms of the group action on the manifold. In order to apply the
results of Section 3 to real Teichmüller spaces, we need to study automorphisms of
real algebraic curves of order 2, or what amounts to the same, morphisms of real
algebraic curves of degree 2. This is done in Section 4. Section 5 is then devoted
to our main result concerning the dimension of the boundary of any connected
component of the moduli spaceMg/R.

Conventions and notation

An analytic variety is not necessarily nonsingular. An analytic manifold is a nonsin-
gular analytic variety. Algebraic curves will always be nonsingular complete and
geometrically irreducible. IfG is a cyclic group generated byg then by an action
of g we will mean an action ofG. If g acts on a setX thenXg is the subset of
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fixed pointsXG for the action ofG. Furthermore,X/g will be the quotientX/G.
The Galois group ofC/R will be denoted by6. Of course,6 = {1, σ } whereσ
is complex conjugation. When6 is said to act on a complex analytic variety then
it is understood thatσ acts antiholomorphically. Forx a real number, the greatest
integer less than or equal tox is denoted by[x].

2. Real Quotient Singularities

LetG be a finite group acting linearly on a finite-dimensional real vector spaceV .
We show that the quotientV/G is a semianalytic variety, and we study the ques-
tion when this quotient is a real analytic variety. First, we need to introduce some
notation and to establish a preliminary lemma.

LetW be the complexificationC ⊗R V of V . Then, there is an induced action
of G onW , and the canonical mapV → W isG-equivariant.

SinceW is the complexification ofV , there is also a canonical action of the
Galois group6 onW . We considerV as a real subspace ofW by means of the
canonical mapV → W . Obviously, the set of fixed pointsW6 is equal toV .

The actions of6 andG on W commute with each other. Therefore, there is
an induced action of6 on the set-theoretical quotientW/G. The inclusion ofV
intoW induces an injective mapV/G→ (W/G)6.We will identify V/G with its
image in(W/G)6.

LEMMA 2.1. Let V be a finite-dimensional real vector space. LetG be a finite
group acting linearly and faithfully onV . Denote byW the complexification ofV .
Then, the quotientV/G is equal to(W/G)6 if and only if the order ofG is odd.

Proof. Suppose that the order ofG is even. Then, there is an elementα ∈ G
of order 2. SinceG acts faithfully onV , α acts nontrivially onV . Hence, there is
an elementv ∈ V , v 6= 0 such thatαv = −v. But then,w = √−1 · v is in W
and satisfiesαw = σw. Therefore, the image ofw in W/G is a fixed point for the
action of6. This fixed point is clearly not an element ofV/G.

Suppose that the order ofG is odd. Letw ∈ W be such that its image in the
quotientW/G is a fixed point for the action of6. That is, the orbitGw ofw inW is
6-stable. Since the order ofG is odd, the cardinality ofGw is odd too. Therefore,
6, being a group of order 2, has a fixed point inGw. But then,Gw ⊆ V . In
particular,w ∈ V . 2

Remark2.2. The hypothesis of faithfulness of the action ofG onV in the state-
ment of Lemma 2.1 is only made to simplify the exposition. In fact, the general
case of a not necessarily faithful action is a consequence of Lemma 2.1. Indeed,
suppose a finite groupG acts linearly, but not necessarily faithfully on a finite-
dimensional real vector spaceV . Let againW be the complexification ofV . Let
K be the kernel of the representation morphismG→ GL(V ). Then, the quotient
G/K acts linearly and faithfully onV . Applying Lemma 2.1 to the action ofG/K,

https://doi.org/10.1023/A:1001021411123 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001021411123


46 J. HUISMAN

one concludes thatV/G is equal to(W/G)6 if and only if the index[G : K] of K
in G is odd.

Let againV be a finite-dimensional real vector space,G a finite group acting
linearly onV , andW the complexification ofV .

We now consider the real vector spaceV with the Euclidean topology. Endow
V/G with the quotient topology. Letπ :V → V/G be the quotient map. LetR
be the sheaf of real analytic functions onV . The groupG acts on the real analytic
variety(V ,R). Therefore, we get aG-action on the sheafπ?R onV/G. LetR′ =
(π?R)

G. Then, (V /G,R′) is the quotient of(V ,R) in the category of locally
ringed spaces. We simply denote this space byV/G. We will see thatV/G is, in
fact, a semianalytic variety (cf. Lemma 2.4).

Similarly, we endow the complex vector spaceW with its Euclidean topology
and its sheafO of complex analytic functions. Then,G acts onW , and the quotient
W/G of W is a complex analytic variety [2], Théorème 4. Letρ ′:W → W/G

be the quotient map. Denote byO ′ the structure sheaf ofW/G. Then, in fact,
O ′ = (ρ ′?O)G.

Clearly, we have an induced action of the Galois group6 on the complex
analytic varietyW/G. In particular, we have a real analytic action of6 onW/G
considered as a real analytic variety. Therefore, the subset(W/G)6 of W/G is
a real analytic subset ofW/G. Hence,(W/G)6 acquires the structure of a real
analytic variety. Denote its structure sheaf byR′′. This sheaf is, in a natural way,
the surjective image of the sheaf(O ′|(W/G)6)

6 on (W/G)6. This natural surjective

morphism(O ′|(W/G)6)
6 → R′′ is not injective at the stalks over the pointsx of

(W/G)6 at which the local dimension dimx(W/G)6 is strictly smaller than the
global dimension dim(W/G)6. At the other stalks, the map is an isomorphism.

Remark. 2.3. The inclusioni:V/G → (W/G)6 is a map of locally ringed
spaces. Since dimx(W/G)6 at any pointx of V/G is equal to dim(W/G)6, the
morphism of sheavesi]: R′′ → i?R

′ is an isomorphism at the stalks over the points
of V/G. To put it differently,i is a closed embedding of locally ringed spaces.

LEMMA 2.4. Let V be a finite-dimensional vector space and letG be a finite
group acting linearly onV . Then, the locally ringed spaceV/G is a semianalytic
variety.

Proof.By Remark 2.3, it suffices to show thatV/G is a semianalytic subset of
(W/G)6. It is well known thatW/G is actually a complex algebraic variety [2],
Proposition 4, on which6 acts. The set of fixed points(W/G)6 is then a real al-
gebraic variety, and the mapV → (W/G)6 a morphism of real algebraic varieties.
Therefore, its imageV/G is a semialgebraic subset of(W/G)6. In fact,V/G is
basic closed, i.e., a finite intersection of subsets of the formf > 0, wheref is a
polynomial map on(W/G)6 (cf. [9] and also [1]). In any case,V/G is a fortiori a
semianalytic subset of(W/G)6 . 2
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The following proposition is the main result of this section as it describes exactly
when the real semianalytic quotient singularityV/G is analytic.

PROPOSITION 2.5.LetV be a finite-dimensional real vector space. LetG be a
finite group acting linearly and faithfully onV . Denote byW the complexification
of V . Then, the following conditions are equivalent:

(1) V/G is a real analytic variety;
(2) the germ(V /G,0) is real analytic;
(3) V/G = (W/G)6 ;
(4) #G is odd.

Proof.By Lemma 2.1,(3) and(4) are equivalent. The implication(3)⇒ (1) is
clear since, under assumption of(3), the morphismi is an isomorphism from the
semianalytic varietyV/G onto the real analytic variety(W/G)6 by Remark 2.3.
The implication(1)⇒ (2) is obvious. We only need to show the implication(2)⇒
(3).

The morphismsπ , ρ ′, i induce maps of germs at 0 which will be denoted by the
same symbols:

π : (V ,0) −→ (V /G,0),
ρ ′: (W,0) −→ (W/G,0),
i: (V /G,0) −→ ((W/G)6,0).

Suppose(V /G,0) is a real analytic germ. Then, there is a complexification(X, x)

of (V /G,0). Since(W,0) is a complexification of(V ,0), the mapπ induces a map
of complex analytic germsπ ′ from (W,0) into (X, x). Similarly, since(X, x) is a
complexification of(V /G,0), the mapi induces a map of complex analytic germs
i′ from (X, x) into (W/G,0). Moreover, sinceρ ′ is 6-equivariant,ρ ′ induces a
morphism of real analytic germsρ from (V ,0) into ((W/G)6,0). Consider the
following two diagrams.

The two diagrams of solid arrows are commutative. Indeed, the one to the
left clearly is commutative. It follows that the map of germs from(V ,0) into
((W/G)6,0) induced byi′ ◦ π ′ is equal toρ. Sinceρ ′ is the unique6-equivariant
map of complex analytic germs from(W,0) into (W/G,0) inducingρ, the dia-
gram of solid arrows to the right is commutative too.

The map of germsϕ′ is obtained as follows. LettingG act trivially on(X, x), the
map of germsπ ′ isG-equivariant. Sinceρ ′ is the quotient of(W,0) byG, there is
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a unique map of germsϕ′ from (W/G,0) into (X, x) such thatϕ′ ◦ ρ ′ = π ′. Since
ϕ′ is automatically6-equivariant,ϕ′ induces a map of germsϕ from ((W/G)6,0)
into (V /G,0).

Now, one hasi′ ◦ ϕ′ ◦ ρ ′ = i′ ◦ π ′ = ρ ′. Sinceρ ′ is the quotient of(W,0) by
G, this impliesi′ ◦ ϕ′ = id. Which, in turn, impliesi ◦ ϕ = id. Therefore,V/G
contains an open neighborhood of 0 in(W/G)6. Using the inducedR?-action on
(W/G)6, it follows thatV/G = (W/G)6. 2

Remark2.6. Of course, the equivalences between the conditions 1, 2 and 3 of
Proposition 2.5 do also hold when the action ofG onV is not faithful.

Remark2.7. Proposition 2.5 also holds when every occurrence of ‘analytic’ is
replaced by ‘algebraic’.

3. Quotients of Real Analytic Manifolds

In this section we show that the quotient of a real analytic manifold by a properly
discontinuous group action is a semianalytic variety. We study the boundary of
such a quotient and, in particular, its dimension.

PROPOSITION 3.1. Let M be a real analytic manifold and letG be a group
acting properly discontinuously onM. Then, the quotient ofM byG as a locally
ringed space is a semianalytic variety.

Proof.Denote byN the quotient ofM byG, and denote byπ the quotient map
M → N .

Let x be an element ofM. SinceG acts properly discontinuously, there is an
open neighborhoodU of x in M such that

(1) U isGx-stable, i.e., for allα ∈ Gx , we haveα · U ⊆ U , and
(2) for all α ∈ G\Gx , we have(α · U) ∩U = ∅.
Here,Gx denotes the stabilizer ofx, i.e., the subgroup of all elementsα of G such
thatα · x = x. Then, the imageπ(U) of U is an open neighborhood ofπ(x) in
N , and is isomorphic to the quotientU/Gx. Hence, in order to prove thatN is a
semianalytic variety, it suffices to prove thatU/Gx is semianalytic.

ReplacingU , if necessary, by a smaller open neighborhood ofx satisfying the
two conditions above, the action ofGx onU can be linearized (see [2], Section 4).
This means that there is a linear action ofGx on a finite-dimensional real vector
spaceV having the following property. There is an open neighborhoodU ′ of the
origin in V which is stable for the action ofGx , such thatU andU ′ areGx-
equivariantly isomorphic as real analytic manifolds. Under this isomorphism the
origin of V and the pointx are supposed to correspond.

Observe that the groupGx is finite since the action ofG on M is properly
discontinuous. Therefore, by Lemma 2.4, the quotientV/Gx is semianalytic, in
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particular,U ′/Gx – and, hence,U/Gx – is semianalytic. This shows that the
quotientN is semianalytic. 2
In general, one can intrinsically define the boundary∂N of any semianalytic variety
N as

∂N = {x ∈ N | the germ(N, x) is not real analytic}.
Our main result in this section concerns the boundary of the quotient of a real

analytic manifold by a faithful and properly discontinuous group action.

PROPOSITION 3.2.LetM be a connected real analytic manifold and letG be a
group acting faithfully and properly discontinuously onM. Denote the quotient by
N , and the quotient mapM → N byπ .

(1) The imageπ(x) of an elementx ofM belongs to the boundary∂N ofN if and
only if the stabilizerGx ofG at x is of even order. Equivalently,

∂N =
⋃
α∈G

ord(α)=2

π(Mα).

In particular, the semianalytic varietyN is real analytic if and only if all
elements of order2 ofG act fixed point-free onM.

(2) The local dimension of the boundary∂N ofN at the imageπ(x) of an element
x ofM satisfies

dimπ(x) ∂N = sup
α∈Gx

ord(α)=2

dim(TxM)α,

whereTxM is the tangent space toM at x. In particular, the dimension of the
boundary∂N ofN satisfies

dim∂N = sup
x∈M

dimπ(x) ∂N = sup
x∈M

sup
α∈Gx

ord(α)=2

dim(TxM)α.

Proof. Let x be an element ofM. SinceG acts properly discontinuously, there
is an open neighborhoodU of x inM such thatU isGx-stable and(α ·U)∩U = ∅
for all α ∈ G\Gx . SinceM is connected andG acts faithfully onM by real analytic
automorphisms, the groupGx acts faithfully onU .

As in the proof of Proposition 3.1, one can linearize the action ofGx on U ,
replacingU by a smaller neighborhood if necessary. Hence, one reduces to the
case thatM is an open neighborhood of the origin in a finite-dimensional real
vector spaceV , that x is equal to the origin ofV , and thatG is a finite group
whose action onM extends to a linear and faithful action onV . In fact, one might
as well suppose thatM is all of V .
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Statement 1 then follows immediately from Proposition 2.5.
In order to prove statement 2 of the proposition, one applies what we have

proven so far to the quotientV/G, to conclude that its boundary is equal to the
image inV/G of the union

⋃
α∈G,ord(α)=2V

α. Then, statement 2 of the proposi-
tion follows from the natural identification ofV with its tangent spaceT0V at the
origin. 2

Remark3.3. The hypotheses of Proposition 3.2 thatM is connected and that
the action ofG on M is faithful, are only made to simplify the exposition. In
fact, the general case of a not necessarily connected real analytic manifold and
a not necessarily faithful action follow from Proposition 3.2. Indeed, letM be
such a manifold and letG be a group acting properly discontinuously, but not
necessarily faithfully onM. Denote again the quotientM/G byN , and the quotient
mapM → N by π . Let x ∈ M and letC ⊆ M be the connected component ofM
containingx. LetGC be the stabilizer of the connected componentC, i.e.,GC is the
subgroup ofα ∈ G such thatα · C ⊆ C. LetK be the kernel of the representation
morphismGC → Aut(C). Then, the quotientGC/K acts properly discontinuously
and faithfully on the connected real analytic manifoldC. The stabilizer(GC/K)x
of x is equal toGx/K. Applying Proposition 3.2, one concludes thatπ(x) is in
the boundary ofN if and only if the index[Gx : K] of K in Gx is even. To put it
differently,π(x) is in the boundary ofN if and only if there is an elementα ∈ G
havingx as a fixed point, such thatα does not act trivially in a neighborhood ofx,
whereasα2 does act trivially in a neighborhood ofx.

One can similarly generalize the other statements of Proposition 3.2.

Remark. 3.4. The argument that made one conclude that the moduli spaceMg/R
would be real analytic was that the quotientM/G would be real analytic under an
additional hypothesis [10], Theorem 1. This additional hypothesis consisted ofM

being a real analytic subset of a complex analytic manifoldX such that the action of
G onM is the restriction of a properly discontinuous action ofG onX. However,
it is false that this implies that the quotientM/G is real analytic, as shows the
staggeringly simple counter-example ofM = R, X = C andG the multiplicative
group{±1} acting linearly onM in the natural way.

The flaw in the ‘proof’ of [10], Theorem 1, is of an interesting subtlety: Denote
byXran the induced real analytic structure on a complex analytic varietyX. LetG
be a group acting properly discontinuously onX. This induces an action ofG on
Xran. Denote this action byGran. Then, in general,(Xran)/(Gran) is not isomorphic
to (X/G)ran! Indeed, let us take againX = C andG = {±1}. Then,X/G ∼= C,
hence(X/G)ran

∼= R2 and is real analytic. However,Xran = R2 and the quotient
R2/{±1} is not real analytic according to Proposition 2.5. In fact, this quotient is a
semicone (see Figure 1).

The example shows thatXran, as defined above, is not the right thing to consider.
One should rather consider restriction of scalars à la Weil of the complex analytic
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Figure 1. In solid lines: the quotient of the real analytic manifoldR2 by the linear group action
of {±1}, embedded inR3 as the semiconew2 = uv, u > 0, v > 0. The embedding is given by
(u, v, w) = (x2, y2, xy).

variety X with respect to the field extensionC/R. This means that one should
defineXran as the complex analytic varietyX × X̄ endowed with its canonical6-
action, whereX̄ is the complex conjugate variety. One gets an induced action of
Gran, now defined asGran = G × G, onXran, and, this time, one has, indeed, a
canonical6-equivariant isomorphism(Xran)/(Gran) ∼= (X/G)ran.

4. Morphisms of Degree 2

We start this section by recalling some facts concerning the topology of real algeb-
raic curves.

LetX be a real algebraic curve. Thetopological typeof X is the homeomorph-
ism class of the pair(X(C),X(R)).

Denote byg = g(X) the genus ofX, and denote byc = c(X) the number
of connected components of the set of real pointsX(R) of X. The real algebraic
curveX is said to bedividing if X(C)\X(R) is not connected. It is well known
that these data, i.e., the genus ofX, the number of connected components ofX(R),
and whether or notX is dividing, determine completely the topological type of
X. In other words, ifX andY are real algebraic curves, then the topological pairs
(X(C),X(R)) and(Y (C), Y (R)) are homeomorphic if and only ifg(X) = g(Y ),
c(X) = c(Y ), andX andY are either both dividing or both nondividing.

Yet another way to formulate that the real algebraic curvesX andY have the
same topological type is to say that the topological surfacesX(C) andY (C) are
6-equivariantly homeomorphic.

It is also well known that the integersg = g(X) and c = c(X), for a real
algebraic curveX, satisfy the following relations. IfX is dividing thenc ≡ g + 1
mod 2 and 16 c 6 g + 1. If X is nondividing then 06 c 6 g.

In fact these are the only relations satisfied byc andg. More precisely, given
a nonnegative integerg and an integerc satisfyingc ≡ g + 1 mod 2 and 16
c 6 g + 1, then there is a dividing real algebraic curveX such thatg(X) = g

andc(X) = c. Similarly, given a nonnegative integerg and an integerc satisfying
0 6 c 6 g, then there is a nondividing real algebraic curveX such thatg(X) = g
andc(X) = c.
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Recall also that a real algebraic curveX is calledhyperellipticif the genus ofX
is greater than or equal to 2 andX admits a morphism ontoP1 of degree 2.

It is known [5], Proposition 6.3, that ifX is a hyperelliptic real algebraic curve
then eitherX is nondividing, orX is dividing andc is equal to 1, 2 org + 1. Thus,
one suspects a relation between the topological type of a real algebraic curveX

and the least integeri such that there is a morphism of degree 2 fromX onto a real
algebraic curveY of genusi.

Let us puti(X) = inf{g(Y ) | ∃f :X→ Y with deg(f ) = 2}.Of course, if there
are no morphisms of degree 2 fromX to any real algebraic curve, theni(X) = ∞.
For a real algebraic curveX of genus less than 2, the indexi(X) is equal to 0.
For a curveX of genus greater than or equal to 2, the indexi(X) measures how
nonhyperellipticX is, i.e.,i(X) = 0 if and only ifX is hyperelliptic.

PROPOSITION 4.1.Letg be a nonnegative integer.

(1) Let X be a dividing real algebraic curve of genusg. Let c = c(X) be the
number of connected components ofX(R). Then,

i(X) > min{12(g + 1− c), [12(c + 1)] − 1}.
(2) Letc be an integer satisfying16 c 6 g+ 1 andc ≡ g+ 1 mod 2. Then, there

is a dividing real algebraic curveX of genusg such thatc(X) = c and

i(X) = min{12(g + 1− c), [12(c + 1)] − 1}.
Note that this proposition generalizes [5], Proposition 6.3. Indeed, ifX is hy-

perelliptic then, by definition,i(X) = 0. The real curveX is either nondividing or
dividing. In the latter case, according to Proposition 4.1.1, one has either1

2(g+1−
c) = 0 or [12(c + 1)] − 1= 0, i.e.,c = 1,2 org + 1.

For the proof of Proposition 4.1 and also for the applications we have in mind,
it will be convenient to change slightly our point of view.

To give a morphism of degree 2 fromX onto a curveY is equivalent to to
give an automorphismα of X of order 2. Then, by Riemann–Hurwitz, #X(C)α =
2g + 2− 4g(Y ). Putting

λ(X) = sup{#X(C)α |α ∈ Aut(X),ord(α) = 2},
one hasλ(X) = 2g + 2− 4i(X). Therefore, Proposition 4.1 is equivalent to the
following one.

PROPOSITION 4.2.Letg be a nonnegative integer.

(1) Let X be a dividing real algebraic curve of genusg. Let c = c(X) be the
number of connected components ofX(R). Then,

λ(X) 6 max{2c,2g + 6− 4[12(c + 1)]}.
(2) Letc be an integer satisfying16 c 6 g+ 1 andc ≡ g+ 1 mod 2. Then, there

is a dividing real algebraic curveX of genusg such thatc(X) = c and

λ(X) = max{2c,2g + 6− 4[12(c + 1)]}.

https://doi.org/10.1023/A:1001021411123 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001021411123


REAL QUOTIENT SINGULARITIES AND NONSINGULAR REAL ALGEBRAIC CURVES 53

Proof. (1) Letα be an automorphism ofX of order 2. PutY = X/α. Let h be
the genus ofY . We show that eitherh > 1

2(g + 1− c) or h > [12(c + 1)] − 1, so
that, in fact, we are showing Proposition 4.1.1.

LetF ⊆ X(C) be the closure of a connected component ofX(C)\X(R). Then,
F is an orientable manifold with boundary and its double is homeomorphic to
X(C). Let g′ be its genus. Then, 2g′ + c − 1 = g. Sinceα, considered as an
automorphism ofX(C), commutes with the action of6, we have eitherα(F)∩F =
∂F or α(F) ∩ F = F .

If α(F)∩F = F then all fixed points ofα are in the interiorF 0 = F−∂F of F .
The induced map on the real pointsX(R)→ Y (R) is then a topological covering
and each fiber consists of exactly 2 points. The number of connected components
of Y (R) is then necessarily greater than or equal to[12(c + 1)]. The genush of Y
then satisfiesh > [12(c + 1)] − 1.

If α(F) ∩ F = ∂F , thenα has all its fixed points on∂F . That is, the map
F 0 → Y (C) is a diffeomorphism onto an open subset ofY (C). The complement
of this open subset ofY (C) is the image of∂F . Therefore, the genush of Y then
satisfiesh > g′ = 1

2(g + 1− c).
(2) Let S be an orientable connected compactC∞-surface of genusg. Let

6 act onS such that complex conjugationσ ∈ 6 acts orientation-reversingly.
Moreover, this action is such thatS\S6 is not connected, and the number of con-
nected components ofS6 is equal toc. We are going to construct two6-equivariant
orientation-preserving automorphisms ofS of order 2, sayα andβ, such that the
number of fixed points ofα is equal to 2c, and the number of fixed points ofβ is
equal to 2g + 6− 4[12(c + 1)].

Let us first show how this proves Proposition 4.2.2. LetS/α be the quotient of
S in the category ofC∞-manifolds. It is easily seen, after locally linearizing the ac-
tion ofα, that such a quotient exists. Then,S/α is an orientable connected compact
C∞-surface. Sinceα is6-equivariant, we have an action of6 onS/α such that the
quotient mapπ : S → S/α is6-equivariant. Clearly,σ acts orientation-reversingly
onS/α.

There is a complex structure onS/α such thatσ acts antiholomorphically on
S/α. This can be easily seen as follows. Letµ′ be any Riemannian metric onS/α.
Then,µ = µ′ + σ ?µ′ is a6-equivariant Riemannian metric onS/α. The action of
σ on S is then antiholomorphic with respect to any of the two complex structures
onS/α that are compatible withµ.

By local considerations, there is a complex structure onS such that the map
π : S → S/α is holomorphic. Then, the diffeomorphismα of S is biholomorphic
and the action ofσ onS is antiholomorphic. Indeed, letJ be the endomorphism of
the real tangent bundleT S of S corresponding to multiplication by

√−1. Let J ′
be the one forS/α. Then,

T π ◦ T α ◦ J = T π ◦ J = J ′ ◦ T π = J ′ ◦ T π ◦ T α = T π ◦ J ◦ T α.
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Figure 2. The arrow designates the action of the automorphismα. The topological circles form the
set of fixed pointsS6 .

Hence,T α ◦ J = J ◦ T α, i.e., the diffeomorphismα of S is biholomorphic.
Similarly, T σ ◦ J = −J ◦ T σ onT S. Hence, the action ofσ is antiholomorphic.

LetX′ be the complex algebraic curve such that the Riemann surfaceX′(C) is
equal toS. The action of6 onX′(C) is then algebraic, i.e., this action is induced
by an action of6 onX′. LetX be the quotientX′/6. Then,X is a real algebraic
curve satisfyingX ⊗R C = X′. In particular,X(C) = S.

There is an automorphismγ ′ of X′ such that the biholomorphic automorphism
ofX′(C) it induces is equal toα. Sinceα is6-equivariant,γ ′ is6-equivariant too.
It follows that there is an automorphismγ ofX such that the automorphism ofX′ it
induces is equal toγ ′. In particular,α is equal to the biholomorphic automorphism
ofX(C) induced byγ . Sinceγ is an automorphism ofX of order 2 and #X(C)γ =
2c, one hasλ(X) > 2c. In particular, there is a dividing real algebraic curveX of
genusg with c(X) = c andλ(X) > 2c.

One similarly shows that the automorphismβ of S gives rise to a real algebraic
curveX equipped with an automorphismγ of order 2 such that #X(C)γ = 2g +
6− 4[12(c+ 1)]. In particular, there is a dividing real algebraic curveX of genusg
with c(X) = c andλ(X) > 2g + 6− 4[12(c + 1)].

It then follows that there is a dividing real algebraic curveX of genusg with
c(X) = c such thatλ(X) > max{2c,2g+ 6−4[12(c+1)]}. Hence, by statement 1
of the proposition, this inequality is, in fact, an equality. Therefore, in order to
prove Proposition 4.2(2), it suffices, indeed, to construct the automorphismsα and
β having the required properties.

We construct the automorphismα as follows. Choose on every connected com-
ponent ofS6 two different points. Then, there is an6-equivariant orientation-
preserving automorphismα of S of order 2 which has precisely the chosen points
as fixed points (see Figure 2). Hence, the number of fixed points ofα is equal to 2c.
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Figure 3. The arrow designates the action of the automorphismβ. The topological circles form the
set of fixed pointsS6 .

Next, we construct the automorphismβ. Let F be the closure of a connected
component ofS\S6 . Then,F is an oriented connected compactC∞ surface with
boundary of genusg′ = 1

2(g + 1− c). The boundary ofF consists ofc connected
components.

If c is odd (resp. even) we can choose 2g′ + 1 (resp. 2g′ + 2) points onF such
that there is an orientation-preserving automorphismβ ′ of F of order 2 having
precisely these points as its fixed points. Then, defineβ: S → S by

β(x) =
{
β ′(x), if x ∈ F,
σ · β ′(σ · x), if x ∈ σ · F.

(See Figure 3 for the casec is odd, the casec is even is similar.) It is clear that
β ′ can be chosen in such a way thatβ is of classC∞. Then,β is a6-equivariant
orientation-preserving automorphism ofS of order 2 such that the number of its
fixed points is equal to 2(2g′+1) (resp. 2(2g′+2)). Since 2(2g′+1) = 2g+4−2c =
2g+6−4[12(c+1)] if c is odd, and 2(2g′+2) = 2g+6−2c = 2g+6−4[12(c+1)]
if c is even, the automorphismβ has the required number of fixed points. 2

The situation for nondividing real algebraic curves is more simple.
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PROPOSITION 4.3.Letg be a nonnegative integer.

(1) LetX be a nondividing real algebraic curve of genusg. Then,i(X) > 0 and
λ(X) 6 2g + 2.

(2) Let c be an integer satisfying0 6 c 6 g. Then, there is a nondividing real
algebraic curveX of genusg such thatc(X) = c, i(X) = 0 and λ(X) =
2g + 2.

Proof. (1) This follows immediately from the definition ofi(X) andλ(X).
(2) LetP ∈ R[T ] be a separable polynomial of degree 2g + 2 having exactly

2c real roots and having a negative dominant coefficient. LetX be the real algeb-
raic curve defined by the affine equationS2 = P(T ). Then, there is an obvious
morphismf :X → P1 of degree 2. Since the zeros ofP are precisely the points
over whichf is ramified, the curveX is of genusg, by Riemann–Hurwitz. Hence,
i(X) = 0 andλ(X) = 2g + 2.

Let P1 < P2 < · · · < P2c be the real roots ofP . SinceP has a negative
dominant coefficient, the image byf of the set of real points ofX is a union of
intervals:f (X(R)) =⋃c

i=1[P2i−1, P2i].Since the cardinality of any fiber off|X(R))
is at most 2, and since the connected components ofX(R) are topological circles,
the number of connected components ofX(R) is equal toc.

Finally, we show thatX is nondividing. Suppose, to the contrary, thatX is divid-
ing. LetC1 andC2 be the connected components ofX(C)\X(R). The restriction
of f toC1 ∪ C2 is a closed and open map onto its image. In fact, this image is

f (C1 ∪ C2) = P1(C)\
c⋃
i=1

[P2i−1, P2i].

In particular,f (C1∪C2) is connected. Therefore,f (C1) = f (C1∪ C2) = f (C2).
Hence, all fibers off over f (C1 ∪ C2) are of cardinality 2. But, since 2c <
2g+ 2, the polynomialP has a nonreal root whose fiber is necessarily a singleton.
Contradiction. 2

5. Moduli of Real Algebraic Curves

We need to recall some facts on real Teichmüller theory. They can be easily ob-
tained from usual, i.e., complex Teichmüller theory (see [8] for complex Teich-
müller theory, and [4, 6, 11] for real Teichmüller theory).

Let g > 2 and letX be a real algebraic curve of genusg. A marked real
algebraic curve modeled onX is a pair(Y, f ), whereY is a real algebraic curve
andf :X(C) → Y (C) is a6-equivariant orientation-preserving quasiconformal
homeomorphism. Two such pairs(Y, f ) and(Z, g) arereal Teichmüller equivalent
when there is an isomorphismϕ:Y → Z such thatg−1 ◦ ϕ ◦ f :X(C)→ X(C) is
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homotopic to the identity. Thereal Teichmüller spaceT (X) of X is the set of real
Teichmüller equivalence classes of marked real algebraic curves modeled onX.

The setT (X) has a natural structure of a connected real analytic manifold
of dimension 3g − 3. The tangent space toT (X) at a point(Y, f ) is naturally
isomorphic to the real vector spaceH 1(Y,�g), where�g is the dual of the sheaf
� of differentials onY . Recall that by Serre duality,H 1(Y,�g) is canonically
isomorphic to the dual ofH 0(Y,�⊗2).

Let Mod(X) be thereal modular groupof X, i.e., Mod(X) is the group of6-
equivariant orientation-preserving quasiconformal self-homeomorphisms ofX(C),
modulo the subgroup of those self-homeomorphisms that are homotopic to the
identity. The group Mod(X) acts onT (X) by letting (Y, f ) · α = (Y, f ◦ α),
for (Y, f ) ∈ T (X) andα ∈ Mod(X). This action is properly discontinuous. It is
faithful if g > 2. It is not faithful if g = 2. In fact, ifg = 2 thenX is hyperelliptic.
Let ι be its hyperelliptic involution. Then,ι acts trivially onT (X) and the induced
action of Mod(X)/〈ι〉 is faithful.

The quotientR(X) = T (X)/Mod(X) is the moduli space of the real algebraic
curveX, i.e.,R(X) is the set of isomorphism classes of all real algebraic curvesY

such thatY (C) is6-equivariantly homeomorphic toX(C). Or, to put it differently,
R(X) is the set of isomorphism classes of all real algebraic curvesY having the
same topological type asX.

SinceT (X) is a connected real analytic manifold of dimension 3g−3, and since
Mod(X) (resp. Mod(X)/〈ι〉) acts properly discontinuously and faithfully ifg > 2
(resp.g = 2), the moduli spaceR(X) is a semianalytic variety of dimension 3g−3,
by Proposition 3.1.

The stabilizer of a point(Y, f ) in T (X) for the action of Mod(X) is canonically
isomorphic to the group of automorphisms Aut(Y ) of Y . Therefore, we have the
following consequence of Proposition 3.2.

THEOREM 5.1. Let g > 2 and letX be a real algebraic curve of genusg. LetY
be in the moduli spaceR(X) of real algebraic curves of genusg having the same
topological type asX.

(1) If g = 2 thenY is in the boundary ofR(X) if and only if

#Aut(Y ) ≡ 0 mod4.

(2) If g > 2 thenY is in the boundary ofR(X) if and only if

#Aut(Y ) ≡ 0 mod2.

It follows already from Theorem 5.1 that the whole moduli spaceMg/R is not
a real analytic variety since there are, for anyg > 2, real algebraic curvesY of
genusg satisfying the conditions of the theorem (e.g., hyperelliptic curves ifg > 2,
and bi-elliptic curves ifg = 2; see below). However, we will push our study of the
semianalytic structure ofMg/R a little further by determining the dimension of the
boundary of any connected component ofMg/R. It then will easily follow that not
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only Mg/R is not real analytic, but even every connected component is not real
analytic.

In order to determine the dimension of the boundary ofR(X), we need to re-
call a result on the representation of a group of automorphisms of an algebraic
curve on quadratic differentials. LetY be a real algebraic curve of genusg. Let
α be an automorphism ofY of order 2. Then,α acts on the real vector space
H 0(Y,�⊗2) of quadratic differentials. The decomposition of the representation of
α onH 0(Y,�⊗2) into irreducible representations is known [3]. In particular, one
can determine the number of irreducible trivial representations, i.e., the dimension
of H 0(Y,�⊗2)α. According to [3], dimH 0(Y,�⊗2)α = 1

2(3g − 3) + 1
4`, where`

is the number of complex ramification points of the quotient mapY → Y/α, i.e.,
` = #Y (C)α.

THEOREM 5.2. Let g > 2 and letX be a real algebraic curve of genusg. Let
c = c(X) be the number of connected components ofX(R). Then,

dim∂R(X) =
{

max{12(3g − 3+ c),2g − [12(c + 1)]}, if X is dividing,

2g − 1, if X is nondividing.

In particular, the boundary∂R(X) of the moduli spaceR(X) is nonempty.
Proof.Let (Y, f ) be an element ofT (X). According to Proposition 3.2 and the

preceding observations, the local dimension of the boundary∂R(X) of R(X) atY
is equal to

dimY ∂R(X) = sup
α∈Mod(X)(Y,f )

ord(α)=2

dim(T(Y,f )T (X))
α

= sup
α∈Aut(Y )

ord(α)=2

dimH 0(Y,�⊗2)α

= sup
α∈Aut(Y )

ord(α)=2

1
2(3g − 3)+ 1

4#Y (C)α.

By Propositions 4.2(2) and 4.3(2) there is a real algebraic curveY in R(X) admit-
ting an automorphismα of order 2 such that

#Y (C)α =
{

max{2c,2g + 6− 4[12(c + 1)]}, if X is dividing,

2g + 2, if X is nondividing.

Then, it follows from Propositions 4.2.1 and 4.3.1 that

dim∂R(X) = dimY ∂R(X) = 1
2(3g − 3)+ 1

4(2g + 2) = 2g − 1
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if X is nondividing, and

dim∂R(X) = dimY ∂R(X)

= 1
2(3g − 3)+ 1

4 max{2c,2g + 6− 4[12(c + 1)]}
= max{12(3g − 3+ c),2g − [12(c + 1)]}

if X is dividing. 2
Next, we turn our attention to the moduli space of real algebraic curves of genus 2.
Recall that a real algebraic curveY is bielliptic if Y is of genus greater than or
equal to 2, and there is a morphism of degree 2 fromY onto a real algebraic curve
of genus 1.

LEMMA 5.3. LetX be a real algebraic curve of genus2. Then, there is a bielliptic
real algebraic curveY having the same topological type asX.

Proof.We construct a bielliptic real algebraic curveY as follows. LetP ∈ R[T ]
be a separable polynomial of degree 6 such thatP(−T ) = P(T ). Then, the affine
equationS2 = P(T ) defines a real algebraic curveY = YP .

It is easy to see thatY is a bielliptic real algebraic curve of genus 2. Indeed,
applying Riemann-Hurwitz to the obvious degree 2 mapf :Y → P1, one concludes
that the curveY is of genus 2. LetQ ∈ R[T ] be such thatQ(T 2) = P(T ). Then,
the mapping(S, T ) 7→ (S, T 2) defines a morphism from the curveY onto the real
algebraic curve defined by the affine equationS2 = Q(T ). The latter curve is of
genus 1 sinceQ is a separable polynomial of degree 3. The morphism is obviously
of degree 2. This shows thatY is a bielliptic real algebraic curve of genus 2.

Now, one chooses the polynomialP as above such thatY = YP has the same
topological type asX. We need to distinguish the 5 different topological types that
X can have. Let againc = c(X) be the number of connected components ofX(R).

If X is dividing andc = 3, then one choosesP to have only real roots. Since
P has six real roots,Y (R) has three connected components. SinceY is of genus 2,
the curveY is necessarily dividing.

If X is dividing andc = 1, then one choosesP to have no real roots and to have
a positive dominant coefficient. Then, the image byf :Y → P1 of Y (C)\Y (R)
is equal to P1(C)\P1(R). The latter topological space being nonconnected,
Y (C)\Y (R) is not connected. Hence,Y is dividing. Clearly,c(Y ) is either 1 or
2. Sincec(Y ) ≡ g(Y )+ 1 mod 2, one hasc(Y ) = 1.

If X is nondividing then one choosesP with a negative dominant coefficient
and to have exactly 2c real roots. Arguing as in the proof of Proposition 4.3.2,Y is
nondividing andc(Y ) = c.

In all cases, the bielliptic real algebraic curveY that is constructed has the same
topological type asX. 2
THEOREM 5.4. LetX be a real algebraic curve of genus2. The boundary∂R(X)
of the moduli spaceR(X) ofX is of dimension2.

https://doi.org/10.1023/A:1001021411123 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001021411123


60 J. HUISMAN

Proof. Let X be a real algebraic curve of genus 2. Then, by Lemma 5.3, there
is a bielliptic real algebraic curveY belonging toR(X). Let α ∈ Aut(Y ) be the
bielliptic involution. Then, by Riemann–Hurwitz, #Y (C)α = 2. As in the proof
of Theorem 5.2, the local dimension of the boundary∂R(X) of R(X) at Y is at
least equal to1

2(3 · 2− 3) + 1
4 · 2 = 2. Since the moduli spaceR(X) is itself of

dimension 3, we necessarily have dimY ∂R(X) = 2, i.e., dim∂R(X) = 2. 2
Remark5.5. LetX be a real algebraic curve of genusg, whereg is an integer

greater than or equal to 2. It follows from Theorems 5.2. and 5.4, that the boundary
of the moduli spaceR(X) of X is of codimension 1 ifg is equal to 2 or 3. Ifg > 3
then the boundary ofR(X) is of codimension strictly greater than 1.
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