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Abstract

Calderon type reproducing formulae with applications have been studied on one- and higher-dimensional
Lipschitz graphs. In this note we study higher order Calderon reproducing formulae on star-shaped and
non-star-shaped closed Lipschitz curves and surfaces.
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0. Introduction

Function spaces and singular integrals on curves and surfaces (see [2,3,5-8]) are
closely related to boundary value problems on the same type of curves and surfaces.
There have been growing interests in non-smooth, viz. Lipschitz-types, curves and
surfaces (see [14] and [9]). Of technical importance in dealing with the above men-
tioned problems is Littlewood-Paley decomposition of functions. In our notation it is
continuous (integral) and discrete types of Calderon reproducing formulae. Besides
the direct use of the integral type Calderon's reproducing formulae, one can construct
discrete type wavelet frames on curves and surfaces using the integral formulae. Ex-
amples of this approach can be found in [15] and [13] concerning function spaces and
operator theory on Lipschitz graphs. The latter solves a long standing open problem
on giving a constructive proof of the result that any BMO function on a Lipschitz
graph can be decomposed into a sum of two functions of which one is a bounded
function and the other is the Cauchy singular integral of a bounded function. This
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generalizes Uchiyama's constructive proof of the famous Fefferman-Stein result. The
study in [13] deals with one dimensional graphs only. In this paper we generalize the
methods of [13] to closed, star- and non-start-shaped, Lipschitz curves, and further to
higher dimensional surfaces.

1. On star-shaped Lipschitz curves

Throughout this paper / is arbitrary, but fixed positive integer representing the order
of the Calderon reproducing formula under study. Calderon's reproducing formula
on Lipschitz graphs in relation to Cauchy's formula is studied in our context in [3]
and [6]. The formula on one-dimensional Lipschitz graphs reads as follows. Let G
be the graph of a Lipschitz function defined on the whole real line. For/ e LP{G),
1 < p < oo, there holds

P-v. I J'f(z)- = {-l)lQf(z), a.e. z e G,
J -oo *

where C, = 2"2'(2/ - 1)!, J,f (z) = t'F(l)(z + it), F(J) = d'F/dz', and

i, z e C \ G ,
G -z

and J, is the convolution integral operator on the graph with the kernel

J,(z, w) = —^- :
2ni (w — z — i

We have the alternative form for the above formula:
/.OO

p.v. / t2l-lF(2l)(z + 2it)dt = (-l)'C,/(z), a.e. z e G.
J -oo

Let G be the graph of a continuous function G(x) = x + iA(x), —n < x < n,
where A(—n) = A(n) and A is a Lipschitz function, that is, A'(x) € L°°([—n, n]).
Denote by y the star-shaped Lipschitz curve given by the parametric equation y(x) =
elGU\ —IT < x < n. It is easy to see that y is star-shaped Lipschitz with pole z = 0,
if and only if it is of this form. Fourier analysis on star-shaped Lipschitz curves is
studied in [10].

Denote the Cauchy integral

F(z) = ^-,2ni
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[3] Calderon reproducing formulae 35

To stress that F is being induced by the boundary da ta / , we write F = F(f). It has
the alternative form as a convolution operator on y using the natural multiplicative
structure in C,

F(z)= f<p(zr,-l)f(v)
where

lit i 1 — X]'

and the measure \/2ni drj/r] is the normalized complex measure on y

1 C dr)
2ni Jy r\

as a consequence of Cauchy's Theorem. For / € Ll(y), denote

1 f drj
I(f) = F(0) = — f(n) — .

2ni Jy T)

Define the circular Dirac operator by

which is the differential operator along the circle. Indeed, on the circle using z = e'e,
we have

The following decomposition is consistent with the Dirac operator decomposition in
Section 2,

dx dy \dr r )

Introduce the operator

= (In/•) ' ( !>

which is a convolution operator using the natural multiplicative structure of the com-
plex number field. The kernel Jr(^,r}) = (lnr)l(rl

e<p)(r)~li-r) can be explicitly
computed using the expression of <j>. It is holomorphic in both rj and £, and its mixed
jtth-derivatives in rj and £ are dominated by Q(ln r)'\w — r$-\~'~k~l on y. We have
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Below we will use the notation 'p. v . / ' . It does not denote the conventional
principal value of the integral, but has the meaning

lim / + lim / .

Throughout this note we will adopt this less strict meaning of 'p. v.' appropriate to the
context.

The continuous type Calderon reproducing formula for star-shaped Lipschitz curves
is given by

THEOREM 1. Letf e Lp(y), 1 < p < oo. Then

(1) . v. f (yr
2

Jo

where the 'p. v.' integral is with respect to r = 1.

PROOF. Changing variable e~' = r, it suffices to prove

(2) p.v. I tll-x{TllF){Se-2')dt =
J -oo

A direct calculation gives

. a.e. £ € y.

and therefore,

(3) (T*F)(£<r2') = (-2)~* I —
\dtj

Using integration by parts, the left-hand side of (2) is equal to

2'~l

lim t21'1 (4-
d

-(21- l )p.v. / tll-2d[ —
J-oo \dt

'--oo \dt

- lim I21'1 { - l

21-2
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Now we show that the four limits are all zero. Note that for some constants ck,
k = 1,2, . . . , 2/ - 1 ,

*=
and

k\

The relation (3) implies

Using the Lebesgue Convergence Theorem to each of the entries in the summation,
we conclude that the first limit is zero as t —> +00.

Now we study the second limit corresponding to t —*• —00. Using Holder's in-
equality, we have, for q e (1, 00), l/q + l/p = 1 and t being sufficiently close
to - 0 0 ,

, 2 / - .
117 llL'(y)

< < W ? 2 ' - V | | / | U X ) , I < j f c < 2 / - 1 .

This shows that the second limit is zero.
Next we prove that the third and fourth limits are zero. Let srf denote the class

of the functions holomorphic in some annulus containing y. It can be shown that srf
is dense in Lp(y), 1 < p < 00 [10]. We show that Te commutes with F, that is,
r « F ( / ) — F(Fef). In fact, using Laurent series expansions of functions in £/ and
that of the function 0, and invoking Cauchy's theorem for z £ y, we have

(r«F)(z) = - 5 - I{Te)z<KzrX)f in) —
2ni JY x)

= z—: / </>(z>r1)(ry)(??) — = T—: / — dr)-
2ni JY f] 2ni JY Tj — z

Denote by / + a n d / ~ the two parts, corresponding to the positive and negative powers,
in the Laurent expansion of / . Hence, / + is holomorphic inside a disc containing y
a n d / " is holomorphic outside a disc containing y. For t > 0,

f
2ni Jy rj — z
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and, for / < 0, we have

Letting t —• 0±, respectively, by virtue of the Plemelj theorem in the context, we have

limCr2, '-1/^*-2 ') = lim M e / )W df] _ rii-ij-±^^ ^
»-o± <^o±2niJY r)-z

This implies that, for / e ^/,
/ // \ 2 ' - '

"2')) = 0.lim
»-o±

Now we consider/ e Lp{y). We prove that for t € (0, S), where S is a fixed positive
number less than 1, the operator

2/-1

is dominated by the maximal function Mf +, where / = / + + / ~, / ± are the Hardy
space components of/ inside or outside y, respectively. To prove this, we use the
relation (5), and show that each entry of the summation is dominated by the maximum
function. Notice that every entry in (5)

\f+(ri)\dr],

it is sufficient to show that if rj and £ are close enough, then the kernel of the above
integral is dominated by a Poisson type kernel. In fact, using the parametric expression
of y, we have r) = e'(

x+lAw\ % — g'(>+'̂ (>)) if x ancj y ^g ciOse enough modulo 2n,
then

! _ e«*-,)-<ACx)-Ao-)+2,)| > c ( ( x _ y)2 + {A(x) _ A(y) + 2tf)
m .

If the Lipschitz constant N of y is less than 1, then it is easy to show, using the
elementary inequality a2 > (a + b)2/2 — b2, that

(x - v)2 + (A(x) -A(y) + 2t)2 > cN[(x - y)2 + t2).

If the Lipschitz constant N of y is greater than or equal to 1, then using the same
inequality we have

(x - y)2 + (A(x) -A(y) + 2t)2 > (x - y)2 + (A(x) - A(y) + 2t)2/(2N)

> cN[(x - y)2 + t2].
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And so

Calderon reproducing formulae

tk

(1 _ ^-1^-2')!+*
/*

- ((^ _ y)2 _)_ ,2)(l+*)/2

39

The right-hand side is a Poisson type kernel. An analogous argument gives that for
some 8' e (— 1,0), the operator

= sup
2/-1

is dominated by Mf~.
Denote by mY the arc-length measure on y. Let A. > 0, / € Lp{y), g €

F(g) be the Cauchy integral of g. We have
and

lim
«>/->o+

+

r • —

lim

2 J - 1 I)
-©•" > X/2I)

< cp (||/ - g\\u(Y)/k)P .

Since &/ is dense in Lp(y), the last entry may be made as small as we want. This
concludes that the fourth limit is zero. Similarly, we can show that the third limit is
zero.

Repeating this argument, we have

/
/•O

. /

^ - 0

/

oo / i \ 2/—2

*U~2d\7t)

1)) = 2"2'(2/ -

by involving the Plemelj theorem in the context. The proof is complete.

D

2. Star-shaped Lipschitz surfaces

Denote by R" = {xxe\ H h A;nen : x, e R, i = 1 , . . . , n], where e2 = - 1 ,

e, = —ejei, i jt j , i,j = I,... ,n. Let E be a star-shaped Lipschitz surface in
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R" whose pole is at the origin. We recall that both the real 2" -dimensional Clifford
algebra K<n) and the complex 2" -dimensional Clifford algebra C(n) have basis vectors
e s , w h e r e S — ( J u . . . J s ) , 1 < s < n , 1 < j{ < ••• < j s , j k e l a n d e s = e h • • • e h .
For S = 0, we identify ee with e0 = 1.

Let F be a real or complex Clifford-valued function defined in an open set £2 e W
and F(x) = ^,s

esFs, where S runs over the above described ordered subsets of
( 1 , . . . , «}. F is said to be left-monogenic in Q., if

DF(x) = 0, xeQ,

where D = exdx -\ \-endn, and DF(x) = ]T(. £ s ejes(dFs/dXj) (see, for example,
[1] or [4]). Similarly we can define right-monogenic functions.

A surface is called a star-shaped Lipschitz surface, if it is star-shaped and locally
Lipschitz (see [9]). Fourier analysis on star-shaped Lipschitz surfaces is studied
in [11,12].

For/ e L'(S), the function

(6) F(x) = Fif)ix) = / Eiy-x)niy)f(y)daiy), x € K" \ E,

is left-monogenic, where niy) is the outward normal of E at y e E, daiy) is the
surface area on E, E is the Cauchy kernel Eiy) = —y/\y\", and con_, the surface area
of the (n — l)-dimensional unit sphere.

The function Fix) may be re-written as

(7) Fix) = — I Hiy-lx)Eiy)niy)fiy)daiy),

where H(x) = £(x — 1). Formally the above is a convolution integral with kernel H
using the multiplication of Clifford numbers.

The spherical Dirac operator F, is defined through the decomposition

; - • • )

for the polar coordinate x = rn, \r]\ = 1. Note that the decomposition is obtained
by expressing the Dirac operator D in the spherical coordinates of K". For any
left-monogenic function / the above decomposition gives rdrf — Fnf.

The Calderon reproducing formula for star-shaped Lipschitz surfaces has the same
form.

THEOREM 2. For f e LP(E), 1 < p < oo, we have

(8) p. v. f J2J (x) -^- = C,(f (x) - F(0)), a. e. x e E,
Jo r\nr

where Jrf (x) = (In r)'(F' F}(xr), and the 'p. v.' integral is with respect to r = 1.
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Note that Jr is a convolution integral operator on the surface. The mixed &th
derivatives of its kernel Jr(x,y) = (lnr)'(r'riH)(y~ixr) is left-monogenic in the
*-variable and dominated by Ck(\nr)'\y — rjt|~'~*-"+l on the surface. The explicit
expression of the kernel may be computed using the relation r , = rdr on left-
monogenic functions.

PROOF. By changing variable e~' = r, we note that it is equivalent to show

p.v. f t2l-\Tfl)F){xe-2')dt = C,(f(x) - F(0)), a.e. x e E.
J — 00

Since F is left-monogenic, we have (T^F)(xe~21) = (rdrF)(xe~2t). For a fixed t, it
is easy to verify that, for x = rr], \r)\ — 1,

(rdrF)(xe-21) = (rdr)(F(xe-21))

and

(rdr)(F(r,re-21)) = - 2 - x ^ - { 2

a tat
Therefore, we have

(r2'F)(xe-2t) = 2~21 (j^j (F(xe-21)).

So it suffices to prove

f00 /d\{2l)

(9) 2-2'p.v.l I21'1 l—j (F(xe-2'))dt = C,(f(x) - F(0)), a.e. ̂ E .

The proof of Theorem 1 can be adapted to show (9). We only note that the formula
(4) should be replaced by

2/-1 _ (r_\ — y ^ c r
k

(10)

on monogenic functions; the proof of the commutativity between F and r , follows the
same line ([11, page 624] also [12]); and the local Poisson kernel property is proved
using local coordinates. •

3. Non-star-shaped closed Lipschitz surfaces

Let Q. be a simply-connected bounded Lipschitz domain in W and E its boundary.
In this section we assume E is not star-shaped. Let / € L'(E), then, as before,

(11) F(x) = — / E{y -x)n(y)f(y)da(y)
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is well defined and left-monogenic for x e R" \ E.
It is easy to show (see also [7]) that there exists a constant h > 0, depending on

the Lipschitz constant of E, such that for every x e E at which there exists a tangent
plane to E, the interval segment (x,x - 4hn(x)) is entirely contained in ft and the
interval segment (x + 4hn(x), x) is entirely contained in R" \ (E U ft).

Denote by 9nW the directional derivative in the direction n(x). Introducing the
pseudo-differential operator

whose kernel is dominated by Ct'\y — x — tn(x)\~'~n+l, we have

THEOREM 3. For f e Z/(E), 1 < p < oo, we have

(-l) 'Q/ (x) = p. v. f {Jl t)f){x - tn(x)) -
J-h t

+ / G(x,y)n(y)f(y)da(y), a.e. x e E,
0>n-\ Jz

where
21 / d \ 2l~k

G(x,y) = (-l)'+l2-2'Yi(-l)k-lh2'-k L-) (E(y -x+ 2tn(x)))\l=h

/ H \ 2i~k

+ h2l-k( —) (E(y-x + 2tn(x)))\,^h,\dtj

is an integrable kernel in y for a. e. x € E at which there exists a tangent plane to E.

PROOF. Taking into account that n(x)2 = — 1, a similar argument as in Section 2
gives

p.v. f t2l-l(d2[x)F)(x-2tn(x))dt
J-h

(F(x-2tn(x))dt= (-l)'2-2'p.v. f t2'~x(j

(-l)*-1^'-* (J-^ (F(x - 2tn(x))) |/=A

2 ' - *

] (F(x - 2tn(x))) \t=_h +(21 - W (x)

owing to the Plemelj theorem in the context. Thus we have

(-l)'C,f(x) = p. v. / tv-\d?wF)(x - tn(x))dt
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'£) (F(x-2tn(x)))\i=k

2l-k

I /=—h

Using the definition of J^<t) we obtain the desired formula. •

The reproducing formula obtained in Theorem 3 is not of the same type as that in
Theorem 2 but involves a remainder as a well-behaved convolution integral operator. It
may be a shortcome that the differential directions, n(x), in the definition of J(Xtl) is not
a smooth vector field on E. For non-star-shaped closed surfaces there does not exist
a uniform spherical coordinate system so that the radial direction is non-tangential to
almost all points on the surface. Using a spherical covering of E, however, we can
deduce a similar result to Theorem 2. We proceed as follows.

Denote by [Sa] = {(pa, ra,r)a)} a set of spherical coordinate system, where for
a fixed a, pa is the pole and (ra, r)a) is the spherical coordinate system with respect
to p a . We say that [Sa] is a spherical covering of E, if the following conditions
hold:

(i) for every a, pa e Q;
(ii) for every a there exists a simply-connected open set Ua C R"~' such that

xa{ra, r]a), 0 < ra < oo, t)a e Ua is a local parameterization of a part of R" in which
E is star-shaped for rja e Ua, and the radial direction is uniformly non-tangential for
almost all r)a € Ua (that is, the angle between the radial and the normal directions is
dominated by a constant less than n/2 for almost all points in xa(R

+, Ua) n E); and
(iii) for the f/a's specified in (ii), \Ja xa(R+, Ua) D E = E.

Owing to (ii) we also have Sa = (pa, ra,r)a, Ua).
The existence of spherical coverings for non-star-shaped closed Lipschitz surfaces

can be easily justified from the definition of Lipschitz domains in terms of local
coordinate systems (see [9]).

For any point p e R", denote by fp the function / (• + p) and by Ep the surface
(y - P I y € £}. We have the following theorem.

THEOREM 4. Let E be a non-star-shaped closed Lipschitz surface, f € Z/(E),
1 < p < oo and let [Sa] be a spherical covering o /E. Then

f°° , dr
(12) p.v. / J2f(x) = Q{f{x)- F(pa)),

Jo r\nr

where r = ra is the radial parameter of Sa = (pa, ra, r)a, Ua),x e xa(R
+, Ua) D E,

Jrf(x) = (lnr)'(r'F/,J((x - pa)r),
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where F,, = V^, F is defined by (II), the 'p. v.' integral is with respect to r = 1.

PROOF. For x e xa(R
+, Ua) n E, the formula (10) can be rewritten as

= — fFpAx -pa) = — f E(y -(x- pa)My)fPa(y) da(y).

In the proof of Theorem 2 only local Lipschitz property of E is used. So we can use
the same proof to show

.v. I J?f(x)-^L =
Jo r mr

p. v. / J2J (JC) —— = C,(f (x) - FPa(0)).

Since FPa(0) = F{pa), we obtain the desired formula. •

Note that for n = 2, Theorem 3 and Theorem 4 provide the formulae for the
boundaries of simply-connected bounded Lipschitz domains in the complex plane.

Acknowledgement

The author wishes to thank Dr L. X. Yan for the inspiring discussions on this topic
during his visit to the University of New England. The research was supported by the
University Research Grant 1997.

References

[1] F. Brackx, R. Delanghe and F. Sommen, Clifford analysis. Research Notes Math. 76 (Pitman
(Advanced Publishing Program), Boston, 1982).

[2] R. Coifman, A. Mclntosh and Y. Meyer, 'L'integrate de Cauchy definit un operateur borne sur L2

pour les courbes lipschitziennes', Ann. of Math. (2) 116 (1982), 361-387.
[3] G. David, J.-L. Journe and S. Semmes, 'Operateurs de Calderon-Zygmund fonctions para-

accretives et interpolation', Rev. Mat. Iberoamericana 1 (1985), 1-56.
[4] R. Delanghe, F. Sommen and V. Soucek, Clifford algebras and spinor valued functions: A function

theory for Dirac operator. Mathematics and its Application 53 (Kluwer Acad. Publ., Dordrecht,
1992).

[5] D. G. Deng and Y. S. Han, 'The Besov and Triebel-Lizorkin spaces on Lipschitz curves (I)', Acta
Math. Sinica 32 (1992), 608-619; '(II)', Acta Math. Sinica 36 (1992), 122-135.

[6] , 'The Besov and Triebel-Lizorkin spaces of higher order on Lipschitz curves', Approx.
Theory Appl. 9 (1993), 89-106.

[7] D. Jerison and C. E. Kenig, 'Hardy spaces, Ax, and singular integrals on chord-arc domains',
Math. Scand. 50 (1982), 221-247.

[8] P. Jones, Constructions with functions of bounded mean oscillation (Ph.D. Thesis, University of
California, 1978).

https://doi.org/10.1017/S1446788700003566 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003566


[13] Calderon reproducing formulae 45

[9] C. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS
Regional Conf. Ser. in Math. 83 (Amer. Math. Soc., Providence, 1994).

[10] T. Qian, 'Singular integrals with holomorphic kernels and H°°-Fourier multipliers on star-shaped
Lipschitz curves'. Studio Math. 123(1997), 195-216.

[11] , 'Singular integrals on star-shaped Lipschitz surfaces in the quaternionic space', Math. Ann.
310 (1998), 601-630.

[12] , 'Fourier analysis on star-shaped Lipschitz surfaces', J. Funct. Anal, to appear.
[13] T. Qian and L.-X. Yan, 'BMO decomposition on Lipschitz graphs', preprint, University of New

England, 1998.
[14] G. Verchota, 'Layer potentials and regularity for the Dirichlet problem for Laplace's equation in

Lipschitz domains', J. Funct. Anal. 59 (1984), 572-611.
[15] L.-X. Yan, 'Wavelet frames on Lipschitz curves', J. Fourier Anal. Appl. 6 (2000), 559-582.

Faculty of Science and Technology
The University of Macau
P.O. Box 3001
Macau (via Hong Kong)
e-mail: fsttq@umac.mo

https://doi.org/10.1017/S1446788700003566 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003566


46 I Austral. Math. Soc. 72 (2002)

https://doi.org/10.1017/S1446788700003566 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003566

