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Higher Nash blowups

Takehiko Yasuda

Abstract

For each non-negative integer n we define the nth Nash blowup of an algebraic variety,
and call them all higher Nash blowups. When n = 1, it coincides with the classical Nash
blowup. We study higher Nash blowups of curves in detail and prove that any curve in
characteristic zero can be desingularized by its nth Nash blowup with n large enough.
Moreover, we completely determine for which n the nth Nash blowup of an analytically
irreducible curve singularity in characteristic zero is normal, in terms of the associated
numerical monoid.

Introduction

The classical Nash blowup of an algebraic variety is the parameter space of the tangent spaces
of smooth points and their limits, and the normalized Nash blowup is the Nash blowup followed
by the normalization. It is natural to ask whether the iteration of Nash blowups or normalized
Nash blowups leads to a smooth variety. There are works on this question by Nobile [Nob75],
Rebassoo [Reb77], González-Sprinberg [Gon82], Hironaka [Hir83] and Spivakovsky [Spi90]. If the
answer is affirmative, we obtain a canonical way to resolve singularities.

In this paper, we take a similar but different approach to a resolution of singularities. Let X
be an algebraic variety of dimension d over an algebraically closed field k. For a point x ∈ X, we
denote by x(n) its nth infinitesimal neighborhood, that is, if (OX,x,mx) is the local ring at x, the
closed subscheme SpecOX,x/m

n+1
x ⊆ X. If x is a smooth point, being an Artinian subscheme of

length
(
n+d

d

)
, x(n) corresponds to a point [x(n)] of the Hilbert scheme Hilb(n+d

d )(X) of
(
n+d

d

)
points

of X. We define the nth Nash blowup of X, denoted Nashn(X), to be the closure of the set

{(x, [x(n)]) | x smooth point of X}
in X ×k Hilb(n+d

d )(X). We also call it a higher Nash blowup of X. The first projection restricted to

Nashn(X)

πn : Nashn(X) → X

is a projective birational morphism which is an isomorphism over the smooth locus of X. The
first Nash blowup is canonically isomorphic to the classical Nash blowup (see Proposition 1.8).
Every point of Nashn(X) corresponds to an Artinian subscheme Z of X which is set-theoretically
a single point.

If Nash′
n(X) is the closure of {[x(n)] | x smooth point of X} in Hilb(n+d

d )(X), then there exists

a natural morphism Nashn(X) → Nash′
n(X), (x, [Z]) �→ [Z], which is bijective and, in character-

istic zero, even an isomorphism. Thus, Nashn(X) is identified with the set of the nth infinitesimal
neighborhoods of smooth points and their limits. We can also construct higher Nash blowups by
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using the relative Hilbert scheme or the Grassmaniann schemes of coherent sheaves. The last con-
struction is essentially the same as a special case of Oneto and Zatini’s Nash blowup associated to
a coherent sheaf [OZ91].

An interesting problem is whether, when n is sufficiently large, Nashn(X) is smooth. We will
obtain several results concerning this question, behind which we become aware of the following
general principle. It is interesting to ask when the principle holds.

Principle 0.1. Let P be a local property for points of varieties, such as smoothness, normality,
analytic irreducibility and so on. Then there exists a suitable closed subscheme A ⊆ X (depending
only on X and P) whose support contains the non-P locus, and if [Z] ∈ Nashn(X) with Z � A,
then [Z] ∈ Nashn(X) satisfies P.

We will show that for every A ⊆ X with dimA < dimX, there exists n0 such that for every
n � n0 and for every [Z] ∈ Nashn(X), Z � A (Proposition 2.8). Thus, when the principle holds,
then for large n, all points of Nashn(X) satisfy P.

We select a special case of the principle as a conjecture: recall that the Jacobian ideal sheaf
jX ⊆ OX is the ideal sheaf locally generated by suitable minors of the Jacobian matrix associated
to defining equations of X, and that the support of OX/jX is exactly the singular locus of X.

Conjecture 0.2. Suppose that k has characteristic zero. Let X be a variety of dimension d and
let be J (d−1) the (d − 1)th neighborhood of the Jacobian subscheme J ⊆ X (that is, the closed
subscheme defined by jdX). Let [Z] ∈ Nashn(X) with Z � J (d−1). Then Nashn(X) is smooth
at [Z].

If the conjecture is true, we obtain a canonical way to resolve singularities in one step.

Remark 0.3. We make the following remarks.

(i) At this point, there is little evidence for Conjecture 0.2 in higher dimensions. It is, perhaps, safer
to replace J (d−1) with J (ad), where ad is a positive integer depending only on d. The principle
and the conjecture are based on the idea that Artinian subschemes protruding much from the
singular locus behave well. A similar idea for jets appears in the theory of motivic integration
for singular varieties (see [DL99]), in which the Jacobian ideal also plays an important role.

(ii) The conjecture fails if we replace J (d−1) with J = J (0). Let

X := (x2 + y2 + zn+1 = 0) ⊆ A3
C

be a surface with an An-singularity. Its Jacobian ideal is (x, y, zn) ⊆ C[x, y, z]/(x2 + y2 +
zn+1). Let A ⊆ X be the subscheme defined by the Jacobian ideal, which is isomorphic to
SpecC[z]/(zn). For any [Z] ∈ Nash1(X), Z ∼= SpecC[s, t]/(s, t)2 and Z � A. However, the
classical Nash blowup of X is not generally smooth (see [Gon82, § 5.2]).

(iii) The conjecture fails also in positive characteristic at least in dimension 1. Let X be an an-
alytically irreducible curve in characteristic p > 0. Then Nashpe−1(X) ∼= X for e � 0
(Proposition 3.8). If k is of characteristic either two or three and if X = Speck[[x2, x3]],
then Nashn(X) ∼= X for every n (Proposition 3.9).

Our first step towards proving the conjecture is a separation of analytic branches. Let X̂ :=
Spec ÔX,x be the completion of a varietyX at x ∈ X, and X̂i, i = 1, . . . , l, its irreducible components.
Then we can define higher Nash blowups of X̂ and X̂i, and obtain

Nashn(X) ×X X̂ ∼= Nashn(X̂) =
l⋃

i=1

Nashn(X̂i).
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Let ν : X̃ → X be the normalization. The conductor ideal sheaf is the annihilator ideal sheaf of the
coherent sheaf ν∗OX̃/OX . The conductor subscheme C ⊆ X is the closed subscheme defined by
the conductor ideal sheaf.

Proposition 0.4 (Proposition 2.6). Let [Z] ∈ Nashn(X) with Z � C. Then Z is contained in a
unique analytic branch of X.

If x ∈ X is the support of Z and X̂i are as above, then the proposition states that Nashn(X̂i)
are disjoint around [Z]. Therefore, the study of Nashn(X) is reduced to that of Nashn(X̂i).

We study the case of curves in more detail. Let R be a local complete Noetherian domain of
dimension 1 with coefficient field k and X := SpecR. The integral closure of R is (isomorphic to)
k[[x]]. Then we define a numerical monoid S := {i | ∃f ∈ R, ord f = i} and write

S = {0 = s−1 < s0 < s1 < · · · }.
In characteristic zero, we can completely determine when Nashn(X) is normal in terms of S.

Theorem 0.5 (Theorem 3.3). Let X and S be as above. Suppose that k has characteristic zero.
Then Nashn(X) is normal if and only if sn − 1 ∈ S.

As a corollary, we prove the following, which implies Conjecture 0.2 in dimension 1.

Corollary 0.6 (Corollary 3.7). Let X be a variety of dimension 1 over k, C its conductor sub-
scheme and [Z] ∈ Nashn(X). Suppose that k has characteristic zero and that Z � C. Then
Nashn(X) is normal at [Z].

In contrast to the iteration of classical Nash blowups, each higher Nash blowup is directly
constructed from the given variety. There is no direct relation between Nashn+1(X) and Nashn(X).
In fact, from Theorem 0.5, we see that even if Nashn(X) is smooth, Nashn+1(X) is not generally
smooth. So there is no birational morphism Nashn+1(X) → Nashn(X) (See Example 3.5).

Nakamura’s G-Hilbert scheme is also a kind of blowup constructed by using a Hilbert scheme of
points. For an algebraic variety M with an effective action of a finite group G, its G-Hilbert scheme
G-Hilb(M) parameterizes the free orbits and their limits in the Hilbert scheme of points of M , and
there exists a projective birational morphism G-Hilb(M) →M/G. Replacing free orbits with their
nth infinitesimal neighborhoods, we can define a higher version of G-Hilbert scheme, although the
author does not know whether it is interesting.

We can easily generalize the higher Nash blowup to generically smooth morphisms, that is, to
the relative setting, and even more generally to foliations. The latter was actually what the author
first thought of. There should be other similar constructions of blowups. If such a construction is a
resolution of singularities (in different senses in different situations), it is likely to be a good choice
of resolutions, because it is a moduli space of some objects on the original variety.

In § 1, we give the definition of higher Nash blowup and several alternative constructions. In § 2,
we prove basic properties of higher Nash blowups. In § 3, we study the case of curves.

Conventions

We work in the category of schemes over an algebraically closed field k. A point means a k-point.
A variety means an integral separated scheme of finite type over k. For a closed subscheme Z ⊆ X
defined by an ideal I ⊆ OX , we denote by Z(n) its nth infinitesimal neighborhoods, that is, the
closed subscheme defined by In+1. We denote by N the set {1, 2, . . . } of positive integers and by N0

the set {0, 1, 2, . . . } of non-negative integers.
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1. Definition and several constructions

1.1 Definition
Let X be a variety of dimension d, x ∈ X and x(n) := SpecOX,x/m

n+1
x its nth infinitesimal

neighborhood. If X is smooth at x, then x(n) is an Artinian subscheme of X of length
(d+n

n

)
.

Therefore, it corresponds to a point

[x(n)] ∈ Hilb(d+n
n )(X),

where Hilb(d+n
n )(X) is the Hilbert scheme of

(d+n
n

)
points of X. If Xsm denotes the smooth locus

of X, then we have a map

σn : Xsm → Hilb(d+n
n )(X), x �→ [x(n)].

Lemma 1.1. We have that σn is a morphism of schemes.

Proof. Let ∆ ⊆ Xsm ×k Xsm be the diagonal and ∆(n) ⊆ Xsm ×k Xsm its nth infinitesimal neigh-
borhood. Consider the following diagram of the projections restricted to ∆(n).

∆(n)
pr2 ��

pr1
��

Xsm

Xsm

For x ∈ Xsm,
pr2(pr−1

1 (x)) = x(n).

Therefore, by the definition of a Hilbert scheme, there exists a morphism

Xsm → Hilb(d+n
n )(X)

corresponding to the diagram above. It is identical to σn.

The graph Γσn ⊆ Xsm ×k Hilb(d+n
n )(X) of σn is canonically isomorphic to Xsm.

Definition 1.2. We define the nth Nash blowup of X, denoted by Nashn(X), to be the closure of
Γσn with reduced scheme structure in X ×k Hilb(d+n

n )(X).

The first projection restricted Nashn(X),

πn : Nashn(X) → X,

is projective and birational. Moreover, it is an isomorphism over Xsm.
Let Nash′

n(X) be the closure of σn(Xsm) in Hilb(d+n
n )(X). Then the second projection X ×k

Hilb(d+n
n )(X) induces a morphism

ψn : Nashn(X) → Nash′
n(X).

This bijectively sends (x, [Z]) to [Z]. Thus, Nashn(X) is set-theoretically identified with Nash′
n(X),

the set of the nth infinitesimal neighborhoods of smooth points and their limits. Hereafter we
abbreviate (x, [Z]) ∈ Nashn(X) as [Z] ∈ Nashn(X).

1.2 In characteristic zero ψn is an isomorphism
Let SmX denote the mth symmetric product of X. The Hilbert–Chow morphism of [Fog68] is a
morphism

(Hilbm(X))red → SmX

which assigns a closed subscheme Z ⊆ X the associated 0-cycle.
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In characteristic zero, X is embedded into SmX as the small diagonal, {(x, . . . , x) | x ∈ X} ⊆
SmX. (In positive characteristic, the diagonal morphism X → SmX is not generally a closed
embedding.) When m =

(d+n
n

)
, the Hilbert–Chow morphism restricted to Nash′

n(X),

π′n : Nash′
n(X) → X,

is a morphism onto X.

Proposition 1.3. Suppose that k has characteristic zero. Then ψn is an isomorphism and πn =
π′n ◦ ψn.

Proof. The graph Γπ′
n
⊆ X ×k Nash′

n(X) of π′n is identical to Nashn(X). Therefore, ψn is an
isomorphism. Now the equality πn = π′n ◦ ψn is obvious.

Remark 1.4. In positive characteristic, ψn is not generally an isomorphism. For instance, let X :=
Speck[x]. Since X is smooth, ψn is isomorphic to σn : X → Nash′

n(X) ⊆ Hilb(n+d
d )(X). Suppose

that k has characteristic p > 0 and that p divides n + 1. Then ∆(n) ×X Speck[x]/(x2) is a triv-
ial embedded deformation over Spec k[x]/(x2). So the corresponding morphism Speck[x]/(x2) →
X → Nash′

n(X) factors as Spec k[x]/(x2) → Spec k → Nash′
n(X). It follows that ψn is not an

isomorphism.

1.3 Construction with the relative Hilbert scheme
We can construct higher Nash blowups also by using the relative Hilbert scheme. Let X be a variety
and ∆(n) ⊆ X ×k X the nth infinitesimal neighborhood of the diagonal. Then the restricted first
projection

pr1 : ∆(n) → X

is a finite morphism. Its relative Hilbert scheme

Hilb(d+n
n )(pr1 : ∆(n) → X)

for a constant Hilbert polynomial
(
d+n

n

)
is a projective X-scheme. It is easy to see that

Hilb(d+n
n )(pr1 : ∆(n) → X) ×X Xsm

∼= Xsm.

Proposition 1.5. The irreducible component of Hilb(d+n
n )(pr1 : ∆(n) → X) dominating X is

canonically isomorphic to Nashn(X).

Proof. A closed embedding ∆(n) ↪→ X ×k X induces a closed embedding

Hilb(n+d
d )(pr1 : ∆(n) → X) ↪→ Hilb(n+d

d )(pr1 : X ×k X → X).

We also have a closed embedding

Nashn(X) ↪→ X ×k Hilb(n+d
d )(X) = Hilb(n+d

d )(pr1 : X ×k X → X).

Then Nashn(X) and the irreducible component of Hilb(n+d
d )(pr1 : ∆(n) → X) dominating X

determines the same closed subscheme of Hilb(n+d
d )(pr1 : X ×k X → X). This proves the assertion.

Corollary 1.6. Let [Z] ∈ Nashn(X) such that the support of Z is x (that is, πn([Z]) = x). Then
Z ⊆ x(n).

Proof. The subscheme Z ⊆ X is contained in the fiber of pr1 : ∆(n) → X over x, which is exactly
x(n).
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1.4 The Nash blowup associated to a coherent sheaf
Let X be a reduced Noetherian scheme, M a coherent OX -module locally free of constant rank r
on an open dense subscheme U ⊆ X, and Grassr(M) the Grassmaniann of M of rank r, which
is a projective X-scheme. Then the fiber product Grassr(M) ×X U is isomorphic to U by the
projection.

Definition 1.7. The closure of Grassr(M)×X U is called the Nash blowup of X associated to M
and denoted by Nash(X,M) (see [OZ91]).

Then the natural morphism πM : Nash(X,M) → X is projective and birational. When X is a
variety and M = ΩX/k, then Nash(X,ΩX/k) is the classical Nash blowup of X.

If tors ⊆ π∗MM denotes the torsion part, then by definition, (π∗MM)/tors is locally free. More-
over, Nash(X,M) has the following universal property. If f : Y → X is a modification with
(f∗M)/tors locally free, then there exists a unique morphism g : Y → Nash(X,M) with πM◦g = f .

Let I∆ ⊆ OX×kX be the ideal sheaf defining the diagonal ∆ ⊆ X×kX. Put Pn
X := OX×kX/In+1

∆

and Pn
X,+ := I∆/In+1

∆ , n ∈ N. The Pn
X is the structure sheaf of ∆(n) and called the sheaf of principal

parts of order n of X (see [Gro67, Definition 16.3.1]). We regard Pn
X and Pn

X,+ as OX -modules
through the first projection. When X is a variety, these are coherent sheaves.

Proposition 1.8. For every variety X and every n ∈ N0, we have canonical isomorphisms,

Nashn(X) ∼= Nash(X,Pn
X ) ∼= Nash(X,Pn

X,+).

In particular, Nash1(X) is canonically isomorphic to the classical Nash blowup of X.

Proof. Because of the universal property, if N is locally free, then we have a canonical iso-
morphism Nash(X,M ⊕ N ) ∼= Nash(X,M). In particular, since Pn

X
∼= OX ⊕ Pn

X,+, we have
Nash(X,Pn

X) ∼= Nash(X,Pn
X,+).

The moduli schemes Hilb(d+n
n )(pr1 : ∆(n) → X) and Grass(d+n

n )(Pn
X) represent equivalent

functors. Hence, they are canonically isomorphic. It follows that Nashn(X) ∼= Nash(X,Pn
X).

Corollary 1.9. Let X be a variety of dimension d, n ∈ N0, and r :=
(
n+d

d

)
.

(i) We have Nashn(X) ∼= Nash(X,
∧r Pn

X).

(ii) Let K(X) be the constant sheaf of rational functions. Fix an isomorphism
∧r Pn

X ⊗OX
K(X) →

K(X) and define a homomorphism

ψ :
r∧
Pn

X →
r∧
Pn

X ⊗OX
K(X) → K(X).

Then Nashn(X) is isomorphic to the blowup of X with respect to a fractional ideal ψ(
∧r Pn

X).

Proof. These are results due to Oneto and Zatini [OZ91] restricted to the case where M = Pn
X .

1.5 Formal completion
For a complete local Noetherian ring S with coefficient field k, the module ΩS/k of Kähler differentials
is not generally finitely generated over S, while its completion Ω̂S/k is. The latter is usually the
suitable one to handle. We show the appropriate analogues of the above facts about the completion
P̂n

S that are required in applications to higher Nash blowups.
Let k[x] := k[x1, . . . , xr] be a polynomial ring in r variables and R = k[x]/a its quotient ring by

an ideal a. We define the ideal IR of R⊗k R,

IR := (xi ⊗ 1 − 1 ⊗ xi; i = 1, . . . , r)(R ⊗k R).
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Then we put

Pn
R := R⊗k R/I

n+1
R

and regard it as an R-module via the map

R→ R⊗k R, a �→ a⊗ 1.

This module is finitely generated over R. If X := SpecR, then the OX -module Pn
X defined above is

identified with the sheaf P̃n
R associated to the R-module Pn

R.
Let k[[x]] := k[[x1, . . . , xr]] be a formal power series ring in r variables and S := k[[x]]/b its

quotient ring. Similarly we define an ideal ÎS of S⊗̂kS,

ÎS := (xi ⊗ 1 − 1 ⊗ xi; i = 1, . . . , r)(S⊗̂kS).

Then we put

P̂n
S := S⊗̂kS/Î

n+1
S

and regard it as an S-module via the map

S → S⊗̂kS, a �→ a⊗ 1.

This module is finitely generated over S. For the affine scheme Y = SpecS, we define a coherent

OY -module P̂n
Y to be the sheaf ˜̂

Pn
S associated to P̂n

S .

Definition 1.10. Suppose that Y is reduced and of pure dimension d, and that P̂n
Y is locally free

of constant rank
(n+d

d

)
on an open dense subset of Y . Then we define the nth Nash blowup of Y ,

denoted Nashn(Y ), to be Nash(Y, P̂n
Y ).

Let ∆̂(n)
Y := Spec P̂n

S . Then Nashn(X) is identified with the union of the irreducible components
of Hilb(d+n

d )(pr1 : ∆̂(n)
Y → Y ) that dominate irreducible components of Y .

The condition that P̂n
Y is locally free of constant rank

(n+d
d

)
on an open dense subset is perhaps

superfluous. From the following lemma, when Y is the completion of a variety at a point or its
irreducible component, the condition is indeed satisfied.

Lemma 1.11. Let R = k[x]/a and R̂ := k[[x]]/ak[[x]]. Then there exists a natural isomorphism

P̂n
R̂
∼= Pn

R ⊗R R̂.

Proof. Let us view k[x]⊗k k[x] (respectively, k[[x]]⊗̂kk[[x]]) as a k[x]-algebra (respectively, a k[[x]]-
algebra) by the map x �→ x⊗ 1. We have an isomorphism of k[x]-algebras,

φ : k[x] ⊗k k[x] → k[x,y] := k[x, y1, . . . , yr]
1 ⊗ xi �→ xi − yi

and an isomorphism of k[[x]]-algebras,

φ̂ : k[[x]]⊗̂kk[[x]] → k[[x,y]] := k[[x, y1, . . . , yr]]
1 ⊗ xi �→ xi − yi.

Then R⊗k R ∼= k[x,y]/φ(a ⊗k k[x] + k[x] ⊗k a) and

Pn
R
∼= k[x,y]/(φ(a ⊗k k[x] + k[x] ⊗k a) + (y1, . . . , yr)n+1).

Similarly, if â denotes ak[[x]], then

P̂n
R̂
∼= k[[x,y]]/(φ̂(â⊗̂kk[[x]] + k[[x]]⊗̂kâ) + (y1, . . . , yr)n+1).
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We have

R̂⊗R P
n
R
∼= k[[x]][y]/(φ(a ⊗k k[x] + k[x] ⊗k a) + (y1, . . . , yr)n+1)
∼= k[[x,y]]/(φ̂(â⊗̂kk[[x]] + k[[x]]⊗̂kâ) + (y1, . . . , yr)n+1)
∼= P̂n

R̂
.

Corollary 1.12. Let X be a variety, x ∈ X and X̂ := Spec ÔX,x. Then there exists a natural
isomorphism

Nashn(X̂) ∼= Nashn(X) ×X X̂.

Proof. Let f : X̂ → X be the natural morphism. From Lemma 1.11, P̂n
X̂

∼= f∗Pn
X , which implies

the corollary.

2. General properties

2.1 Compatibility with étale morphisms
Theorem 2.1. Let Y → X be an étale morphism of varieties. Then for every n, there exists a
canonical isomorphism

Nashn(Y ) ∼= Nashn(X) ×X Y.

Proof. Let ∆X and ∆Y be the diagonals in X ×k X and Y ×k Y , respectively. Then the natural
morphism

∆(n)
Y → ∆(n)

X ×X Y

is an isomorphism. This induces an isomorphism

Hilb(d+n
n )(pr1 : ∆(n)

Y → Y ) ∼= Hilb(d+n
n )(pr1 : ∆(n)

X → X) ×X Y

and the isomorphism of the assertion.

2.2 Group actions
Let X be a variety of dimension d and G an algebraic group over k acting on X. For each l ∈ N,
we have a natural action of G on X ×k Hilbl(X),

G×k X ×k Hilbl(X) → X ×k Hilbl(X)
(g, x, [Z]) �→ (gx , [gZ]).

When l =
(d+n

n

)
, the subscheme Nashn(X) ⊆ X ×k Hilb(d+n

n )(X) is stable under this action.

Thus, the G-action on X naturally lifts to Nashn(X) and the morphism πn : Nashn(X) → X is
G-equivariant.

2.3 Conductor and Jacobian ideals
We now recall the conductor and Jacobian ideals, and their relation. The conductor ideal plays an
important role in what follows, while the Jacobian ideal appears in Conjecture 0.2.

Let R be either a finitely generated k-algebra or a local complete Noetherian ring with coefficient
field k. Suppose that R is reduced and of pure dimension d. Let R̃ be the integral closure of R in
the total ring of fractions.

Definition 2.2. The conductor ideal of R, denoted by cR, is the annihilator of the R-module R̃/R.

The conductor ideal is characterized as the largest ideal of R that is also an ideal of R̃.
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Definition 2.3. When R is a finitely generated k-algebra (respectively, a complete local Noetherian
ring with coefficient field k), then the Jacobian ideal of R, denoted jR, is the dth fitting ideal of
the module of Kähler differentials ΩR/k (respectively, the complete module of Kähler differentials
Ω̂R/k).

If R is represented as

R = k[x1, . . . , xm]/(f1, . . . , fr) or R = k[[x1, . . . , xm]]/(f1, . . . , fr),

then jR is generated by the (m− d) × (m− d)-minors of the Jacobian matrix (∂fi/∂xj)i,j.
The conductor and Jacobian ideals commute with localizations. Therefore, they define ideal

sheaves on varieties. More directly, if X is a variety of dimension d and ν : X̃ → X is the normal-
ization, then the conductor ideal sheaf cX ⊆ OX is defined to be the annihilator ideal sheaf of a
coherent OX -module ν∗OX̃/OX . The Jacobian ideal sheaf jX ⊆ OX is defined to be the dth fitting
ideal sheaf of the sheaf of Kähler differentials ΩX/k. We call the closed subscheme CX ⊆ X defined
by cX the conductor subscheme and the closed subscheme JX ⊆ X defined by jX the Jacobian
subscheme. Similarly, when X = SpecR with R a complete local Noetherian ring with coefficient
field k, then the conductor subscheme CX ⊆ X and the Jacobian subscheme JX ⊆ X are defined
to be the subschemes defined by cR and jR, respectively.

The conductor and Jacobian ideals commute also with completion. Let R be a finitely generated
k-algebra, m ⊆ R a maximal ideal and R̂ the m-adic completion of R. Then jR̂ = jRR̂ and cR̂ = cRR̂.

The relation of the conductor and Jacobian ideals is as follows.

Theorem 2.4. Let R be either a finitely generated k-algebra or a local complete Noetherian ring
with coefficient field k. Suppose that R is reduced and of pure dimension d. Then jR ⊆ cR.

Proof. We prove only the case where R is a finitely generated k-algebra. The proof of the other case
is parallel.

From the Noether normalization theorem, there exists a k-homomorphism φ : k[x1, . . . , xd] → R
which makes R generically étale over k[x1, . . . , xd]. We can represent R as

R = k[x1, . . . , xd][xd+1, . . . , xm]/(f1, . . . , fr) = k[x1, . . . , xm]/(f1, . . . , fr).

Then the Lipman–Sathaye theorem [LS81, Theorem 2] implies that every (m−d)×(m−d)-minor of
the matrix (∂fi/∂xj) 1�i�r

d+1�j�m
is contained in cR. (For the case where R is not a domain, see [Hoc02,

Theorem 3.1].)
For a suitable choice of variables x1, . . . , xm and for every subset {j1, . . . , jd} ⊆ {1, . . . ,m} of d

elements, R is generically étale over k[xj1 , . . . , xjd
]. Then cR contains every (m−d)× (m−d)-minor

of the matrix (∂fi/∂xj) 1�i�r
1�j�m

. Namely jR ⊆ cR.

The following proposition is required in the next section.

Proposition 2.5. Let R be as above, X := SpecR and X1, . . . ,Xl be the irreducible components
of X.

(i) For 1 � l′ � l and for n ∈ N0, if we put X ′ := X1 ∪ · · · ∪Xl′ , we have

CX′ ⊆ CX ∩X ′ and J
(n)
X′ ⊆ J

(n)
X ∩X ′.

Here ⊆,∩,∪ are all scheme-theoretic.

(ii) The following inclusions hold

JX ⊇ CX ⊇ X1 ∩X2.
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Proof. (i) The first inclusion follows from the inclusion

X̃ ′ ⊆ X̃ ×X X ′.

To show the second inclusion, it suffices to show JX′ ⊆ JX ∩X ′. If R is finitely generated over k
and represented as

R = k[x1, . . . , xm]/(f1, . . . , fr),

and if

R′ = k[x1, . . . , xm]/(f1, . . . , fr, fr+1, . . . , fr′)

is the coordinate ring ofX ′, then jRR
′ is generated by the (m−d)×(m−d)-minors of (∂fi/∂xj) 1�i�r

1�j�m
,

while jR′ is generated by the (m − d) × (m − d)-minors of (∂fi/∂xj)1�i�r′
1�j�m

. This shows the second

inclusion of the assertion in this case. The formal complete case is parallel.
(ii) The inclusion JX ⊇ CX is equivalent to Theorem 2.4. Concerning the other inclusion, from

assertion (i), we may suppose that X1 and X2 are the only irreducible components of X. Let
Ri = R/Ii, i = 1, 2, be the coefficient rings of X1 and X2, respectively. Since R ⊆ R1 ×R2 ⊆ R̃, we
have

cR ⊆ ann(R1 ×R2/R) = I1 + I2.

This proves the assertion.

2.4 Separation of analytic branches

Let X be a variety of dimension d > 0, X̂ := Spec ÔX,x the completion of X at a point x ∈ X and
X̂i, i = 1, . . . , l, its irreducible components. Then we have

Nashn(X) ×X X̂ ∼= Nashn(X̂) ∼=
l⋃

i=1

Nashn(X̂i).

Let [Z] ∈ Nashn(X) with πn([Z]) = x. Then we can regard [Z] also as a (k-)point of Nashn(X̂)
and of Nashn(X̂i0) for some 0 � i0 � l. Then Z is a closed subscheme of X̂i0 . Moreover, from
Corollary 1.6, Z ⊆ X̂i0 ∩ x(n).

Proposition 2.6. Let [Z] ∈ Nashn(X) with support x and Z � CX . Then Z is contained in a

unique analytic branch X̂i. Equivalently, [Z] is contained in Nashn(X̂i) for a unique i.

Proof. From Proposition 2.5, Z cannot be contained simultaneously in two irreducible components.
This proves the proposition.

Let X,x,Z be as above. If Z � J
(d−1)
X , then Z � JX and hence, by Theorem 2.4, Z � CX .

Hence, [Z] ∈ Nashn(X̂i) for a unique i, say i0. Moreover, from Proposition 2.5, Z � J
(d−1)

X̂i0

. As a

consequence, Conjecture 0.2 is reduced to the following conjecture.

Conjecture 2.7. Let R be a local complete Noetherian domain with coefficient field k and X :=
SpecR. Then for every n ∈ N0, the nth Nash blowup Nashn(X) is well-defined even if X is not
algebraizable (see Definition 1.10). Moreover, if [Z] ∈ Nashn(X) with Z � J

(d−1)
X , then Nashn(X)

is regular at [Z].

The following proposition assures that a condition such as Z � CX or Z � J
(d−1)
X holds for all

[Z] ∈ Nashn(X) if n is sufficiently large.
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Proposition 2.8. Let X be a variety of dimension d and A ⊆ X a closed subscheme of dimension
less than d. Then there exists n0 ∈ N0 such that for every n � n0 and for every [Z] ∈ Nashn(X),
Z � A.

Proof. Since A is of dimension less than d, for every a ∈ A, the Hilbert function of OA,a is a
polynomial of degree < d for n� 0. It follows that for n� 0,

lengthOA,a/m
n+1
A,a <

(
n+ d

d

)
.

Because of the semi-continuity of Hilbert functions proved by Bennett [Ben70], for n � 0, the
inequality holds simultaneously for all a ∈ A.

Let [Z] ∈ Nashn(X) and let a be its support. From Corollary 1.6, Z ⊆ a(n). Since lengthOZ =(n+d
d

)
, if the inequality holds, then Z � A ∩ a(n) and hence Z � A.

3. Higher Nash blowups of curves

3.1 A deformation-theoretic criterion for normality
Let R ⊆ k[[x]] be a complete k-subalgebra such that k[[x]] is the integral closure of R (in the quotient
field of R), X := SpecR and ν : X̃ → X its normalization. Since X is algebraizable, we can define
higher Nash blowups of X. To make the computations below simpler, we fix the identification

X̃ = Speck[[y]]

such that the ring homomorphism ν∗ : R → k[[y]] is the composite of the inclusion R ↪→ k[[x]] and
the map k[[x]] → k[[y]], x �→ −y. Then the complete fiber product of X and X̃ is represented as

X×̂kX̃ := SpecR⊗̂kk[[y]] = SpecR[[y]].

The graph Γν ⊆ X×̂kX̃ of ν is generically defined by (x + y). To be precise, if I ⊆ R[[y]] is the
defining ideal of Γν , then

IR[[y]]I = (x+ y).
Here R[[y]]I is the localization of R[[y]] with respect to the prime ideal I. Let Zn ⊆ X×̂kX̃ be the
closed subscheme defined by the (n+ 1)th symbolic power of I,

I(n+1) := R[[y]] ∩ In+1R[[y]]I .

Since the projection
qn : Zn → X

is flat, we obtain the corresponding birational morphism

φn : X̃ → Nashn(X)

such that πn ◦ φn = ν.
Let o ∈ X̃ be the closed point and Zn := q−1

n (o) ⊆ X, the subscheme corresponding to φn(o) ∈
Nashn(X). Consider the natural morphism

ε : Speck[y]/(y2) → Spec k[[y]] = X̃,

which is a nonzero tangent vector of X̃ at o. The fiber product

Zn,ε := Zn ×qn,X̃,ε Speck[y]/(y2) ⊆ X ×k Spec k[y]/(y2)

is the first-order embedded deformation of Zn ⊆ X corresponding to

φn ◦ ε : Spec k[y]/(y2) → Nashn(X).

Let an ⊆ R be the defining ideal of Zn, which is identical to I(n+1) modulo (y).
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Theorem 3.1. Suppose that X is non-normal. Then the following are equivalent:

(i) Nashn(X) is normal;

(ii) φn is an isomorphism;

(iii) Zn,ε is not the trivial embedded deformation of Zn;

(iv) there exists an element g ∈ I(n+1) ⊆ R[[y]] such that if we write

g = g0 + g1y + g2y
2 + · · · , gi ∈ R,

then g1 /∈ an.

Proof. (i) ⇔ (ii). This is obvious.
(ii) ⇔ (iii). The morphism φn ◦ ε corresponding to the pair (ν ◦ ε,Zn,ε). From the assumption,

ν ◦ ε is the zero tangent vector, that is, factors as Speck[y]/(y2) → Speck → X. Hence, φn ◦ ε is the
zero tangent vector if and only if Zn,ε is trivial. This shows the equivalence (ii) ⇔ (iii).

(iii) ⇔ (iv). If the defining ideal of Zn,ε in R[y]/(y2) is generated by

gj0 + gj1y, gj0, gj1 ∈ R, j = 1, . . . ,m,

then Zn,ε corresponds to the homomorphism

an → R/an, gj0 �→ gj1.

In particular, saying that Zn,ε is trivial is equivalent to saying that the homomorphism is the zero
map. Hence, (iii) ⇔ (iv).

Remark 3.2. In the theorem above, the assumption that X is non-normal is necessary. For example,
in characteristic p > 0, if X is normal, then Zpm−1,ε, m ∈ N0, are trivial.

3.2 The associated numerical monoid

A numerical monoid is by definition a submonoid S of the (additive) monoid N0 with 	(N0\S) <∞.
To R ⊆ k[[x]] as above, we associate a numerical monoid

S := {i ∈ N0 | ∃f ∈ R, ord f = i} = {0 = s−1 < s0 < s1 < · · · }.
Theorem 3.3. Let X := SpecR. Suppose that k has characteristic zero. Then Nashn(X) is normal
if and only if sn − 1 ∈ S.

Lemma 3.4. Let a := {a1 < a2 < · · · < ae} ⊆ N and define a (e× e)-matrix

M(n;a) :=


(

n
a1

) (
n

a1−1

) · · · (
n

a1−e+1

)( n
a2

) ( n
a2−1

) · · · ( n
a2−e+1

)
...

...
. . .

...( n
ae

) ( n
ae−1

) · · · ( n
ae−e+1

)


with entries in an algebraically closed field k of characteristic 0. Here

(
a
b

)
:= 0 if either b > a or

b < 0. Then

detM(n;a) =

∏
i<j(aj − ai)

∏e
i=1((n+ e− i)(n+ e− i− 1) · · · (n + e− ai))∏e

i=1 ai!
.

In particular, if n+ e− ae > 0, then detM(n;a) �= 0, and the matrix M(n;a) is regular.

Proof. This matrix appears also in [ACGH07, p. 353].

1504

https://doi.org/10.1112/S0010437X0700276X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700276X


Higher Nash blowups

Without changing the determinant, we can replace the first column with the sum of the first
and the second, and the second with the sum of the second and the third, and so on. The resulting
matrix is 

(n+1
a1

) ( n+1
a1−1

) · · · ( n+1
a1−e+2

) ( n
a1−e+1

)(n+1
a2

) ( n+1
a2−1

) · · · ( n+1
a2−e+2

) ( n
a2−e+1

)
...

...
. . .

...
...(

n+1
ae

) (
n+1
ae−1

) · · · (
n+1

ae−e+2

) (
n

ae−e+1

)

 .

Again we replace the first column with the sum of the second and the third, and so on. We obtain

(n+2
a1

) ( n+2
a1−1

) · · · ( n+2
a1−e+3

) ( n+1
a1−e+2

) ( n
a1−e+1

)(n+2
a2

) ( n+2
a2−1

) · · · ( n+2
a2−e+3

) ( n+1
a2−e+2

) ( n
a2−e+1

)
...

...
. . .

...
...

...(n+2
ae

) ( n+2
ae−1

) · · · ( n+2
ae−e+3

) ( n+1
ae−e+2

) ( n
ae−e+1

)

 .

Repeating this, we finally arrive at

(
n+e−1

a1

) (
n+e−2
a1−1

) · · · (
n+1

a1−e+2

) (
n

a1−e+1

)(
n+e−1

a2

) (
n+e−2
a2−1

) · · · (
n+1

a2−e+2

) (
n

a2−e+1

)
...

...
. . .

...
...(n+e−1

ae

) (n+e−2
ae−1

) · · · ( n+1
ae−e+2

) ( n
ae−e+1

)

 .

(Check that this transformation makes sense even if the matrix M(n;a) contains zero entries.)
Then we have

detM(n;a) = det



(n+e−1
a1

) (n+e−2
a1−1

) · · · ( n+1
a1−e+2

) ( n
a1−e+1

)(n+e−1
a2

) (n+e−2
a2−1

) · · · ( n+1
a2−e+2

) ( n
a2−e+1

)
...

...
. . .

...
...(

n+e−1
ae

) (
n+e−2
ae−1

) · · · (
n+1

ae−e+2

) (
n

ae−e+1

)


=

e∏
i=1

((n+ e− i)(n + e− i− 1) · · · (n + e− ai))

× det


(a1!)−1 ((a1 − 1)!)−1 · · · ((a1 − e+ 1)!)−1

(a2!)−1 ((a2 − 1)!)−1 · · · ((a2 − e+ 1)!)−1

...
...

. . .
...

(ae!)−1 ((ae − 1)!)−1 · · · ((ae − e+ 1)!)−1


=

∏e
i=1((n+ e− i)(n + e− i− 1) · · · (n + e− ai))∏e

i=1 ai!

× det


1 a1 a1(a1 − 1) · · · a1(a1 − 1) · · · (a1 − e+ 2)
1 a2 a2(a2 − 1) · · · a2(a2 − 1) · · · (a2 − e+ 2)
...

...
...

. . .
...

1 ae ae(ae − 1) · · · ae(ae − 1) · · · (ae − e+ 2)


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=
∏e

i=1((n+ e− i)(n + e− i− 1) · · · (n+ e− ai))∏e
i=1 ai!

× det


1 a1 a2

1 · · · ae−1
1

1 a2 a2
2 · · · ae−1

2
...

...
...

. . .
...

1 ae a2
e · · · ae−1

e


=

∏e
i=1((n+ e− i)(n + e− i− 1) · · · (n+ e− ai))∏e

i=1 ai!

∏
i<j

(aj − ai)

(Vandermonde’s determinant).

Proof of Theorem 3.3. Put T := N0 \ S = {t1 < t2 < · · · < tl}. Let tn,0 := {t ∈ T | t < sn} = {t1 <
t2 < · · · < tln}, where ln := 	tn,0, and un,0 := tn,0 ∪ {sn}. Then sn = ln + n+ 1. From Lemma 3.4,
the matrix M(n+ 1;un,0) is regular. We define rn,i ∈ k, i = 1, . . . , ln, by the equation

M(n+ 1;un,0)


rn,0
...

rn,ln−1

rn,ln

 =


0
...
0
1

 .

Then we define a homogeneous polynomial of degree sn,

fn,0 := (rn,0y
ln + rn,1xy

ln−1 + · · · + rn,ln−1x
ln−1y + rn,lnx

ln)(x+ y)n+1 ∈ k[[x, y]].

For 1 � i � ln, the coefficient of xtiysn−ti in fn,0 is

rn,0

(
n+ 1
ti

)
+ rn,1

(
n+ 1
ti − 1

)
+ · · · + rt,ln

(
n+ 1
ti − ln

)
= 0

and the coefficient of xsn = xn+ln+1 is 1.
For j ∈ N, we put tn,j := {t ∈ T | t � sn + j}. If mn,j := ln + j − 	tn,j � 0, then we put

sn,j := {s0 < s1 < · · · < smn,j} and un,j := tn,j ∪ sn,j. Then 	un,j = ln + j + 1. Since

(n + 1) + 	un,j − maxun,j � (n + 1) + ln + j + 1 − (sn + j) = 1,

from Lemma 3.4, M(n+ 1,un,j) is regular. Therefore, from the same argument as above, for every
(di; i ∈ un,j) ∈ kun,j , there exists a unique homogeneous polynomial g ∈ k[[x, y]] such that:

(i) g has degree (l + j) + (n+ 1) = sn + j;
(ii) g is divided by (x+ y)n+1; and
(iii) for each i ∈ un,j, the coefficient of the term xiysn+j−i is di.

Now we inductively choose homogeneous polynomials fn,j, j ∈ N, of degree sn + j divisible by
(x+ y)n+1 as follows. For each i ∈ N0, we can take an element

hi =
∑
j�0

hi,jx
i+j ∈ R, hi,j ∈ k

such that:

(i) h0 = 1;
(ii) for i ∈ S, hi,0 = 1;
(iii) for i ∈ T , hi = 0; and
(iv) if j > 0 and i+ j ∈ S, then hi,j = 0. (In particular, if i > tl and j > 0, then hi,j = 0.)

1506

https://doi.org/10.1112/S0010437X0700276X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0700276X


Higher Nash blowups

Suppose that we have chosen fn,0, fn,1, . . . , fn,j−1. Let ci,j′ , i � sn + j′, 0 � j′ < j, be the coefficient
of xiysn+j′−i in fn,j′. By convention, we put ci,j′ := 0 for i < 0 or for j′ < 0. For i ∈ sn,j, put ci,j := 0.
For i ∈ tn,j, put

ci,j :=
j∑

a=1

ci−a,j−ahi−a,a.

Then we choose fn,j such that for every i ∈ un,j, the coefficient of xiysn+j−i is ci,j .
We claim that for j � 0, fn,j = 0. To see this, we first observe that for j � 0, the coefficients

of xiysn+j−i, i ∈ {s ∈ S | s < tl} ⊆ sn,j, are all 0. Then, if necessary, replacing j with a still larger
integer, we obtain that fn,j−1, fn,j−2, . . . , fn,j−tln

all have this property. Then for every i ∈ tn,j,
ci,j = 0. From the uniqueness, fn,j = 0.

Define fn :=
∑∞

j=0 fn,j. Then fn is divided by (x+ y)n+1. Moreover,

fn =
∑
i,j

ci,jx
iysn+j−i

=
∑
i,j
i∈S

ci,jx
iysn+j−i +

∑
i,j

i∈T

( j∑
a=1

ci−a,j−ahi−a,a

)
xiysn+j−i

=
∑
i,j
i∈S

ci,jx
iysn+j−i +

∑
i,j,a

a>0,i+a∈T

ci,jhi,ax
i+aysn+j−i

=
∑
i,j

ci,jhiy
sn+j−i.

Thus, fn ∈ R[[y]] and so fn ∈ I(n+1). By construction,

fn(x, 0) = xsn + (higher terms) ∈ an.

Similarly, for every n′ � n, fn′ ∈ I(n+1), and

fn′(x, 0) = xsn′ + (higher terms) ∈ an.

Since

lengthR/(fn′(x, 0);n′ � n) = n+ 1,

an is, in fact, generated by fn′(x, 0), n′ � n, and identical to {f ∈ R | ord f � sn}. It follows that
I(n+1) is generated by fn′ , n′ � n.

Write

fn ≡ fn(x, 0) + gny mod (y2), gn ∈ R.

From Theorem 3.1, Nashn(X) is normal if and only if for some n′ � n, gn′ /∈ an. For every n′ > n,
gn′ has order at least sn, and so gn′ ∈ an.

Now the normality of Nashn(X) is equivalent to saying that gn has order sn−1 or, equivalently,
csn−1,0 �= 0. If sn−1 ∈ T , then sn−1 = tln and, by the construction, csn−1,0 = 0. If sn−1 ∈ S, then
put u′

n,0 := {t1, . . . , tln , sn − 1}. From Lemma 3.4, the matrix M(n+ 1;u′
n,0) is regular. We have

M(n+ 1;u′
n,0)


rn,0
...

rn,ln−1

rn,ln

 =


0
...
0

csn−1,0

 �= 0.

This completes the proof.
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Example 3.5. We note that for every numerical monoid S, there exists R ⊆ k[[x]] whose associated
monoid is S. Suppose that S is the numerical monoid generated by 5 and 7. Then

S = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, n;n � 24}.
Theorem 3.3 now states that

Nashn(X) is

{
non-normal (n = 0, 1, 2, 3, 4, 6, 7, 11)
normal (otherwise).

Example 3.6. If for some m, S = {0,m,m + 1,m + 2, . . . }, then for every n > 0, Nashn(X) is
normal.

3.3 Conjecture 0.2 for curves
Corollary 3.7. Suppose that k has characteristic zero. Let X be either a variety of dimension 1
or SpecR with R a reduced local complete Noetherian ring of dimension 1 with coefficient field k.
Let C ⊆ X be the conductor subscheme and [Z] ∈ Nashn(X) with Z � C. Then Nashn(X) is
normal at [Z]. In particular, Conjecture 0.2 is true in dimension 1.

Proof. The second assertion is a consequence of the first and Theorem 2.4. We now prove the first
assertion. From Corollary 1.12, we may suppose that X = SpecR with R a reduced local complete
Noetherian ring with coefficient field k. From Proposition 2.5, Z is contained in a unique irreducible
component of X, say X0. If C0 is the conductor subscheme of X0, then from Proposition 2.5, we have
Z � C0. Hence, it suffices to prove only the case where R is a domain, the case as in Theorem 3.3.
With the notation as in Theorem 3.3, the conductor ideal c of R is (xi; i > tl). If sn > tl + 1, then
from Theorem 3.3, Nashn(X) is smooth. If sn � tl +1, then as we saw in the proof of Theorem 3.3,
an = {f ∈ R | ord f � sn} ⊇ c and the condition, Z � C, is not satisfied. This completes the
proof.

If Z = C, then Nashn(X) is not generally smooth at [Z]. In fact, with X = SpecR as in
Theorem 3.3, if n = i0 := max{i | si − 1 /∈ R}, then Zn = C and Nashn(X) is non-normal at [Zn].
Therefore, we cannot replace C in the corollary with any smaller subscheme of X.

3.4 Positive characteristic
As the following propositions show, it is impossible to resolve curve singularities in positive charac-
teristic via higher Nash blowups.

Proposition 3.8. Let X = SpecR be as in Theorem 3.3. Suppose that k has characteristic p > 0.
Then for e� 0,

Nashpe−1(X) ∼= X.

Proof. For e� 0,
(x+ y)p

e
= xpe

+ ype ∈ R⊗̂kR ⊆ k[[x, y]].
Let W ⊆ X ×k X be the closed subscheme defined by the ideal (x+ y)p

e
. If q ∈ X is the image of

the origin o ∈ X̃ = Spec k[x], then the fiber of pr2 : W → X over q is SpecR/xpe
R. From [Eis99,

Lemma 11.12],
lengthR/xpe

R = length k[x]/xpe
k[x] = pe.

From [Eis99, Example 20.13], pr1 : W → X is flat. There exists a corresponding morphism

X → Nashpe−1(X),

which is the inverse of πpe−1 : Nashpe−1(X) → X. We have proved the proposition.
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Proposition 3.9. Suppose that k has characteristic either two or three. Let X := Speck[[x2, x3]].
Then for every n ∈ N0, Nashn(X) ∼= X.

Proof. We first consider the case of characteristic two. For n ∈ N,

(x+ y)n = xn + nxn−1y +
(n−2∑

i=2

(
n

i

)
xiyn−i

)
+ nxyn−1 + yn

=


xn +

(n−2∑
i=2

(
n

i

)
xiyn−i

)
+ yn (n even),

xn + xn−1y +
(n−2∑

i=2

(
n

i

)
xiyn−i

)
+ xyn−1 + yn (n odd).

Thus, for odd n, (x+ y)n+1 ∈ R⊗̂kR. By the same argument with the proof of the last proposition,
we see that Nashn(X) ∼= X.

For even n, the coefficients of xn+2y and xyn+2 in (x2 + xy + y2)(x + y)n+1 are both zero.
Therefore, (x2 + xy + y2)(x+ y)n+1 ∈ R⊗̂kR. For an ideal

I := ((x+ y)n+2, (x2 + xy + y2)(x+ y)n+1) ⊆ R⊗̂kR,

we have

lengthR/IR = lengthR/(xn+2, xn+3)R = n+ 1.

Again by the same argument, we can show the assertion in the case where n is even.
We next consider the case of characteristic three. Similarly we have

(x+ y)n ∈ R⊗k R(n ≡ 0 mod 3),

(x− y)(x+ y)n = (x2 − y2)(x+ y)n−1 ∈ R⊗k R(n ≡ 1 mod 3),

(x2 + xy + y2)(x+ y)n ∈ R⊗k R(n ≡ 2 mod 3).

For each n ∈ N, we define an ideal I ⊆ R⊗k R as follows:

I :=


((x− y)(x+ y)n+1, (x+ y)n+3) (n ≡ 0 mod 3)
((x+ y)n+2, (x2 + xy + y2)(x+ y)n+1) (n ≡ 1 mod 3)
((x+ y)n+1) (n ≡ 2 mod 3).

Then

lengthR/IR =

{
lengthR/xn+1R or
lengthR/(xn+2, xn+3)R

= n+ 1.

We can similarly show the assertion.
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