SOME THEOREMS ON DIFFERENCE SETS

HENRY B. MANN

Aset ay, ..., a, of different residues mod v is called a difference set (v, &, \)
(v > k > A) if the congruence a¢; — a; = d (mod v) has exactly X solutions for
d # 0 (mod v). Singer [4] has demonstrated the existence of a difference set
(v, k,1) if & — 1 is a prime power, and difference sets for A > 1 have been
constructed by various authors; but necessary and sufficient conditions for the
existence of a (v, k, X) are not known. It has not been possible so far to find a
difference set with A = 1if £ — 1 is not a prime power and it has therefore been
conjectured that no such difference set exists. The condition

(1) E(Ek —1) = Ao —1)

is trivial. Owing to the efforts of Hall [2] and Hall and Ryser [3] efficient necessary
conditions are now available by which a large number of (v, &, ) can be shown
to be impossible. Hall [2] in particular succeeded in eliminating all doubtful
cases of (v, %,1) with 2 — 1 < 100 and this bound could easily be extended
upward. It is the purpose of the present paper to improve some of the results
of Hall [2] and Hall and Ryser [3].

A number ¢ is called a multiplier of (v, &, \) if {ta;} = {a; + s} (mod v) for
some s. Hall and Ryser [3] generalizing a theorem of Hall [2] proved that every
prime divisor p of 2 — XA = n is a multiplier provided p > A. The restriction
p > A can sometimes be obviated by remembering that the residues which are
not in (v, k, \) form a (v,v — k, v — 2k 4+ \) with the same multiplier svstem
as (v, k, N).

We shall prove the following:

T HEOREM_ 1. If t is of even order with respect to a prime divisor q of v then n is
a square if (2) = —1.1If (é) = + 1 then n = b®or a’g®, where a, b are integers.
Thus always z = b%if n # 0 (mod q).
Proof. Let t have order 2f with respect to ¢ then t/ = — 1(mod ¢). \We put
0(x) = x™ 4+ ...+ x"™.

Since ¢ is a multiplier, we have for some s,

(2) O(x’f) = x*0(x) mod (x° — 1).
Substituting a primitive gth root of unity ¢ for x we have
3) 6") = 0¢™Y) = £0(0).
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The prime ¢ must be odd, hence 2r = s (mod ¢), and since

0(x)0(x N =n+ N1 +... 42" mod (x” — 1)

it follows that
4) @) = n.

In the field F(¢) generated by ¢ over the field of rational numbers the field
F(\/ = ¢) is the only quadratic subfield. Hence either # is a square or # = a%g.
In the latter case we have

(4a) ©0()) = £ aV/g.

The Galois group of §(¢) over F(1/q) is the group of automorphisms ¢ —> ¢®
where a is a quadratic residue mod ¢. If é = — 1 then {—{* maps+/g into
—/q. Hence if ¢ is a multiplier,

Y = ¢7E) = F aV/g,

Ti+s1—
g. sr=_1,

but this is impossible since g is odd.

The congruences # =0 (mod ¢), v =0 (mod ¢) imply » =0 (mod ¢?),
since

(5) M =n"4+ 2N — Dn + N\

but # = 0 (mod ¢?) and #» = a’% imply ¢ = 0 (mod ¢), which proves the second
part of Theorem 1.

THEOREM 1a. If under the conditions of Theorem 1 we havev = q,thenk = v — 1.

For then (v, ) = 1 and following the proof of Theorem 1 we are led to the '
equation

$'6(5) = =0, b integral.

But this relation is impossible unless £ = v — 1.

Theorem 1 is a considerable improvement over Hall’s Corollary 4.7 and Hall
and Ryser’s Theorem 3.2.

Theorem 1 has many applications. We give a few indicating its use. In the
following corollaries let p always denote a prime divisor of » which exceeds A
and suppose that (v, k, \) exists. We also assume v =1 (mod 2) since for
v = 0 (mod 2), » must always be a square [1].

COROLLARY 1. If N =1 and n = n, or n,> mod (n>+ m1+ 1) and p is of even
order with respect to n,* + ny + 1, then n is a square.
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For thenv = »n?* 4z -+ 1 = 0 mod (#:>2 + n1 + 1). Thus p is of even order
with respect to a prime divisor ¢ of v. Also in this case (v, n) = 1.
For instance # must be a square in the following cases:

n=1 (mod 3) p =2 (mod 3)
n=2 4 (mod 7) p=3,56 (mod 7)
n=3, 9 (mod 13) p=24756,7,8, 10, 11, 12 (mod 13)
_: 2y _ _

n = 35,25 (mod 31) <31> = —1
n =6, 36 (mod 43) 2 = —1

! 43
n= 17,11 (mod 19) £ =—1

’ 19

and so forth.

COROLLARY 2. If a multiplier is quadratic non-residue modulo a prime divisor
of v then n is a square. Moreover, if v is prime then k = v — 1.

(L:%:_)x) _

then n is a square; if further v is a prime then (v, k, N) is impossible.

COROLLARY 3. If

For by (5) we have
hence

But

©)- ()= (=27)

and the corollary follows from Theorems 1 and 1a.

The case (91, 45, 22) already eliminated by Hall and Ryser is also quickly
disposed of by Theorem 1, since 23 = — 3 (mod 13) and — 3 has the order
6 (mod 13).

We shall call a prime p an extraneous multiplier if p is a multiplier but
7 # 0 (mod p). We shall prove

THEOREM 2. The prime p is a multiplier if and only if

(6) 0(x)” = x°0(x) modd (p, " — 1).
If p is an extraneous multiplier then
6) B(x)" ! = i° modd (p, x* — 1)
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if k £ 0 (mod p), and
6") ()" =% — T(x) modd (p, x° — 1),
Tx)y=14+x+...4+x" if k=0 (mod p).
Proof. If p is a multiplier we have
x°0(x) = 0(x") = 0(x)” modd (p, x* — 1).

On the other hand, 6(x)” = x%(x), modd (p,x" — 1), implies 0(x?) = x°0(x),
modd (p, x° — 1). Since 6(x?) and x6(x) are polynomials whose coefficients
are either 1 or 0, it follows from this that

0(x") = x°60(x) mod (x* — 1).

Hence p is a multiplier.
If p is an extraneous multiplier we multiply (6) by 6(x~!) and obtain

(7) 6(x)"(n + \T(x)) = x*(n + AT (x)) modd (p, x” — 1),
(1) nf ()"t 4+ NI T (%) = x*(n 4+ NT(x)) modd (p, x° — 1).
If 220 (mod p) then A~' =1 (mod p). If k=0 (mod p) then n = — A

(mod p). Also x°T(x) = T'(x), mod (x° — 1), and the second part of the theorem
follows easily from (7) and (7).

COROLLARY 1. If 2 is a multiplier for (v, k, \) then either n = 0 (mod 2) or

k=v—1.
For otherwise Theorem 2 gives either
f(x) = a° modd (2, x" — 1),
or
0(x) = x"+ T(x) modd (2, 2" — 1)

and the corollary follows.

COROLLARY 2. If 3 is a multiplier for (v, k, 1) then n = 0 (mod 3.

For otherwise either
(8) 0(x)" = «° modd (3, " — 1),

or

&) b(x) = x* — T(x) modd (3, +* — 1).

But «™ occurs in 6(x)%only if m = a;+ a; and then exactly twice if 7 5 j and
exactly once if 7 = j, whilst x™ does not occur for exactly in(n + 1) values of m.
Thus (8) and (8") are both impossible, and the corollary follows.

The following two theorems serve to show the non-existence of (v, #,1) in a
large number of doubtful cases.
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THEOREM 3. If ¢, to, 13, ta are multipliers of (v, k, 1) such that t; + t; = ¢,
ty # ty (mod v) then t, + t4 1is not a multiplier.

For in this case we have a difference set ay, . . . , a; which remains fixed under
all multipliers [2]. If ¢; + ¢4 = t5 (mod 2) is a multiplier, then for every a in this
difference set

aty + at, = at; = a, (mod 2),
ati + aty = at; = a, (mod v),
ar — a; = aty — aly (mod v).

Hence, since A = 1, either at, = a; (mod 2) which implies @ = 0 or at. = aty,
a(t: — t4) = 0 (mod v). Hence for all @ we have a(f, — £4) = 0 (mod v); but
since every m = a; — &, (mod v) it follows that ¢ty — {4 = 0 (mod v).

COROLLARY 1. If 2, p, q are multipliers for (v, k, 1) and p 2 ¢ (mod ©) then
P + g is not a multiplier.

This follows since p + p = 2p is a multiplier.

COROLLARY 2. If 2 and 2% 4+ 1 are multipliers then 2* = 1 (mod »). If 2 and
28 — 1 are multipliers then 2 — 1 = 1 (mod v).

This follows at once from Corollary 1 with p = 1.

THEOREM 4. If 4, to, t3, ta are multipliers for (v, k, 1) and (¢, — t2) = ({5 — t4)

then
9) (th—ta)(la—t5) =0 (mod v).
For again let a,, . . ., a; be the set that remains fixed under all multipliers.

Then for any a in this set,
ha — ta = ta — ta (mod v).
Hence either t1a = ¢,a (mod v) or tia = t3a (mod v). Hence for all @, and therefore
for every number m, we must have
(tr — to)(ty — tsym =0 (mod v),
whence the theorem.

Theorem 4 was extensively used, but not explicitly stated, by Hall {2].

REFERENCES

1. S. Chowla and H. J. Ryser, Combinatorial problems, Can. J. Math., vol. 2 (1950), 93-99.

2. Marshall Hall, Jr., Cyclic projective planes, Duke Math. J., vol. 14 (1947), 1079-1090.

3. Marshall Hall, Jr. and H. J. Ryser, Cyclic incidence matrices, Can. J. Math., vol. 4 (1951),
495-502.

4. James Singer, A theorem in finite projective geometry and some applications to number theory,
Trans. Amer. Math. Soc., vol. 43 (1938), 377-385.

Ohio State University

https://doi.org/10.4153/CJM-1952-020-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1952-020-4

