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ABSTRACT
In this paper, the accuracy and practical capabilities of three different reduced-order models
(ROMs) are explored: an enhanced implicit condensation and expansion (EnICE) model, a
finite element beam model, and a finite volume beam model are compared for their capability
to accurately predict the nonlinear structural response of geometrically nonlinear built-up
wing structures. This work briefly outlines the different order reduction methods, highlighting
the associated assumptions and computational effort. The ROMs are then used to calculate the
wing deflection for different representative load cases and these results are compared with the
global finite element model (GFEM) predictions when possible. Overall, the ROMs are found
to be able to capture the nonlinear GFEM behaviour accurately, but differences are noticed at
very large displacements and rotations due to local geometrical effects.
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NOMENCLATURE

f column matrix of generalised loads

fNL column matrix of nonlinear modal forces

n number of linear modes

q column matrix of amplitudes of the linear modes

r column matrix of amplitudes of the dual modes

s number of dual modes

C flexibility matrix

I1, I2, I12 bending stiffness constants

In n × n identity matrix

J torsion stiffness constant

K stiffness matrix of the structure

M mass matrix of the structure

R matrix of moment arms of internal loads in the finite volume formulation

T kinetic energy of the system

U potential energy of the system

Greek characters:
ϑ column matrix of internal loads in the finite volume formulation

ξ arc-length along a beam

� linear modal stiffness matrix

� matrix of linear modes along its columns

� matrix of dual modes along its columns

1.0 INTRODUCTION
Much effort is currently being devoted to reducing the environmental effect of commercial
jet aircraft and future designs are heading towards more flexible higher-aspect-ratio wing
(HARW) configurations to take advantage of the reduction of induced drag(1). Previous experi-
ences with the design and test of high-aspect-ratio aircraft have indicated the need for accurate
modelling in the time domain of nonlinear structural and aerodynamic effects, cited as a key
reason for the crash of the NASA Helios experimental aircraft(2). Both the structural response
and flight dynamics can be significantly affected by large deformations with tip displace-
ments likely to be in the order of 30% or more of the semi-span(3,4). The review of Afonso
et al.(5) compiled different nonlinearities related to high-aspect-ratio configurations and sug-
gested that aeroelastic concerns may be hindering the development of regional jets with longer
wings.

In order to support the development of accurate and efficient nonlinear aeroelastic tools,
capable of performing time-domain simulations with numerous test cases, the development
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of robust structural reduced-order models (ROMs) is important. Wing structure global finite
element models (GFEMs) with 105 to 106 degrees-of-freedom are frequently used in indus-
try to accurately calculate the internal load distribution for stress analysis purposes; however,
their computational cost limits the amount of design exploration that can be done, a limitation
on exploring new configurations such as HARW aircraft. For aeroelastic loads and stability
analysis, reduced-order models of GFEMs can be used to cut the computational costs, while
still accurately capturing the overall behaviour of the structure. Nonlinear structural ROMs
may be used to efficiently analyse the dynamic aeroelastic behaviour of high-aspect-ratio
wings undergoing large deflections(6). ROMs could also be integrated into aeroelastic optimi-
sation frameworks to reduce run times and allow wider design space explorations. Another
application of ROMs is the design of modern control strategies, such as model predictive
control (MPC)(7) and potentially, those ROMs can enable real-time simulation of aeroelastic
systems(8) by including nonlinear solutions.

Different strategies may be employed for the simplification of a GFEM into a nonlinear
structural ROM. Two possible approaches are the equivalent beam modeling and the nonlin-
ear modal solution. The variational asymptotic beam sectional analysis (VABS)(9) is one of
the methods for equivalent beam modeling of anisotropic composite high-aspect-ratio struc-
tures. It uses information on the section’s material, geometry and layup to calculate beam
properties. This method has been developed for decades and often reduces in two or three
orders of magnitude the computational costs, compared to finite element solutions(10). VABS
is able to quickly calculate displacements and recover 3D stress distributions. Refinements
on VABS have been introduced to include modeling of initially twisted and curved beams(11)

and distributed loads(12) and more recently for initially curved and twisted smart beams(13)

and oblique cross-sections(14). Since VABS is based on cross-section analysis, novel designs
with intricate geometries may be harder to model, and methods to smear the stiffness and mass
contributions of complex components have been suggested(10), as well as novel methodologies
with variational asymptotic approach that can be generalised to structures other than beams,
such as in the Mechanics of Structure Genome solution(15). However, all asymptotic solutions
rely on approximations of small parameters and one of the requirements is the cross-section
dimension to be much smaller than the deformation wavelength(10). Usually, this assumption
is not valid when there is local buckling between ribs, for example. Structure geometry and
layup also affects the accuracy of VABS models. According to comparisons carried out with
3D GFEM solutions, the solution from VABS shows higher errors for wings with bend-twist
coupling and sweep(16). In such a scenario, methodologies for model reduction without the
need of cross-section analysis or asymptotic behaviour may be useful, and these solutions are
the focus of this paper.

Equivalent beam modeling may be performed using GFEM results at particular reference
points along the wing. Different approaches consider particular beam models or beam
cross-sections to match the GFEM results. Elsayed et al.(17) proposed a methodology to fit
properties for an Euler-Bernoulli beam and compared the results against other techniques
such as empirical calculations. Bindolino et al.(18) demonstrated static solutions approximat-
ing a GFEM with a wing of rectangular cross-section containing stiffeners. An optimisation
is employed in this case to find suitable properties for the wing cross-section along the ref-
erence axis. More recently, Stodieck et al.(19) proposed a method that calculates an isotropic
Timoshenko beam based on 13 properties extracted from GFEM linear results. This last
method is able to capture the modal frequencies and eigenvectors with high accuracy under
linear assumptions. The equivalent beam can then be solved with a geometrically nonlinear
solution like the intrinsic beam theory, displacement-based or strain-based nonlinear FE
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analysis or even finite volume (FV). This method was selected for inclusion in this paper, due
to its automated procedure and potential for application in optimisation.

Another approach for nonlinear structural ROMs is to increment the classical modal solu-
tions with nonlinear terms accounting for stiffness and displacement changes in nonlinear
conditions of high displacements(6, 20). There are different methods following this nonlinear
modal approach. An excellent review of those methods is provided by Mignolet et al.(21). In
general, nonlinear static FE solutions are used for identification. The nonlinear modal solu-
tions were initially applied to problems of shell structures constrained at all sides, where
the nonlinear displacements are in the order of magnitude of the thickness(21). Applying this
method to cantilevered structures was challenging, due to the identification of many nonlinear
terms, but good results were achieved for both beams and wing boxes(22–25).

This work compares different ROMs extracted from a wing GFEM at high displacements
conditions. Extraction of ROMs for linear analysis is a common practice, but it is important to
evaluate the accuracy of equivalent models at nonlinear conditions. It is known that phenom-
ena like local buckling may affect the general structural behaviour in bending and torsion, and
these phenomena may be predicted even for beam solutions(26), but the behaviour of a beam
may differ from the built-up structure due to nonlinearities such as the Brazier effect(27).
Usually, high-aspect-ratio wings are not designed to have instabilities, but it is important to
check if the different ROM strategies that have been employed are yielding accurate predic-
tions for high displacements. The main contribution is to explore the suitability of different
ROMs when modeling large wing displacements, up to conditions where the cross-section
deforms significantly.

Three different GFEM ROMs are explored: an enhanced implicit condensation and expan-
sion (EnICE) model(6, 20), a finite element beam model, and a finite volume beam model
calculated from the same geometrically nonlinear built-up wing structure. An FV beam is
used in addition to the FE one in order to rule out the possibility of shear locking affecting
the solution and to provide an additional check. These three models were chosen due their
previously encouraging performance and also their availability for benchmark comparisons
in the research groups involved in this work.

The University of Bristol Ultra-Green (BUG) wing GFEM is used as a reference model
which was derived from the truss-braced high-aspect-ratio wing of the SUGAR Volt air-
craft configuration(28). Bend-twist coupling was introduced in the wing structure by defining
anisotropic material properties in the skins. This model is representative of a realistic
high-aspect-ratio wing.

Following a brief description of the formulations of the different ROMs used for the com-
parisons, the reference model is detailed and the accuracy of the equivalent beam obtained
checked in terms of frequencies and mode shapes. Then, the nonlinear behaviour of the
BUG wing is investigated when large displacements are achieved. Finally, the static and
dynamic tip responses are presented and the accuracy and usage of the different ROMs is
discussed.

2.0 STRUCTURAL ROM FORMULATIONS
Three different models were used to compare performance and accuracy in this paper: an
FE beam, an FV beam and a modal structural ROM using the EnICE method. This sec-
tion describes briefly the estimation of the equivalent beam model from the GFEM and the
formulations of the FV and the EnICE methods.
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2.1 Equivalent beam modeling
As discussed in the introduction, multiple approaches may be followed to compute a repre-
sentative beam for a built-up wing. Depending on the kind of beam solution sought, different
parameters may be calculated. In this work, an automated method that calculates an equivalent
Timoshenko beam from the 6 × 6 flexibility matrix was used(19).

The extraction of the flexibility matrix follows the Beam Property Extraction procedure
outlined by Malcolm and Laird(29). A reference line approximately aligned to the wing is
proposed and reference points are selected close to the rib locations. The reference points are
linked to the nodes of associated ribs using rigid elements that transform the motion of a set of
pre-defined nodes into an average motion of the reference point. These rigid elements avoid
local stiffening. The reference points also define the end nodes of the beam elements. Then, a
series of linear FE solutions are calculated, applying forces and moments in three directions,
individually over each element. Results of displacements and rotations are used to construct
the flexibility matrix C.

Once the flexibility matrix is determined, the following Timoshenko beam properties are
calculated analytically from its entries:

• section offsets of the shear center with respect to the element end nodes
• torsion and bending stiffness constants J , I1, I2 and I12

• section centroid offsets from the elastic axis
• section area
• Timoshenko shear coefficients

The offsets of the shear center at the ends of each element are calculated from rotation
angles needed to cancel the bend-twist coupling terms of the flexibility matrix, namely C45

and C46. Bending and torsional stiffness are then calculated along the elastic axis. The neutral
axis is calculated from the beam kinematics, using the already calculated shear axis. From
the results of displacements due to axial loads, section areas are calculated. Finally, shear
coefficients are obtained from the rotation results, subtracting the bending contributions from
them.

For details about the properties calculations, refer to Stodieck et al.(19). Using the properties
of a Timoshenko beam, the parameters of the beam elements are defined for the FE analy-
sis. An advantage is that there is no need to define a particular cross-section for the beam
definition. Based on the beam properties calculated, any FE code can be used to define the
Timoshenko beam. For this work, the NASTRAN SOL 400(30) sequence (version 2014) was
selected, which is an implicit nonlinear solver, but any other commercial code could have
been used.

2.2 Finite volume beam
The FV beam was included in the comparisons to provide an additional check for the beam
solution and to avoid the problem of shear locking that is common in slender structures mod-
eled with first-order elements. The formulation of the finite volume beam was introduced by
Ghiringhelli et al.(31) and recently applied to nonlinear aeroelastic analysis(1,32). It considers
the equilibrium equation, i.e.

ϑ ′ − RTϑ + f = 0, · · · (1)

where ϑ is the column matrix of internal loads, R represents the moment arm of the internal
loads when analysed in an infinitesimal element and f is the column matrix of external loads.
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Figure 1. Element of the FV beam formulation.

The derivative of ϑ is performed with respect to the scalar quantity ξ that represents the
arc-length along the beam.

For the FV formulation, the Equation (1) is written in a weak form, integrated over the
length of each element. Different from variational formulations, no energy quantities are
considered. The integral of the equilibrium equation is given by

∫ b

a

(
ϑ ′ − RTϑ + f

)
dξ = 0, · · · (2)

with a and b representing the end-points of the segment where the integration is performed.
After an integration of Equation (2) by parts, a relation is obtained between the internal loads
ϑ at the ends a and b and the integrated external loads along the beam. The complete for-
mulation depends on the constitutive relations that are needed to relate internal loads and
generalised strains, as described in Ghiringhelli et al.(31).

The integral of Equation (2) is performed for every element of the beam. Each element has
three nodes and two evaluation points, as illustrated in Fig. 1. There may be offsets between
the each node and the reference line for the beam. The displacements and rotations are inter-
polated as quadratic functions from the reference values at the three nodes. The evaluation
points are chosen so that an exact solution is obtained for a tip load case.

The framework with the FV formulation is suitable for multibody dynamics simulations,
incorporating large rotations by means of modified Gibbs-Rodriguez parameters. Constitutive
relations are considered in the material reference frame.

Different from an FE formulation, the FV approach leads directly to equilibrium condi-
tions at collocated points, instead of energy integrals over the elements. Fundamentally, the
disadvantage is a loss of symmetry of the linear and linearised beam matrices, but the lack of
energy relations involving shear will automatically remove the problem of shear locking. For
more details, the reader is referred to Ghiringhelli et al.(31).

A set of nonlinear differential algebraic equations are obtained for the FV beam in which
the equilibrium equation is augmented with the inertial load and the enforced motions are
imposed through the use of holonomic constraints. An implicit scheme is finally used for
time-integration.

2.3 Enhanced implicit condensation and expansion
The enhanced implicit condensation and expansion approach was developed initially to
incorporate nonlinear stiffness into a modal solution, identifying additional terms with non-
linear static FE solutions(33). Later, the approach was expanded by including nonlinear
displacements(34). Recently, the nonlinear displacements were used to correct the inertia
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forces in large displacements conditions(6,20). The method used in this work is the same of the
cited references, where it was presented as the implicit condensation and expansion method.
The name of the approach has been updated with the word enhanced to differentiate it from
the method introduced by Hollkamp and Gordon(34). With the enhancement, the kinetic energy
related to the nonlinear displacement is included in the dynamic equations, and this effect is
visible for tip out-of-plane displacements around 30% of the semi-span, depending on the
loading applied(35).

For the nonlinear modal approach, an additional basis of shape functions enhance the set
of linear modes to express the nonlinear displacements, like the shortening in the span-wise
direction. Using the FE notation and discretisation, the column matrix of displacements and
rotations is expressed in terms of modal amplitudes, i.e.

u = �q + �r (q) , · · · (3)

where u is the column of displacements/rotations, � is the matrix of n different linear modes
along its columns and � is the matrix of s different dual modes, which is the additional basis
of shape functions and not properly a set of modes. The amplitudes of the linear modes are in
the column matrix q and the amplitudes of the dual modes are in the column matrix r. One of
the key assumptions of this method is that the amplitudes of the dual modes r are functions
of the amplitudes of the linear modes q.

Using the above representation of displacements, it is possible to express the kinetic energy
as a function of the rates q̇ and the mass matrix M of the structure, as well as the derivatives
of the dual modes amplitudes, such as

T = 1

2
q̇T

(
In + 2MX

∂r

∂q
+ ∂r

∂q

T

M�

∂r

∂q

)
︸ ︷︷ ︸

M′

q̇, · · · (4)

where In is an identity matrix of size n × n and the terms MX and M� are defined as

MX = �T M� , · · · (5)

M� = �T M� . · · · (6)

The derivative of modal amplitudes ∂r(q)

∂q used in Equation (4) is a Jacobian matrix where
each column corresponds to a derivative of r with respect to a different component of q.
It is important to notice that the contribution of nonlinear displacements is equivalent to a
modified mass matrix M ′ in the expression for the kinetic energy.

From the kinetic energy, applying Euler-Lagrange equations is a straightforward path to
describe the dynamics of the system as

d

dt

(
∂T

∂ q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= f T ∂u

∂qi
for i = 1, . . . , n, · · · (7)

where the the potential energy U is the elastic strain energy of the system and f is the column
matrix of applied loads, using the FE notation, where these loads may be forces or moments,
according to the degree-of-freedom involved. The number of nonlinear equations corresponds
to the number of linear modes included in the displacements description.
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The second key idea of the EnICE method is that the elastic modal forces ∂U
∂qi

in Equation
(7) are a function of the linear modal amplitudes q. In order to simplify the fitting, the elastic
forces are split into linear and nonlinear components, with the linear term calculated using
the linear modal stiffness matrix �. The nonlinear modal force fNL(q) is calculated from the
reference solutions isolating the nonlinear residue from the elastic force, i.e.

fNL (q) = ∂U

∂q
− �q, · · · (8)

where � is the linear modal stiffness matrix. In the reference cases, the elastic force ∂U
∂q is

known a priori, because it corresponds to the external applied load, and the amplitudes of the
linear modes q are calculated by projecting the obtained displacements onto the linear modes
of the structure.

In the end, two fittings are used to represent the system: a fitting for the amplitudes of dual
modes r(q) and a fitting of nonlinear elastic modal forces fNL(q).

The final equations of motion are developed from the Euler-Lagrange set (Equation (7)) as

(
In + MX

∂r

∂q
+ ∂r

∂q

T

MT
X + ∂r

∂q

T

M�

∂r

∂q

)
q̈

+ [MX
d

dt

∂r

∂q
+ d

dt

∂r

∂q

T

MT
X + d

dt

∂r

∂q

T

M�

∂r

∂q
+ ∂r

∂q

T

M�

d

dt

∂r

∂q

−
[

q̇T

(
MX + ∂r

∂q

T

M�

) (
∂2r

∂q2

)
s×n2

]T

n×n

]q̇

=
(

� + �
∂r

∂q

)T

F − �q − fNL (q) , · · · (9)

where the sub-indexes indicate a particular shape for the matrices. For example, the second
derivatives of the s dual modes with respect to the n linear modes in Equation (9) is expressed
as

(
∂2r

∂q2

)
s×n2

=
[

∂2r

∂q1∂q

∂2r

∂q2∂q
. . .

∂2r

∂qn∂q

]
, · · · (10)

where the n different derivatives of the s × n Jacobian ∂r
∂q are stacked side by side. Reshaping

is also used in Equation (9) to represent the time derivative of the Jacobian, i.e.

d

dt

∂r

∂q
=

[(
∂2r

∂q2

)
sn×n

q̇

]
s×n

where

(
∂2r

∂q2

)
sn×n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2r

∂q1∂q

∂2r

∂q2∂q

...

∂2r

∂qn∂q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. · · · (11)
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Figure 2. BUG wing model, with detail for wing ribs and engine in the bottom view.

Equation (9) defines a set of n second-order ordinary differential equations, and the system
can be integrated in time to solve for the amplitudes of the linear modes, allowing to recover
the magnitudes of dual modes and the complete nonlinear displacements.

3.0 MODEL DESCRIPTION

3.1 Wing box model
The structure used for all comparisons is a wing box built out of graphite/epoxy composites
modeled in MSC NASTRAN with 48 750 degrees-of-freedom, using CQUAD4 (quadrilat-
eral), CTRIA3 (triangular) and CBEAM (beam) elements, besides concentrated masses and
rigid connectors. Due to large displacements conditions, nonlinear properties were introduced
for the shell elements using the PSHLN1 card, a piece of the input defining properties like
integration scheme and classification of the shell elements.

The wing box corresponds to a high-winged design, the University of Bristol Ultra-Green
(BUG) wing, which is derived from the truss-braced high-aspect-ratio wing of the SUGAR
Volt aircraft(28). This wing has negative dihedral, and the fiber orientation is designed to allow
bending-torsion coupling. The semi-span of the wing box is 25.9m. A general view of the
model is presented in Fig. 2.

The boundary conditions are compatible with a high-wing design. The root nodes of the
wing are constrained with symmetry conditions: no span-wise translations (y-direction) and
no rotations about the x and z axes. Besides that, the nodes on the section connected to the
fuselage are constrained in translation along the x and z directions.

The quality of reduced-order models for small displacements depends on how well the first
linear modes are reproduced. With this set of constraints, the first free-vibration mode has a
frequency of 1.30Hz. The first four modes are shown in Fig. 3, but engine displacement is
not displayed along with the wing box. The first mode is a bending one, with a relatively low
frequency, characteristic of high-aspect-ratio wings. The second mode is an in-plane mode,
with displacements along the x axis, while the third one shows some torsion towards the wing
tip. The fourth mode is is a bending one, similar to the first mode, but has a higher curvature
close to the tip.

The mass of the wing is mostly lumped. Points connected to neighbouring nodes on the
structure via rigid connections of the kind RBE3 (Fig. 4) are used to transfer inertia forces.
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Figure 3. First three free-vibration modes of the BUG wing box.

Figure 4. Point mass connected to neighbouring nodes in a section of the wing.

The rigid connections RBE3 do not constrain the relative motion of the nodes on the wing,
avoiding unrealistic stiffening. For the RBE3 connections, the motion of a reference point is
the uniformly weighted average of the motion of chosen neighbouring nodes. These same ref-
erence points with lumped masses are also used to apply external loads and obtain a reference
solution for the dynamic load case investigated later.

3.2 Beam models
In order to evaluate the beam model that reproduces the wing box, it is necessary to first
compare frequencies and mode shapes of the linear free-vibration problem. This discussion is
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Figure 5. Reference line and points selected to represent the wing box structure.

Figure 6. Point masses and its offsets relative to the reference points.

valid for both the FE and the FV beam models. A reference line was chosen to represent the
wing box, composed of 30 distributed nodes. The reference line and points are shown in Fig. 5.
It was chosen to pass approximately through the center of the wing box. The method used to
reduce the box to a beam allows for disparities between the elastic axis and the reference
line. This approach allows for a better representation of the element stiffness properties. The
elastic axes of the individual elements are represented in red in Fig. 5. The mass related to
the set of elements close to each reference point is concentrated at a single point representing
their center of gravity, which may have an offset with respect to the corresponding reference
point. This offset is especially significant at the node closest to the engine mass, as shown in
Fig. 6. Rotational inertias are accounted for using the parallel axis theorem.

From the beam reduction process, an equivalent beam model was generated with match
in frequencies with the complete wing box model within 1% up to the seventh linear mode.
Table 1 compares the frequencies of the two models. In this case, the errors are defined rel-
ative to the wing box frequencies, which are the reference values. In general, the matching
is better for the lowest modes, up to mode 7. For the higher modes, some discrepancy hap-
pens due to local effects, but the low-frequency response will still be dominated by the first
modes.

In terms of mode shapes, the Modal Assurance Criterion (MAC) was used to compare
displacements for the points of the equivalent beam and the corresponding points connected
to the wing box’s neighbouring nodes via RBE3 connections. Table 2 compares the beam
modes and the wing box modes. The MAC is an approximate comparison between two mode
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Table 1
Comparison of modal frequencies for the wing box and the equivalent beam

model

Eq. beam freq. Wing box freq. Error
Mode (Hz) (Hz) (%)

1 1.29 1.30 –0.77
2 3.14 3.13 0.32
3 3.31 3.31 0.0
4 3.95 3.94 0.25
5 7.20 7.16 0.56
6 9.70 9.63 0.73
7 12.0 12.1 –0.83
8 14.9 13.5 10
9 17.5 15.3 14
10 18.5 17.4 6.3
11 22.6 21.6 4.6
12 27.3 26.5 3.0
13 28.0 27.4 2.2

shapes. It disregards the mass in the process, but it will be 1.0 if two mode shapes are identical.
For this table, the degrees-of-freedom considered were the three translations and the rotation
along the y-direction. A comparison was made between the mode shapes from the beam
model and the mode shapes from the GFEM, taking results from the reference nodes only.
The formula of the MAC is

MAC =
(
�T

1 �2
)2(

�T
1 �1

) (
�T

2 �2
) , · · · (12)

where �1 and �2 are the two modal shapes from the different models compared, the GFEM
and the equivalent beam. For the example shown in Table 2, all the MAC values in the diagonal
are 1 until mode 7, while there are discrepancies for mode 8 onwards, just like in the frequen-
cies comparison. Even though the diagonal terms in the MAC matrix are not all ones, it can
be said that the agreement in low-frequency response is good. Obtaining a beam with that
level of agreement is only possible because the offset between the shear center and reference
axis is included in the equivalent beam model.

It is interesting to note that mode 8 on the GFEM corresponds to a local box cross sec-
tion deformation mode. That occurs at the location where the engine inertia forces are being
transferred into the wing through four discrete nodes on the wing section. Clearly, this local
mode cannot be captured by the beam model. The mode mismatch also appears in the results
of Table 2, where the MAC between the beam mode 8 and the GFEM mode 9 is equal to 1,
indicating that the GFEM mode 8 was skipped. The GFEM in Stodieck et al.(19) was modified
compared to the model used in this study, by connecting the discrete engine mass to a larger
number of nodes on the wing cross section. Using this updated GFEM improved results were
achieved and it was found that the beam and GFEM normal modes up to 20Hz were closely
correlated (2% maximum frequency error).
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Table 2
Modal Assurance Criterion comparison of modal shapes for the equivalent

beam along rows and the wing box along columns

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.0 0.5 0.1 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.5 1.0 0.0 0.5 0.5 0.0 0.2 0.1 0.0 0.0 0.1 0.0 0.0
3 0.1 0.0 1.0 0.5 0.0 0.6 0.0 0.1 0.0 0.1 0.1 0.0 0.0
4 0.5 0.4 0.5 1.0 0.3 0.3 0.2 0.0 0.0 0.2 0.0 0.0 0.0
5 0.1 0.5 0.0 0.3 1.0 0.0 0.5 0.3 0.1 0.1 0.1 0.1 0.0
6 0.0 0.0 0.6 0.3 0.0 1.0 0.0 0.2 0.0 0.4 0.1 0.1 0.0
7 0.1 0.2 0.0 0.2 0.5 0.0 1.0 0.1 0.0 0.3 0.4 0.0 0.0
8 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.6 1.0 0.0 0.0 0.5 0.6
9 0.0 0.0 0.2 0.2 0.1 0.5 0.2 0.0 0.1 1.0 0.0 0.2 0.0
10 0.0 0.0 0.1 0.0 0.0 0.2 0.3 0.0 0.4 0.0 0.6 0.2 0.3
11 0.0 0.1 0.0 0.0 0.2 0.0 0.4 0.2 0.1 0.2 0.8 0.3 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0 0.0 0.7 0.9
13 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.5 0.1 0.2 0.2

3.3 EnICE model
The EnICE model of the BUG wing is based on 18 degrees-of-freedom, corresponding
to the amplitudes of the first 18 linear modes. The nonlinear displacements and elastic
forces are fitted with artificial neural networks composed of four neurons in the hidden
layer. Feed-forward neural networks with a single hidden layer are used. The fitting error
is minimised by adjusting the weights and bias of the neural network. In the hidden layer,
a tangent sigmoid activation function is employed, and the training follows a Bayesian
approach. Since the neural networks are mathematical functions with many local minimum
points, the optimisation is performed a few times, using different random initial conditions.
Each trained network is then evaluated on a separate subset of reference data that was not
used for training and the best one is selected.

For the training of the EnICE model, a total of 21 560 nonlinear static solutions were
obtained. Loads in the shape of linear modes excited large amplitudes for extraction of non-
linear displacements and nonlinear forces. A separate code for calculation of reference results
was used. This routine called the finite element solutions successively, storing results of dis-
placements and rotations for all the degrees-of-freedom of the model. The input load for each
case is given by

F = K�q∗, · · · (13)

where q∗ is the column matrix with of amplitudes of linear modes that would be obtained if
the response was linear. These amplitudes define the magnitude of the loads to be used for the
reference solutions. Initially, the ranges of these magnitudes are explored for each one of
the components. These loads should be high enough to capture the displacements of interest.
However, excessively high loads may lead to convergence problems, and exploratory solutions
are needed to establish a range of values for q∗. The particular values of q∗ selected for the
reference solutions are random, inside the range determined from exploratory analyses.

The nonlinear displacements were represented as combinations of 15 dual modes.
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Table 3
Table of load cases for benchmark comparisons

Case Type Damping Amplitude Direction/ Application Follower
(%) Profile Point Force

1 Dynamic 0.5 15kN z-direction Node 30 Yes
45kN step Node 17

2 Dynamic 0.5 15kN z-direction Node 30 Yes
45kN sinusoidal Node 17

3 Static – ≤ 70kN z-direction Node 30 No

4.0 COMPARISON OF RESULTS
Different load cases were used to analyse the accuracy of the reduced-order models compared.
The benchmark comparisons were performed to (1) check each ROM with different load
excitations and conditions, and (2) compare the accuracy of each ROM against the other ones
and the full model whenever possible.

This section compares dynamic and static results obtained for different load cases. Tip
displacements were used to monitor the differences between the investigated models.

One aspect of practical utility regarding GFEM solution in large displacements condi-
tions is that the presence of rigid connections may lead to convergence problems. Taking
the BUG wing as an example and using the MSC NASTRAN SOL 400, dynamic solutions
cannot be obtained easily for tip displacements beyond 16% of the semi-span unless suf-
ficiently small time steps are adopted. If the rigid connections are removed, however, then
larger displacements can be calculated.

4.1 Load cases for the benchmark comparisons
The load cases were selected to explore different input profiles, as well as the effects of inclu-
sion of follower forces. Solutions were obtained for the ROMs and the full model. For higher
loads, the dynamic nonlinear solution with the wing FE model was not obtained anymore,
despite the numerous attempts to achieve convergence with different parameters sets. In order
to explore larger displacements, only static loads were used.

While Case 1 is the application of a step load input at two different points along the wing,
Case 2 explores a sinusoidal load with frequency of 0.125Hz. For both dynamic cases, the
damping is a stiffness-proportional Rayleigh damping, and the values listed are the constants
of proportionality for the stiffness term of the Rayleigh damping. Case 3 is a compari-
son of static results considering larger deflections. Table 3 summarises the three load cases
compared.

4.2 Responses with different methods
This subsection details the results obtained from the load cases. Time-domain tip responses
were selected to compare the behaviour of the different ROMs. The out-of-plane displacement
is particularly important to indicate the degree of nonlinearity. Tip displacements around 15%
of the semi-span will generally be associated to a mild nonlinearity.
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Figure 7. Out-of-plane displacements for Case 1.
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Figure 8. Zoom at the out-of-plane displacements.

4.2.1 Cases 1 and 2: Dynamic analyses

The first two cases represent dynamic loads. The amplitudes were chosen with smaller values
to make the comparison with GFEM results possible. For Case 1, the out-of-plane tip dis-
placement is shown in Fig. 7. Since the displacements are kept below 15% for this analysis,
the nonlinearity is not strong, and the differences between the full solution and the linear one
are relatively small. A zoom (Fig. 8) reveals the differences, showing that the linear solution
has the highest error among the ROMs, and the beam-based approaches are clustered, but
preserving relatively small errors. The EnICE results achieved a good accuracy for this level
of displacements, because the linear behaviour matches the first 12 modes and the light non-
linearity is well-captured by the fitted functions. The span-wise displacements are compared
in Fig. 9. As expected, the linear solution does not present an accurate span-wise displace-
ment, because the shortening along this direction is a typical nonlinear effect. The wing still
has a small linear response due to its negative dihedral, but the nonlinearity dominates this
direction, and all nonlinear ROM responses were able to capture it.

In Case 2, the excitation has the same amplitude as Case 1, but it is sinusoidal with a
low frequency: 0.125Hz. This case turned out to have small amplitude response, as shown
in Fig. 10. In a long simulation of 100s, all the solutions remained accurate, and there was
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no phase error accumulated. The only differences are visible with a zoom into the first peak,
as shown in Fig. 11, where it can be noticed a small error of the linear solution, while the
nonlinear solutions remained closer to the GFEM reference. For the subsequent peaks, the
differences are even smaller. This difference happens because the transient response is more
affected by the presence of nonlinear displacement components in the solution. For harmonic
excitation, it was already expected that no phase error accumulation would happen, because
the response is driven by the applied load, in the long runs.

4.2.2 Case 3: Static analyses

As explained in the beginning of this section, dynamic results could not be obtained for large
displacements, due to lack of convergence with the rigid elements included in the model.
However, it is possible to delete the rigid elements together with the concentrated masses and
obtain static results up to very large displacements.

For this comparison, a tip vertical load was applied, and the results for tip displacements
predicted by the the different ROM methods were compared to the GFEM reference up to a tip
vertical force of 70kN. Since this loading corresponds to a tip force, a high stress is generated
at the outboard region of the wing. That contributes to local buckling and deformation of the
cross section.
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Figure 12. Out-of-plane displacements for static loading.

Figures 12 and 13 show the out-of-plane and span-wise tip displacements as the load is
increased. In the span-wise direction, the linear model shows an error relative to the nonlinear
ones, even for small loads. Until 60% of the maximum load, the agreement between all models
is really good in the vertical direction. When the tip vertical displacement achieves values
higher than 15% of the semi-span, however, a significant difference is observed between the
GFEM solution and the beam-based models, while the EnICE predictions remain close to
the reference. This can be observed in the detail of out-of-plane displacements shown in the
Fig. 14.

Finally, another interesting aspect of the ROM solution is the possibility to capture local
effects with an enrichment of the basis of dual modes considered in the nonlinear displace-
ments. These are purely nonlinear features accessible to modal ROM predictions. In order to
analyse this capability, the cross section of the minimum principal strain was selected for this
study. When a tip load is applied, this cross section is the one indicated in Fig. 15.

In order to capture the local effects of the cross section deformation, it was necessary to
introduce additional dual modes specific for the nodes on the selected cross section. With an
additional set of 15 dual modes, a result was obtained for the cross-section shape that indicates
both the local buckling of the upper surface and the crushing of the cross section due to the
Brazier effect. The comparison of cross-section geometries for the reference and the ROM

https://doi.org/10.1017/aer.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.73


1704 THE AERONAUTICAL JOURNAL OCTOBER 2021

Figure 13. Span-wise displacements for static loading.

Figure 14. Out-of-plane displacements for static loading, with detail for large displacements.

Figure 15. Position of cross section selected for analysis.

solutions is presented in Fig. 16, along with the undeformed cross section. Even though the
accuracy of the EnICE solution may still be increased, it indicates that local effects can be
predicted with ROM models enriched with nonlinear features on the spot of interest.

4.3 Discussion of results
From the tip responses of dynamic load cases, a good agreement was observed between the
solutions of three different nonlinear ROMs considered. The step response pointed out to
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Figure 16. Cross-section deformation after tip load.

Figure 17. Comparison of minimum principal strain distributions for two different loading conditions.

accumulation of phase errors between the beam solutions and the modal approach. However,
for the harmonic excitation, excellent matching was observed. Due to the large deforma-
tions, the linearised GFEM failed to accurately capture the correct response for span-wise
components.

When higher tip deflections are achieved, the beam solutions are not able to represent phe-
nomena like local buckling and Brazier effect, as expected. Therefore, softening due to the
deformation of the cross section is not properly modeled using these approaches. The load
cases investigated tip loads, which are associated to a high curvature in the outboard region
of the wing. Since this region is not designed for such high loads, local buckling is antici-
pated with tip loads. Figure 17 shows a qualitative comparison of minimum principal strain
distributions when the load applied is a tip one and when it is a distributed load in the shape
of the first bending mode. In the first case, the loads are concentrated at the tip, and there is
buckling. In the second case, the tip displacement is similar, but the strain is more uniformly
distributed and there is no buckling.

The EnICE is able to capture effects of cross section deformation, which explains the
matching between tip displacements obtained with the EnICE and the GFEM solutions, for
static solutions. In terms of torsion, the EnICE prediction is also matching the reference, if
the translational degrees-of-freedom are observed. Figure 18 shows the geometry of the tip
section of the deformed wing under the tip vertical load of 70kN, comparing the reference
solution with the EnICE prediction. This view is interesting to show the ROM errors relative
to the cross-section dimensions and to indicate the torsion discrepancies. The torsion angle is
−21.8 degrees for the GFEM reference and −22.4 degrees for the ROM prediction. Although
no torsion comparisons were presented previously, this result gives an indication that the
modal ROM is able to capture torsion correctly, if the translational degrees-of-freedom are
used to find the cross-section shape.

https://doi.org/10.1017/aer.2021.73 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2021.73


1706 THE AERONAUTICAL JOURNAL OCTOBER 2021

Table 4
Computational time comparisons for 1s of physical time simulation

Model Time (s) DoF Max. time step

GFEM 14270.6 48750 1 ms
FE beam 23.6 174 1 ms
FV beam 32.3 348 1 ms
EnICE 5.4 18 1 ms

Figure 18. Tip cross section of deformed wing.

It was not possible to obtain the GFEM reference for dynamic cases in large displacements,
but from the results of lower amplitudes, it is expected that the ROM predictions would be
accurate for large amplitude dynamic solutions. In this case, the ROM in dynamic condi-
tions has the versatility of predicting a response when the GFEM solution shows convergence
difficulties.

In terms of computational efficiency and model preparation, it can be said that the modal
solution represented by the EnICE approach is less automated in the off-line phase, requir-
ing considerations of reasonable training loads for the identification of nonlinear stiffness
and displacements. The calculation of the high-fidelity solutions took approximately 37 hours
from a Xeon E5 processor. However, the reference solutions may be calculated in parallel.
After getting the reference solutions, the training of the neural networks involves additional
time, depending on the number of degrees-of-freedom considered and the number of trainings
required to achieve the desired error levels. With the current level of automation, the prepa-
ration of an EnICE model takes a few days. The extraction of equivalent beams, however, is
based on linear solutions for the extraction of the flexibility matrix. These reference data are
much simpler to obtain, compared to the nonlinear static solutions used for the EnICE model.
The process of generating an equivalent beam model is thus considerably faster than building
a nonlinear modal ROM. The number of degrees-of-freedom considered in the ROMs is also
different. The EnICE approach deals with fewer degrees-of-freedom due to its modal nature,
while the beam solutions will usually include more than 100 degrees-of-freedom.Even though
the modal solution has less dependent variables involved, the computational efficiency is not
as high as the classical modal approach due to the complexity of the nonlinear functions and
its derivatives, which are neural networks, for now. Table 4 presents an approximate compar-
ison of computational times required from each method to simulate 1s of dynamics.
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5.0 FINAL REMARKS
This work compared the accuracy of three different ROMs representative of a built-up wing
structure of a high-aspect-ratio aircraft. Two of the models were beam representations while
the third one was a nonlinear modal method. The objective was to check the different models
for different load cases related to high-amplitude dynamic responses and static simulations.
The ROM results were compared to a nonlinear NASTRAN SOL 400 reference solution.

In general, all three ROMs showed good accuracy up to tip vertical displacements around
15% of the wing semi-span. The dynamic solutions had a good agreement. Only the step
response showed a mild accumulation of phase error between the different ROMs over time.
As the displacement amplitudes were increased, however, nonlinear deformations resulted in
a disparity between the modal ROM and the beam-based ones, as noticed in the static analysis.

An interesting point observed is that the reference NASTRAN SOL 400 did not converge
for the high-amplitude dynamic responses ( > 16% of the wing semi-span), for the conditions
simulated. However, the ROM solutions were obtained easily for such large displacements.
This observation indicates that ROMs may be a more practical approach for cases where the
convergence is harder. Further investigations are needed to verify this issue with the FEM
solution and to check the accuracy of ROM predictions in such conditions.

Each ROM may be applicable to different conditions. The equivalent beam models are
cheaper to obtain, but those are applicable when the cross-section deformation does not
affect the stiffness significantly. For conventional aircraft, that condition is usually met for
all structural members. The nonlinear modal ROMs represented by the EnICE method in this
work should be useful for non-conventional designs with higher cross-section deformation or
for development of control techniques when the number of structural degrees-of-freedom is
limited but the nonlinear displacements cannot be neglected.

Both the beam solutions and the modal approach revealed the capability of greatly reducing
the computational costs of GFEMs while retaining a good accuracy in the nonlinear range of
displacements. It is expected that further research on ROM methodologies will decrease even
more the simulation costs and ultimately allow real-time simulation frameworks to use the
structural ROMs.
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