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THE well-known " basis theorem " of elementary algebra states that in a
finite-dimensional vector space, any two bases have the same number of
elements ; or, equivalently, that a vector space is w-dimensional if it has a
basis consisting of n vectors (where the dimension of a vector space is defined
to be the least upper bound of the numbers k for which there exist k linearty
independent vectors, and a basis is defined to be a maximal set of linearly
independent vectors). This theorem has an analogue in the theory of groups :
if an Abelian group has a finite maximal set of independent non-cyclic elements,
the number of elements in one such set being n, then no set of independent
non-cyclic elements can have more than n members.

There are other theorems which are essentially of the same type. For
example, consider a collection of paths in a given space, each path having
distinct end-points. Let a finite system of these paths be called an " even
network " if the number of paths in the system that terminate at a particular
point is always even (thus an even network is characterised by the property
that a complete circuit of it can be made by traversing each of its paths once
only). Let a system of paths be called " singular " if it does not contain an
even network. Now suppose that the given collection of paths contains a
maximal singular system, the number of paths in one such system being n. Then
any system containing more than n of the given paths contains an even network.

These three theorems remain valid when n is infinite under a suitable
interpretation. Thus, in an infinite-dimensional vector space, any two bases
have the same cardinal number, and the same holds for any two maximal
sets of independent non-cyclic elements of an Abelian group, or for any two
maximal singular systems of paths.

We shall show that, by suitably generalising the notion of an equivalence
relation, it is possible to isolate an abstract principle which underlies these
theorems. The principle we establish is in fact an extension of the " pigeon-
hole " principle, which asserts that if a given set is partitioned, by an equivalence
relation, into n classes which are disjoint from one another, then any subset
having more than n elements contains at least two equivalent elements.

We consider an abstract set X, and a class 0t of finite subsets of X satisfying
the following elimination axiom :

/ / E and F are distinct members of M and x e EnF, then EKJF has a subset
belonging to Si but not containing x.
There is a considerable range of possibilities for £%, as the following examples
indicate.
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(1) & could consist of all the finite subsets of X which have more than
a certain number of elements.

(2) If an equivalence relation is defined over X, 3? could consist of all two-
element subsets of the corresponding equivalence classes.

(3) If X is a vector space, 3? could consist of those finite sets of vectors
xlt ..., xk for which there exist non-zero scalars \ , ..., Xk such that

X1x1+...+Xkxk = 0.

(4) If X is an Abelian group, 31 could consist of those finite sets of elements
xlt ..., xk for which there exist non-zero integers nx, ...,nk such that

x^x£...xp =e,

where e is the unit element of the group.
(5) If X is a collection of paths with distinct end-points, 3i could consist

of all the even networks contained in X.
It is obvious that the axiom is satisfied in cases (1) and (2). To verify

that it is satisfied in cases (3) and (4) one has only to eliminate a common
" unknown " from a pair of simple equations. In case (5), it is enough to
observe that if E and F are distinct even networks, then their symmetric
difference EAF= (EvF)\(EnF) is an even network.

Supposing X and 3? to be given, and the elimination axiom to be satisfied,
we shall call the subsets of 3? impurities. We say that a non-empty subset of
X is a pure set if it contains no member of 3? ; otherwise it is an impure set.

Pure sets need not exist: for example, 31 might consist of all the non-empty
subsets of X which have fewer than a certain number of elements. We are
concerned, however, with those instances in which pure sets exist, and then
maximal pure sets also exist. For, since 3? consists of finite sets, purity is
an inductive property ; hence, by Horn's lemma, every pure set is contained
in a maximal pure set. In example (1) it is obvious that pure sets exist and
that all the maximal pure sets have the same number of elements; that this
is true generally is our main result:

Any two maximal pure sets have the same (cardinal) number of elements.

This clearly implies the various theorems we have mentioned. In particular,
if it is applied to case (2), where 8% is effectively an equivalence relation, it
gives the pigeon-hole principle ; and if it is applied to case (3), where purity
means linear independence, it gives the basis theorem.

Before proving our main theorem, we observe that any maximal pure set M
can be regarded as a " basis " for X, in the following sense : corresponding to
each element x of X\M there is a unique subset E of M such that E^j(x)e3$. For
there is certainly one such set E, since M is a maximal pure set; if there were
another, say F, we could apply the elimination axiom to Eu(x) and FKJ(X)

to obtain a subset of EKJF, and so of M, belonging to 3%, which would contradict
the purity of M.
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Further, if y e E, then M' = (Jfu(a;))\( y) is also a maximal pure set. For
any impurity F in M' would either be a subset of M or contain x ; in the
latter case we could use the axiom to eliminate x from F and Eu(x), obtaining
an impurity contained in M. Since M is pure, so is M'. Also M' is maximal.
For otherwise there would exist a strictly larger pure set M" ; if z e M"\M',
then z 4 M, since M is maximal, and so there would be a set GsM with
Gu(z) e0l. Then either Gv(z) itself or an impurity obtained by eliminating
y from C?u(z) and Eu(x) would be a subset of M", contrary to the hypothesis
that M" was pure.

We can now prove the main result. Let M and N be two maximal pure
sets, and write M' = M\N and N'=N\M. First suppose that N' is finite,
consisting of the n elements x1, x2, ..., xn. Then elements ylt y2, ..., yn of M'
can be found so that each of the sets MT defined by

M0=M, J f m = (Jffu(a!r+1))\(yr+1) (0<r<»)

is maximal pure. The proof of this is by induction ; suppose ylt y2, ,... yr so
found. Then, since xT+1 does not belong to the maximal pure set MT, there
is a subset Er of MT with -Bru(a;r+1) e ffl. Since N is pure, Er is not a subset
of N and so yr+1 can be chosen from ErnM'. With the definition already
given, Mr+1 is then maximal pure. The sets Mo, Mlt ..., Mn so constructed
have the same cardinal number, and Mn is a pure set containing N, and so
identical with N. Hence M and N have the same cardinal number.

Finally, suppose that N' is infinite. For each xeN' let E(x) be the (unique)
subset of M such that E{x)u(x)e^. We show that J f ' s U E(x). Suppose

xeN"

not, and let z be an element of M' excluded from the union of the sets E(x).
There is a finite subset F of N with Fu(z) BS%\ suppose that F\M has n
elements and let y be any one of them. Then z ^ E(y) and so we can apply
the axiom to eliminate y from the sets Fu(z) and E(y)Kj(y), obtaining an
impurity consisting of elements of M together with at most n—1 elements of
N'. This process can clearly be repeated sufficiently often to remove all the
elements of N'. The result is an impurity contained in M, contradicting the
purity of M. Hence ilf 'c U E(x). Now this last set has the same cardinal

xeN'

as N', since N' is infinite and each E(x) is finite, and so the cardinal of M'
is at most equal to that of N'. But the positions of M and N can be reversed
and so M' and N' must have the same cardinal. Hence M and N have the
same cardinal, and the proof of the main result is completed.
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