
ON ORDER PARACOMPACT SPACES 

BYRON H. McCANDLESS 

In (2), Fitzpatrick and Ford defined a class of spaces which they called 
order totally paracompact. This class of spaces is significant since the order 
totally paracompact metric spaces constitute the largest known class of 
spaces for which the small and large inductive dimensions coincide. In this 
paper we shall consider a class of spaces containing the class of order totally 
paracompact spaces; we shall call these spaces order paracompact. We shall 
establish the relationship of this class to the more familiar classes of spaces 
and obtain an invariance theorem for order paracompact spaces analogous 
to theorems obtained for various other classes. 

In what follows, no separation axioms are assumed unless specifically 
mentioned. Thus, for example, a Lindelôf space is not taken to be Hausdorfï 
without making the further assumption. Therefore, a Lindelôf space is not 
necessarily paracompact. The word refinement always means "open refine
ment" and is always a covering of the space involved. 

Definition 1. A topological space X is called order paracompact if and only 
if every open covering °il of X has a (linearly) ordered refinement («̂ f7, < ) 
such that if H Ç J^ , then the collection of all members of ̂ f preceding H is 
locally finite at each point of H. 

An equivalent definition (say, Definition 1') is obtained if the phrase 
"every open covering ^ " in Definition 1 is replaced by "every basis &". 
I t follows immediately from Definition Y that every order totally paracompact 
space (2, p. 33) is order paracompact. I t is also easy to see that every para
compact space is order paracompact: If X is paracompact and °l/ is any open 
covering of X, then ^ has a locally finite refinement^7. If we well-order Jrf? 
by a relation < , then the ordered refinement (3flf, < ) satisfies the above 
definition, showing that X is order paracompact. More generally, we have 
the following theorem. 

THEOREM 1. Let X be a space with the following property: Every open 
covering of X has a refinement which can be decomposed into an at most countable 
collection of locally finite families. Then X is order paracompact. 

Proof. First note that since we are not assuming X to be regular, this 
condition is not equivalent to paracompactness, as is the case with Michael's 
theorem (1, p. 163). 

Now, let Z+ denote the sequence of positive integers. Let % be an open 
covering of X and let *f — U{^ 'n: n £ Z+] be a refinement of °lé, where 
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e a c h ^ n is a locally finite family. We can assume that the families i^n a n d ^ w 

have no members in common if n 9^ m. 
Next, well-order the members of each i^n, and order 1^ by the rule: 

if U, F Ç f , then U < V if and only if there exists an n Ç Z+ such that 
U, V € i^n and U < V in the ordering of Y„, otherwise U ^Vn and 
^ G ^ m , where n < m. Then the ordered collection (0^, < ) satisfies the 
condition of Definition 1: For, suppose that U G ^ . Then there exists an 
n Ç Z + such that [/ € ^ n . Let x 6 £7. Then for each i (i = 1, . . . , n) there 
exists a neighbourhood Ot of x which intersects at most a finite number of 
the elements of ^ t . Hence, 0 = C\{0 i'. i = 1, . . . , n) is a neighbourhood 
of x which intersects at most a finite number of elements of \J{°^ û i = 
1, . . . , n}. Therefore, the ref inement^ has the required properties, and the 
proof is complete. 

As a consequence we have the following result. 

COROLLARY 1. Every Lindelôf space is order paracompact. 

Proof. Every open covering of a Lindelôf space has an at most countable 
refinement. 

A proof almost exactly like the proof of Theorem 1 yields the following 
theorem. 

THEOREM 2. Let X be a space such that every basis can be decomposed into an 
at most countable collection of locally finite families. Then X is order totally 
paracompact. If X is also 7\ and regular, then X is a metrizable order totally 
paracompact space. 

Proof. Let Se be any basis for X. By hypothesis, Se can be decomposed 
into an at most countable collection of locally finite families. Then, as in the 
proof of Theorem 1, Se can be linearly ordered so as to satisfy Definition Y. 
The only additional requirement for order total paracompactness is satisfied 
is this case (2, p. 33). Hence, X is order totally paracompact. The last assertion 
follows from the Nagata-Smirnov Metrization Theorem (1, p. 194). 

We next give an example which shows that an order paracompact space 
need not be paracompact. 

Example 1. Gustin (3, p. 102) has given an example of a countable connected 
Hausdorff space X. This space is not regular, but being second countable, it 
is Lindelôf. Therefore, by Corollary 1, X is order paracompact. However, X is 
not paracompact, since a paracompact Hausdorff space is normal. 

As Example 1 shows, an order paracompact Hausdorff space need not be 
normal. We shall presently prove that an order paracompact regular space is, 
in fact, collectionwise normal. For this purpose, we need some preliminary 
results. 
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Let F be a subspace of a space X. Then, if A C F, there is a well-known 
relationship between A, the closure of A in X, and c\Y(A), the closure of 
A in F, namely c\Y(A) = A P F. But if 4̂ is not contained in F, this relation
ship is not particularly useful. However, we can show that if F is an open 
subspace of X, then a similar relationship holds between A and c\Y(A P F) . 

LEMMA 1. Le/ X be a space, Y an open subspace of X, and A any subset of X. 
Then 

c\Y{A C\Y) = Ar\Y. 

Proof. If A P Y = 0, then Z P F = 0, and therefore 

dY(A O F ) = AC\Y. 

Hence, suppose that A P F ^ 0. By the above formula for subsets of F 
we have that 

C\T{A r\Y) - 4 P Fn F c (I n f) P F = A n F ; 

thus, containment holds in one direction. To prove containment in the other 
direction, let x G A P F. If x £ A, then x 6 A P F, and therefore 
x Ç ^ 4 P F P F = clY(A P F). Therefore, we can assume that x Ç i ' - i 
(where A' is the set of limit points of A). Let U be any neighbourhood of x. 
Then U P F is a neighbourhood of x, and hence 

(un Y) r\ (A - \x}) = un (YnA - {x}) ^ 0. 
It therefore follows that 

x e (YnAynYc (FnA) n Y = ciroi p F) 
and the equality clr(yl P F) = Â P F is proved. 

We are now in a position to prove the following theorem. 

THEOREM 3. Every regular order paracompact space is collectionwise normal. 

Proof. L e t # " = {F\\ be a discrete collection of closed subsets of a regular order 
paracompact space X. Let 38 = {Ba} be a basis for X. Then the subcollection 

38' = {Ba: Ban Fx^ 0 for at most one Fx G ^) 

is a basis for X: If £7 is any open set of X and x £ [7, then there exists a 
neighbourhood G of x which intersects at most one of the /Vs. By regularity, 
there exists a Ba £ 38 such that x G Ba C # a C U P G. Hence, 5« can 
intersect at most one of the TVs; therefore 5 a Ç <â?'. Thus, ^ ' is a basis, 
as asserted. 

Since X is order paracompact, there exists an ordered refinement 
(Jf = {HJ, < ) of 38' such that if H, G / , then the collection of all H,, 
preceding H^ is locally finite at each point of H». For each A define 

JTX - { L T , : i ^ P ^ x ^ 0 } . 

Notice that if H,_ € JTX, then #M P Fy = 0 for all 7 s* A: if J?M P F7 ^ 0 
for some 7, then Ba n Fy 9^ 0, where H^C Ba £ 38', since Jf7 is a refinement 
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of ^ ' . Hence, we must have that y = X by the definition of 3)'. I t follows 
that a given set H» can belong to at most one of the collections J^\. 

Next, for each H^ G J^x> define 

0M = H» - \J{H^: Hn> G Jt?x and H? < H„). 

Each 0M is open in X and by Lemma 1 we obtain 

0, = H,- \J{H^: H,, G .^x and H* < H,} H H, 

= H,- d^lUlH»,: H*, G Jfx and #M> < H,} H i7M] 

= JTM - cl*M[Uf#M' H #M: jf„, G J T X and JÏM, < H,}]. 

Now, the collection of all sets H»> < iJM is locally finite at each point of iJM; 
hence, the collection of all sets H^ C\ H^ with H^ < H» is locally finite 
(in Hp) at each point of H^. Therefore, 

0„ = ff„ - U{CIHM(HM ' ^ H,): H», G Jifx and H* < HJ ; 

thus, by Lemma 1 again, 

0M = ffM - U{i?M' H HM: fl^ g J^x and £TM, < #M} 
= ffM- ( U { ^ : »M' ? ^ x a n d H M , < H,}) n H, 
= H,- (J{H,r. H», G Jfx and ffM, < HM}. 

Next, define 
Ox = U{0 M : i 7 M G^x} . 

Then Ox is open in X and F\ C Ox: If x G ^x, then there exists an H^ G J^\ 
such that x G £TM. If i?M' € -^x, then #M, H Fx = 0; thus * G #M,. Therefore 

x g \J{S^\ H? G Jifx and H^ < HJ ; 

thus, it follows that x G 0M C Ox. 
Finally, notice that Ox H 0T = 0 if X ̂  7: If x G Ox O 07, then there 

exist sets H_u G J?x and iJ^ 6 ^ 7 such that x G 0M = H» - \J{S^\ iîM, G ^ x 

and #M> < i7M} and also * G 0^ = H», - U{#M: #M 2 ^ 7 and i7M < H,.f}. 
But this is clearly impossible. This contradiction completes the proof of the 
theorem. 

We now proceed to prove an invariance theorem for order paracompact 
spaces. For this purpose we define a class of maps which we call projections. 

Definition 2. A continuous surjection/: X —•> Y is called a projection if and 
only if /' is both open and closed and satisfies the condition: U, V open in 
X and ~Ur\ V = 0 imply/ ( t / ) H / ( F ) = 0. 

Clearly, a projection must be a homeomorphism if X is a Hausdorff space. 
However, there is a fairly large class of projections defined on TVspaces 
which are not homeomorphisms. We give a simple example. 

Example 2. Let X = [0, 1] KJ {3/2} and define a topology ^ on I by 
G G ^ if and only if G = 0, 0 = {0}, or X — G is at most countable. Let 
Y = [0, 1] with the topology &' defined by G' G &' if and only if G' = 0, 
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G1 = {0}, or F — G is at most countable. Then X and F are both TYspaces. 
Define a map / : X —» F by 

/(*) = x if x e [0, 1], / (3 /2) = 1. 
Then / is a projection but not a homeomorphism. Moreover, the condition 
"U, V open in X and t / H F = 0 imply/(C/) 0 / ( 7 ) = 0" is non-vacuously 
fulfilled in this example. 

We are now in a position to prove the following invariance theorem. 

THEOREM 4. Order paracompactness is invariant under projections. 

Proof. Let X be order paracompact and l e t / : X —> Y be a projection. To 
prove that F is order paracompact, let °ll = { £/«} be any open covering of F. 
T h e n ^ = {/-1(^«)J is a n open covering of X. Since X is order paracompact, 
i^ has an ordered r e f i nemen t^ = (\H\}, < ) such that if H\ G ^ , the set 
of all H\> preceding H\ is locally finite at each point of H\. Consider the 
collection J = {f(H\)\. S ince/ is an open map a n d , ^ is a refinement of 7^, 
J is a refinement of °tt. From each collection of H\s having the same image 
f(H\), choose a single H^ This selection yields a subcollection J^0 = {i7M} of 
J f such that if H„ H», € ^ o and M ^ M', then / ( #„ ) 9*f(H^). Then 
J^o = {f{Hy)\ Hf, Ç J^o} is a refinement of °tt. Define an ordering in </c by: 
f(H„') < /(Hp) if and only if H^ < H^. Then the ordered refinement (J^o, < ) 
of °tt satisfies the requirement of Definition 1: Suppose that/(i7M) £ J0 and 
let y G f(Hy). S ince / is a closed map, it follows that/(H"M) = /(i?M). Hence, 
there exists an x Ç i?M such that y = f(x). Now, the set of all H^ preceding 
Hp is locally finite at the point x. Thus, there exists a neighbourhood U of x 
which intersects at most finitely many of the H^ preceding H^. Therefore, 
f(U) is a neighbourhood of y which intersects at most finitely many of the 
f(H^) preceding f(H») : If U H fl> = 0, then/(£7) H / C H » = 0 s ince / is 
a projection. Hence, we have shown that the set of all/(i?"M') preceding/(HM) 
is locally finite at the point y. We conclude that F is order paracompact. 

Let us consider Example 2 again. Since both X and F are Lindelôf, these 
spaces are also order paracompact. Therefore, this example shows that the 
situation in Theorem 4 can occur without / being a homeomorphism. 

Next, let us examine subspaces of order paracompact spaces. As the following 
example shows, an arbitrary subspace of an order paracompact space need 
not be order paracompact. 

Example 3. Let X be a locally compact Hausdorff space which is not normal 
(1, p. 239). Then X is regular but not order paracompact, since otherwise 
Theorem 3 would imply that X is normal. Let X* be a compactification of X. 
Then X*, being Lindelôf, is order paracompact, but X, which is an open sub-
space of X*, is not. 

However, we have the following theorem. 

Theorem 5. (a) A closed subspace of an order paracompact space is order 
paracompact. 
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(b) / / every open subspace of a space X is order paracompact, then X is 
hereditarily order paracompact. 

Proof, (a) Let X be order paracompact and Y a closed subspace of X. Let 
% = { Ua} be any covering of Y by open sets of F. Then for each a, there 
exists an open set Va of X such that Ua = Va C\ Y. Hence, 7^ = 
{ Va: Ua 6 &} KJ {X — Y} is an open covering of X. By the order paracompact-
ness of X, ^ has an ordered refinement (ffl = {H\}, < ) such that if H\ £ J^f, 
the set of all H\> preceding H\ is locally finite at each point of H\. Define an 
ordered refinement ( ^ = \G\), < ) of ^ by taking G\ = H\ C\ Y for each X, 
and specifying G\> < G\ if and only if H\> < H\. Then ( ^ , < ) satisfies the 
condition of Definition 1, namely: If G\ G & and x G clF(G\) = G\ C\ Y, 
then x G H\. Hence, there exists a neighbourhood 0 of x in X which intersects 
at most finitely many of the H\> preceding H\. It follows that 0 C\ Y is a 
neighbourhood of x in Y which intersects at most finitely many of the G\> 
preceding G\. Hence (a) is proved. 

(b) Let Y be any subspace of the space X. To show that Y is order para
compact, let & = {Ua} be any covering of Y by sets open in Y. Then for 
each a, there exists an open set Va of X such that Ua = Va C\ Y. Define 
V = \JVa. Then V, as an open subspace of X, is order paracompact. The 
fact that the subspace F of F is order paracompact now follows almost 
exactly as in (a). Therefore, X is hereditarily order paracompact. 

Finally, we consider products of order paracompact spaces. As our final 
example shows, such a product need not be order paracompact, even in the 
simplest case of two factors. 

Example 4. Let X be the set of real numbers with the upper limit topology 
(4). Then X, being Lindelôf, is order paracompact. I t is known that X X X 
is regular but not normal. Hence, X X X is not order paracompact, since 
otherwise Theorem 3 would imply that X X X is normal. 

Added in proof. It can easily be shown (as has been pointed out to me by H. W. Martin) 
that the product of an order paracompact space and a compact space is order paracompact. 
On the other hand, H. Tamano has shown {On paracompactness, Pacific J. Math. 10 (1960), 
1043-1047) that if X X /3X is normal, then X is paracompact. Using these results and 
Theorem 3 above, we obtain the following theorem: A regular Ti-space is order paracompact if 
and only if it is paracompact. 
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