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Introduction. Let G(z) be a function of a complex variable, regular in 
the annulus 0 < a < |s| < b < <». We shall assume there exists a curve 
within the annulus for which 

lim G(z) = °°? 
\zWb 

provided z is restricted to be a point of this curve. Under these restrictions 
G (z) has a Laurent expansion of the form 

oo 

(1.1) G(z) = £ anzn, 

where the Laurent coefficients an have the integral representation 

(1.2) an = (2wi)-1 ( G(z) 2- (n+1) dz, 

and C can be any contour, within the domain of regularity, that encloses 
z = 0. We shall also assume that the an are all real numbers. Using the usual 
complex conjugate notation, we can, therefore, write 

(1.3) G(z) = G(z). 

The problem of determining the asymptotic behaviour of an as n —> co is 
very old in mathematical literature and appears in many forms and disguises. 
It has been solved for specific classes of functions by many people using a 
multitude of methods. For certain lacunary type series an can have an almost 
chaotic behaviour for large n. It is, therefore, too much to expect that there 
exists a single method that will give the asymptotic behaviour of an for the 
class of all functions that possess Laurent expansions. We shall, therefore, in 
this paper, consider only a single method that yields the asymptotic behaviour 
of an for a particular class of generating functions G (z) which will be called 
admissible. The major goal is to make the class of admissible functions as 
large as possible. 

As far as we are aware the first attack on problems of this type, that could 
claim any degree of generality, is due to Darboux (1). His class of admissible 
functions possessed Maclaurin expansions with a finite radius of convergence. 
On the circle of convergence G{z) was allowed to have only a finite number of 
singularities of a particular type. The success of Darboux's method is almost 
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entirely due to the fact that his assumptions allow us to deform the contour 
C beyond the circle of convergence and ultimately to prove that only small 
contours surrounding the singularities of G{z) contribute to the asymptotic 
behaviour of an. This procedure is almost characteristic of all methods that 
depend for their success on the classification of the number and types of 
singularities the generating function G(z) is allowed to have on the circle of 
convergence. 

Such deformations are not available if the circle of convergence is a natural 
boundary of G(z). In particular the partition function 

CO CO 

(1.4) G(z) = EI (1 " sT1 = Z PW z" 
71=1 71=0 

falls into this classification. There exists, in the literature, several derivations 
of the behaviour of p (n) as n —» °° . 

The success of known methods of studying the asymptotic behaviour of 
sequences, defined by integrals, lies almost entirely in the fact that the 
behaviour is determined by a knowledge of G{z) in the neighbourhoods of 
certain points called critical points. Erdélyi (2) has pointed out that there 
does not exist any general theory of critical points and that only a few types 
of integrals have been studied. We shall provide such a theory for integrals 
of the type (1.2) and for which G(z) belongs to our class of admissible func­
tions. 

Among recent papers dealing with problems of this type we note those of 
Szekeres (8), Hayman (4), and Moser and Wyman (5; 6). Szekeres finds a 
complete asymptotic expansion for a specific example. Hayman introduced 
the idea of a class of admissible functions and found the first term of an 
asymptotic expansion for the Maclaurin coefficient of all members of his 
class of functions. Wyman and Moser find complete asymptotic expansions 
for the Maclaurin coefficients of a class of integral functions. We note these 
papers in particular because in each case there is a more or less common 
pattern of attack. In our present paper we shall attempt to generalize the 
general pattern of attack of the papers mentioned above. 

2. Asymptotic expansions. In applying a method of critical points to 
integrals of the form (1.2) we place suitable restrictions on G (z) that enable 
us to determine the asymptotic behaviour of an by considering only restricted 
portions of the contour C. It is thus clear that such a method implies a criterion 
by means of which we may recognize the portions of C that are to be retained 
and to recognize also the portions of C that may be discarded. This criterion 
is found in the choice of a suitable definition of an asymptotic expansion. 

Since Poincaré's introduction of a definition of an asymptotic expansion, 
the concept has been generalized in many ways. Erdélyi (2) has given an 
elegant treatment of the concept which can be used to develop a general 
theory of asymptotic expansions. However, his treatment imposes certain 
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restrictions that are neither necessary nor desirable for the type of problem 
we shall consider in this paper. In a private conversation Professor Erdélyi 
has given me a more general definition that completely fills our present needs. 
We shall, however, use only a very specialized version of Erdélyi's later 
definition. 

Throughout the paper r shall denote a real variable lying in the fixed 
interval / given by 0 < a < r < 6 < œ. We shall be interested in the 
behaviour of certain real or complex valued functions F(r) as r —> b. The 
end-point a plays no essential role in our discussion except in so far as all 
statements are required to have meaning only if r is restricted to be a value 
in / . 

Definition 2.1. A real valued positive function V(r) is called a comparison 
function if 

lim V(r) = co. 

Definition 2.2. Two real or complex valued functions/(r) and g(r) are said 
to be asymptotically equal at r = b, with respect to the comparison function 
V(r), if 
(2.1) lim F» (f(r) - g(r)) = 0 

for every non-negative integer n. 
We shall write this relationship as 

(2.2) f(r) - g(r) 

or in terms of the order relation o as 

(2.3) f(r) -g(r)= o{V~n), 

for every non-negative ̂ integer n. 
Since we shall usually require b and V(r) to remain fixed in our discussion 

we shall often delete the qualifying phrases in the definition of asymptotic 
equality. 

If there exists a value r0 in I and positive real numbers a, fi such that 

(2.4) |/(r) - g ( r ) | = 0 ( e x p ( - 0 7«)) 

for all r > r0, then f(r) ~ g(r). 
Asymptotic equality is an equivalence relation and divides the class of 

complex functions defined on / into equivalence classes. In our development 
we shall usually replace a function fir) ~ 0 by zero. If b = o°, V(r) = log r 
then r, (r2 + l)/r are examples of a pair of asymptotically equal functions. 

Definition 2.3. Let Ak(r), k = 0, 1, 2, . . . be an infinite sequence of com­
plex valued functions. The formal series 

CO 

k=0 
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is called an asymptotic expansion of a function F(r) if, for every non-negative 
integer m, 

(2.5) lim Vm [F - f ) Ak V~k) = 0. 

We write 

(2.6) F~i,AkV-k 

fe=0 

or 
m 

(2.7) F - Z Ak F-ft = o(F-m). 

The asymptotic equality of two functions is a special case of an asymptotic 
expansion with Ak = 0, k > 1. It is also easy to show that the definition of 
an asymptotic expansion implies Ak = o(V), k > 1 and that the asymptotic 
expansion of a function is not unique. Any of the Ak(r) may be replaced by 
an asymptotically equal function. 

Definition 2.4. If F(r) and H(r) are two complex valued functions such 
that 

(2.8) F/H-Y, AkV~k 

fc=0 

then we write 

(2.9) F - H É AkV\ 
k=0 

At first glance it might be thought that Definition (2.4) is redundant in 
the light of the fact that the Ak(r) of Definition (2.3) are allowed to be 
functions of r. This, however, is not so because (2.9) implies only that A* = o( V) 
while 

y 

(2.10) F~ E (JEM*) V* 
Jk=0 

implies HAk — o(V). Hence (2.10) may or may not place a restriction on H 
that is not implied by (2.9). 

The major distinction between our use at present of the meaning of an 
asymptotic expansion and Erdélyi's published version is the fact that we do 
not require AkV~k to be an asymptotic sequence, even though V~k is such a 
sequence. This situation could exist, for example, if some of the Ak = 0. 

3. Relevant paths. Returning to (1.1), we may, without any loss of 
generality, assume that we are interested in the asymptotic behaviour of an 

for large positive n. The behaviour of an, for large negative n, could then be 
obtained from the generating function G(l/z). If G(z) has the form 

(3.1) G(z) = Pm(z) + Q(z-i) 
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where Pm(z) is a polynomial of degree m and Q is a regular function of its 
argument, then our problem is trivial. For such a function an = 0, n > m + 1. 
Hence we shall exclude all functions of the form (3.1) from the remainder 
of our discussion. 

Using the polar form z = r exp(id) we define M(r, 6) by 

(3.2) M(r,0) = \G(rexp(id))\. 

Since we shall always operate within the domain of regularity of G (z) for 
which (1.1) is true, r shall always lie in the interval I of the previous section. 
The function M(r, 6) is a periodic function of 6 with a period of 2ir and has 
continuous partial derivatives of all orders except possibly at the zeros of 
G(z). The function M(r) defined by 

(3.3) M (r) = sup M (r, 0) 

is the so-called maximum modulus function and it is known that there always 
exists a point z = z(r), on \z\ = r, such that \G(z(r))\ = M(r). By varying 
r, z = z(r) can be considered as the parametric representation of a curve in 
the complex z plane which is called a path of maximum modulus. The path 
of maximum modulus need not be unique. From the assumptions made, in 
the Introduction, on G(z) it is clear that 

lim M(r) = » 

and hence log M(r) is a comparison function. The choice of log M(r) as a 
comparison function may, however, introduce a complexity that is neither 
necessary nor desirable. Hardy (3) has shown that G(z) — exp(sin z) exp(exp z2) 
has M(r) = exp | sin r \ exp(exp r2). The corresponding path of maximum 
modulus is 6 = 0, 2kw < r < (2k + 1)TT and d = TT, (2k + 1)TT < r < (2k + 2)TT. 
Hence the path of maximum modulus has an infinite number of discontinuities. 
For this reason, we shall see, the a priori choice of log M(r) as a comparison 
function often introduces a discontinuous picture of our problem that can 
easily be avoided. Previous authors have featured log M(r) in their dis­
cussions and have required 9 = 0 to be the continuous path of maximum 
modulus. Such a starting point greatly reduces, for no valid reason, the extent 
of our class of admissible generating functions G(z). 

Let us return to (3.2) and consider the stationary values of M(r, 6) which 
are given as solutions of the equation 

There always exists at least one real solution of (3.4) d — d(r). In fact our 
assumption that all an are real implies that 6 = 0 or 6 = -K are always solutions 
of (3.4) except possibly for the case when M(r, 0) = 0 or M(r, TT) = 0. Implicit 
function theory tells us that if (r0, 0o) is a solution of (3.4), for which 

do2 * ° ' 
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then there always exist neighbourhoods \r — r0| < d, |0 — 0O| < à for which 
the solution 0 = 0(r) is unique and has a continuous derivative. We may, 
therefore, consider such a solution 6 — 6(r) as the polar equation of a path, 
in the complex z plane, which lies within the domain of regularity of G (z). If 
we traverse such a path, with increasing r, the path remains unique until 
we strike a point at which 

dd2 - °-

At such a point the path may cease to be unique and several branches may 
appear. However if r is sufficiently close to b, then (9, pp. 22-7), the number 
of such branch paths remains finite. Although 0(r) need not be differentiate 
at a branch point, the continuity of 6(r) is preserved. All paths determined 
as solutions of (3.4) shall be called the stationary paths of G (z). 

We interrupt our general development to consider the specific function 
exp (z/1 + z2)) which gives considerable insight into the general situation. 
The solutions of (3.4) are 

(3.5) 0 = 0, 0 = TT, 0 < r < V 2 - l 

(3.6) 0 = 0, 0 = TT, 0 = ± arccos((l - r2)/2r), 0 = TT db arccos 
((1 - r2)/2r), V 2 - K K 1 . 

The points, (0, V2 — 1), (ir, V2 — 1), are branch points and there exist six 
stationary paths by means of which we may leave z = 0 and arrive at the 
boundary \z\ = 1. 

We note that the number of intersections of the stationary paths with the 
circle \z\ = r is a function of r and indicates the possibility that, for other 
generating functions G(z), that the number of such intersections may tend 
to œ as r —> b. Let us now consider the stationary path 0 = 0, 0 < r < 1. For 
a fixed value of r and variable 0, M(r,Q) is a maximum of M(r, 0), for 
0 < r < y/1 — 2, and then M(r> 0) changes its character to become a 
minimum of M(r, 0) for \/2 — 1 < r < 1. Again the example indicates the 
possibility that there may exist stationary paths 0 = 6(r) such that, along 
such a path, M (r, 6(r)) may change its character from being a maximum of 
M(r, 0) to being a minimum of M(r, 0) an infinite number of times. 

Returning to the general case we will denote by Lkl (k = 1, 2, . . . , T), the 
stationary paths contained in the annulus r0 < \z\ < r < b. We note that the 
integer T may be a function of r. The corresponding polar equations are 
written as 0 = 6k(r) and Mk(r) is defined by 

(3.7) Mk(r) = M(r,6k(r)). 

Assumption (1). For r sufficiently close to b there exists a continuous 
stationary path, with polar equation 0 = 0i(r), by means of which we can 
reach the boundary r = b. Further M(r, 6)/Mi is bounded uniformly in 0. 

Since the maximum modulus M(r) is always attained for every value of r 
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at some value of 0 assumption (1) implies that M(r)/M\ is bounded as r —» b. 
However we have previously assumed that 

lim M{r) = » . 

This means that 

lim Afi(r) = <». 

Thus log Mi(r) is a comparison function by means of which we may give 
meaning to the concepts of asymptotic equality and asymptotic expansions. 
Throughout the remainder of the paper log Mi (r) will be our comparison 
function and (log M\{r))~m will be our asymptotic sequence. 

Definition. A stationary path for which Mk/Mi ~ 0 will be called an 
irrelevant path. All other stationary paths will be called relevant paths. 

Assumption (2). We shall assume that the relevant paths can be identified 
in such a way that the following properties are true for r sufficiently close 
to b. 

(a) The relevant paths are all continuous curves by means of which we 
may reach the boundary r = b. 

(b) If 0 = dk(r) is a relevant path then a constant Kk > 0 and a non-
negative integer m exists such that Mk/M\ > Kk (log Mi)~m. 

(c) The number N of relevant paths is fixed and independent of r. 
(d) For every relevant path 0 = 0k(r) the 

lim0*(r) 

exists. Further if 0 = 6k(r) and 6 = 6s(r) are distinct relevant paths then 
l im^( r ) ^ lim0,(r). 

(e) Along every relevant path the function M (r, 0) has the property 

de2 < 0 -

An effect of assumption (2) is that for r close to b the relevant paths can 
have no point of intersection. Such a point would be a branch point at which 

dd2 - °-

This would of course contradict the assumption. The assumption also guarantees 
that there can be no point of intersection of relevant paths even at r = b. We 
may also conclude that the number of intersections of the relevant paths with 
the circle \z\ = r < b is equal to the fixed number N. Hence without any loss 
of generality we may assume that the relevant paths are Lk, (k = 1, 2, . . . , N) 
and that they have been numbered in a counter-clockwise direction beginning 

https://doi.org/10.4153/CJM-1959-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-050-1


ASYMPTOTIC BEHAVIOUR OF LAURENT COEFFICIENTS 5 4 1 

with the featured path L\. Along every relevant path the value Mk{r) is, for 
fixed r and variable 0, a maximum value of M(r, 6) as r —» b. Finally, we also 
note that the functions 6k(r) corresponding to relevant paths all have con­
tinuous first derivatives. 

Since (any constant)/Mi(r) ~ 0 it is clear that Mk(r), (k = 1, 2, . . . , N) 
must all be unbounded functions of r as r —» b. Since M(r)/M\(r) and M\(r)/ 
M{r) are both bounded functions we must have 

(3.8) lim log Af (r)/log Mi(r) = 1. 

This result can be extended to 

(3.9) lim (log M*(r)/log Mi(r)) = 1, * = 1, 2, . . . , N. 

It is not difficult to show that the function exp(sin z)exp(exp z2) obeys 
assumptions (1) and (2). 

4. Functional behaviour along relevant paths. In the present section 
we shall investigate the functional behaviour of log G(z) and its derivatives 
along relevant paths. Since it turns out to be simpler to study the derivatives 
with respect to log z we introduce the operator H by 

(4.1) * - , £ 

and attach the usual meaning to the iterated operator Hm. Further, the 
symbol HmF(w) shall always mean HmF{z)]z=w. In this notation (3.4) becomes 

(4.2) Im (HlogG(s)) = 0 

and hence the quantity H log G(z) is always real along every relevant path Lk. 
Let us denote the points of intersection of Lk with \z\ = r < b by 

(4.3) z = zk(r), \zk\ =r, k = 1, 2, . . . , N. 

For variable r, (4.3) provides a parametric representation of the relevant 
paths. Further zk(r) has a continuous derivative with respect to r as r —•> b, 
since dk(r) has this property. Since |G(zfc)| = Mk(r) and Mk(r) is a maximum 
of M(r, 6) we must have G(zk) 9e 0. Thus all of the functions Hm log G(zk(r)) 
have a continuous derivative with respect to r for r sufficiently close to b. 
The condition 

dd2 < 0 

can be translated to read 

(4.4) Rl (H2\ogG(z)) > 0, 

along every relevant path. 
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LEMMA 4.1. The function H log G(z) is increasing in r and has no upper 
bound along any relevant path. 

Proof. Let z0 be any fixed point along a relevant path and suppose z is a 
variable point along the same path. Along such a path H log G (z) has been 
shown to be real. If there exists a constant K such that H log G(z) < K then 
the identity 

(4.5) log G{z) = log G(*9) + f i ï l og G(z) d(log z), 

where the path of integration is the relevant path, implies 

(4.6) |G(*)| < |G(*o)| (r/\z0\)
K. 

However, since our path of integration is a relevant path Lk we must have 
\G(z)\ = Mk(r). If b is finite, (4.6) implies that Mk(r) is a bounded function 
of r as r —> b. This contradicts our assumption that Lk is a relevant path. If b 
is infinite the proof is somewhat more difficult but follows directly from 
known complex function theory as long as we remember that functions of 
the form (3.1) are excluded. 

Along any relevant path we know that H log G {z) has a continuous first 
derivative with respect to r, if r is close enough to b. An easy computation 
gives 

(4.7) rfrHlogG(z) = Rl H2logG(z) (l + r2 ( | ) 2 ) . 

From (4.4) we have d/dr H log G(z) > 0 along a relevant path and hence 
H log G(z) must be an increasing function of r along every such path. Since 
iJ log G{z) is an increasing continuous function of r, which does not have an 
upper bound, along every relevant path we must have 

(4.8) lim i l log G (z) = + oo. 
r->6 

Thus far in our paper we have been discussing the functional behaviour 
of G (z) and have not related this behaviour to the Laurent coefficients an. 
In order to make a start on obtaining this relationship we shall for the moment 
allow n to be a large positive real number. Ultimately n will assume its integer 
meaning in an. The results contained in Lemma 4.1 imply that, along any 
relevant path Lk, the equation 

(4.9) H log G (z) = n 

always has a unique solution z — Zk(n), for n sufficiently large. Considering 
« a s a variable, the equations 

(4.10) ' z = Zk{n) 

provide a second parametric representation of Lk. Since it becomes con­
venient to use both of the parametric representations (4.3) and (4.10), simul-
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taneously in some discussions, we introduce the following convention to avoid 
confusion. 

Convention. If r is taken to be an independent variable then n shall mean 
the function n = n{f) defined by 

(4.11) n(r) = !TlogG(*i(r)). 

Thus zi(r) ~ Z\{n) and we may consider both sets of points zk(r), Zk(n) as 
completely determined. 

If n is taken to be an independent variable then r is taken to mean the 
function r(n) defined by 

(4.12) r{n) = Zi(»), 

and again zi(r) = Zi(n). As before zk(r), Zk{n) are completely determined 
by this convention. This notation implies 

(4.13) lim n(r) = » , lim r(n) = b. 
r ->6 ft-»co 

Assumption (3). We shall assume that, for r sufficiently close to b each 
of the following are true. 

(a) There exist positive constants p, Pi, P2, such that 

(4.14) P i (log Mi) < n(r) < P 2 ((log Mi)1"") 

(b) Zk(n)/zk(r) = 1 + 0 ( 1 / » ) . 
(c) In the complex w plane there exists a fixed neighbourhood \w\ < & for 

which the functions log G(Zk(n) exp(log Miw/n)) are all regular functions 
of w. Further, 

lim [log G(Zk(n) exp(log Mi(r) w/n)) - log G(Zk(n))]/log Mx 

exists, uniformly in w, for all w within and on the boundary of \w\ < h. We 
shall denote this limit by gk(w) and shall assume Rlgk"(0) 9e 0. 

Definition 4.1. Any generating function having a Laurent expansion of the 
type (1.1) and for which assumptions (1), (2), and (3) are true will be called 
an admissible function. 

The major result of this paper will be that the asymptotic behaviour of 
the Laurent coefficients of every admissible function can be determined. At 
this stage the conditions contained in assumption (3) must seem somewhat 
like pulling rabbits out of a hat. However these conditions do arise quite 
naturally in the method that we shall use to prove our central theorem. 

Part (a) of assumption (3) makes all members of the original class of 
functions considered by Darboux inadmissible. As such our central theorem 
will be complimentary to the Darboux result. The second part of the assump­
tion turns out to be sufficient to control the behaviour of the factor z~{n+l) 

in the integrand of (1.2). I suspect that this part of assumption (3) may be 
completely unnecessary and that every admissible function may have this 
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property. The third part of the assumption involves functions that are 
reminiscent of the indicator functions of integral function theory. In some 
cases the indicator function can be derived from gk(w). Obviously the third 
part of this assumption places some restrictions on the locations of the 
zeros of G(z). 

To be a member of Hayman's class of admissible functions a generating 
function G (z) has to have a unique path of maximum modulus that is 6 — 0. 
Certainly assumption (1) is considerably weaker than this condition. To this 
extent our class of admissible functions is considerably more extensive than 
is Hayman's. It is not, however, possible to say that our class of such functions 
completely contains Hayman's. Our assumptions have been designed to measure 
the contribution of any portion of the contour C, of (1.2), to any term in a 
complete asymptotic expansion. Hayman's assumptions were designed to 
measure the contributions of C to the first term of such an expansion. If we 
were to restrict ourselves to Hayman's objective we could, along the lines of 
the present paper, greatly extend Hayman's class of admissible functions. 

When the outer boundary of convergence is finite our assumptions say, in 
essence, that G(z) may have an infinite number of singularities on r = b. 
However, there can be only a finite number that dominate all the rest. The 
meaning of dominate is of course derived from our definition of asymptotic 
equality. 

The two specific functions used for illustration in this paper are both 
admissible functions in our sense and neither is admissible in the Hayman 
sense. To illustrate another point we shall prove that 

(4.15) G(z) = [exp(l/2(l - z2))]/(l - z) 

is an admissible function. For (4.15) it is not too difficult to prove that 

(4.16) z = r and z = — r 

are the only two possible relevant paths. Since z = r is the path of maximum 
modulus and since this path is continuous, for this example we choose 

(4.17) zi(r) = r, z2(r) = - r. 

Hence 

(4.18) Ml{r) = e X p ( j ( i ; r 2 ) ) , M,{r) = e X p ( }^7 ^ -

Since 

we see that both paths are relevant. The fact that 

^r < 0 
d2M 
dSz 

on a relevant path is easily verified. This means assumption (1) is satisfied. 
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Turning to equation (4.9) the solutions are 

(4.20) Zl(«) = 1 - ^ - 1 - + ^ + . . . , 

(4.21) Z2(«) = - 1 + 2 ^ -I- - ^ + . . . . 

Since Zi(») = 2i(r) = r w e find 

(4.22) , , W . _ 1 + - ^ + | L _ _ ^ , + . . . 

and 

(4.23) Z2(n)/z2(r) = 1 + 0(1/»). 

Since log M\(r) = | (»)* + . . . , the first and second parts of assumption (3) 
are true. One can readily verify that g\(w) — g2(w) — w/1 — w and that the 
remaining conditions of assumption (3) are true. Thus (4.15) gives a third 
example of an admissible function. It is interesting to note that (4.15) is 
not a member of Hayman's class of admissible functions. Actually (4.15) 
violates one of Hayman's assumptions that is not vital to the success of the 
method. This example provides an illustration of how Hayman's class of 
admissible functions could be extended along the lines of our present paper. 
The second relevant path contributes only to the second term of the asymp­
totic expansion. 

5. Further preliminary results. From assumption 3(c) it is easily seen 
that log G (Zk exp u) is a regular function of the complex variable u pro­
viding \u\ < h (log Mi)/». In this neighbourhood we may expand log G 
(Zk exp u) into a Maclaurin expansion and obtain 

(5.1) log G(Zk exp u) = log G(Zk) + H log G(Zk)u + H2log G(Zk) | 
0 0 tjm 

+ Efl"logG(Z»)*- r 

Since H\ogG(Zk) = » we may, by choosing u — log (z/Zk), say 

(5.2) log G{z) = log G(Zk) + n log(z/Z*) + H2log G{Zt) ° 0 g Z^ 

+ Z i r iogG(Z,)( log( 2 /Z, ) ) ' n /m! 1 
m=-3 

providing [log {z/Zk)\ < h (log Mi)/». If we denote the set of points satisfying 
|log (z/Zk)\ < h log( Mi)/» by Dkl then the point z = zk(r) lies in Dk. 

Assumption (3) tells us that 

(5.3) lim (log G(Zk exp(log M,{r) w/n)) - log G(Z,))/log Mx{r) = g»(w), 

and that the limit exists uniformly in w, for \w\ < A. We may, therefore, 
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differentiate (5.3) m times with respect to w and then place w = 0. This 
gives 

(5.4) lim ((log M1(r))m-1Hmlog G(Zk)/n
m) = g<"> (0). 

From (5.4) the following results can easily be obtained. 

(5.5) ft(0) = 0, g/(0) = 1. 

(5.6) Rlgt"(0)>0. 

There exist constants P 3 and PA such that 

(5.7) Pz (log Mi(r)) < |£T»log G(Z*)| < P 4 ((log Mi(r))»+»). 

(5.8) Hm|iî2logG(Z*)| = » . 

(5.9) lim arg(i?2log G{Zk)) = arg & " ( 0 ) . 

(5.10) iï2log G(Z») = OiHHog G(Z0). 

(5.11) |iîm log G(Zk)/m\\ = 0(»"/** Oog Mi)"*-1). 

If we define ^ by 

(5.12) ^ = limarg(iï2logG(Z*)) 

then (5.6) and (5.9) tell us that 

(5.13) \fa\ < **-. 

We shall define an infinitesimal e by 

(5.14) e - |H2 logG(Z1) | - a 

where, for reasons that shall appear later, we restrict a to satisfy 

(5.15) (6/> + 2)/6(2£ + 1) < a < h 

The constant £ is taken from assumption (3). Since the Rl (H2 log G(Zk)) > 0 
we may introduce (H2 log G(Zk))* in an unambiguous manner by taking the 
branch with a positive real part. The quantity 4>o,k(r) defined by 

(5.16) *o.*(r) = | # 2 log G(Zx)|-« (£P log G(Z*))* 

has the properties that 

(5.17) \<t>oAr)\ ~ j ^ S l («VlogMx)*- = OKlogMx) '»*" 1- ' ] 

and 

(5.18) lim \<t>oAr)\ = «>, 

and 

(5.19) lim |arg <K*MI = h\fk\ < l*-
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Since 
lim ne = oo, 

we see that 1/n is a higher order infinitesimal than e. Further, the fact that 

lim ne /log Mi(r) = 0 

implies that any point z lying on the line joining zk exp ie to Z* exp ie is a 
member of the domain Dk. For such points z we may prove 

(5.20) log (s/Z*) =*€ + 0( l /n ) . 

Further, since 1/n is a higher order infinitesimal than e we may, to this 
order of approximation, write 

(5.21) log (z/Zk) = ie. 

This fact plus (5.2) enables us to prove that 

(5.22) log(G(z)/zn) = log(G(Z*)/Z2) - | tf2log G(Zk) + 0(nV/(log Mi)2). 

From (5.4) 
(5.23) lim [(log M1) H2log G(Zk)/n

2] = & " (0) 

and from (5.6) gk"(0) ^ 0. Hence 

(5.24) IP log G(Z*) = »2fefc
/;(0) + *(l))/log ML 

Thus (5.22) may be written 

(5.25) log(G(s) Z£/sn G(Z*)) = | #2log G(Z*) (1 + O(ne/\og Mi)). 

We have already seen that 

lim (we/log Mi) = 0. 

Hence (5.25) can be shown to imply that a constant P 5 > 0 exists such that 

(5.26) \G(z) Zn
k/G{Zk) zn\ = O(exp(-P5(log Mi)1"2*)). 

Hence \G(z) Zk
n/G{Zk)z

n\ « 0 with respect to log Mi(r). Since G(Zk)/Mi(r) 
and (r/Zk)

n are bounded functions of r this means 

(5.27) \G(z) rVAfiW^I « 0, with respect to log Afi(r). 

In particular (5.27) is true for the points zk exp (ie) and Z*; exp (ie). Obviously 
the same result may be obtained by replacing e by — e. We use (5.27) to 
prove the following lemma. 

LEMMA 5.1. The quantity I(r) defined by 

(5.28) I(r) = (f7Mi(r)) { G(z) z'{n+l) dz 
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is ~ 0, with respect to log Mi(r), providing L is taken to be one of the following 
paths of integration. 

(a) The arc of the circle \z\ = r joining the points zk exp (ie) to zk+i exp(-ie) 
(b) The line joining zk exp (ie) to Zk exp (ie). 
(c) The line joining zk exp (— ie) to Zk exp (— ie). 

Proof. Our notation implies that zk(r), zk+i(r) are two points of intersection 
of two consecutive relevant paths with z = r. By assumption (2) 

lim arg ^ ( r ) 

exist for k = 1, 2, . . . , N and, further, the values of these limits are distinct. 
Hence our numbering system can be assumed, without any loss of generality, 
to imply that 

lim arg zk(r) < lim arg zk+Y. 

Further, since e was defined by (5.14) we have 

lim arg(sfc(r) exp(ie)) = lim arg zk(r). 

This of course means that for r close to b 

3irgzk(r) < arg (zk(r) exp (ie)) < arg (zk+i(r) exp ( - ie)) < argz*+i(r). 

This means that there can be no points of intersection of a relevant path and 
\z\ = r contained in arg (zk(r) exp (ie) < 0 < arg (zk+i(r) exp (— ie). Thus 
on the path of integration given by part (a) we must have \G(z)\ less than 
or equal to the value of \G(z)\ at a maximum which is on an irrelevant path, 
or \G(z)\ is less than or equal to the value of |G(z)| at one of the end-points. In 
either case I(r) ~ 0. To make our proof consistent even if the points zN and 
Z\ are involved we adopt the convention that |ziv+i| = |zi| but arg zN+i = arg 
zi + 2TT. 

For the straight line paths of integration (5.27) is sufficient to establish 
the result. As one would suspect, Lemma 5.1 enables us to recognize the 
portions of the contour C of (1.2) that can be discarded. 

To complete our preliminary results we now proceed to study the behaviour 
of certain functions which enter into the derivation of the central theorem 
of the next section of our paper. Let 0 be a complex variable and suppose 
we restrict <£ to be on the line, in the complex <j> plane, joining the points 
<t>otk(r) to — <t>o,k(r) where 00,* is given by (5.16). We define am,k, (m = 3, 4 , . . . , 
k = 1,2, ...,N), by 

' (5.29) am,k = (log M i ( r ) ) * ^ « H ~ log G(Zk) (i * ) V ( w ! ( | H 2 log G(Zk))
m<>) 

then (5.11) and (5.24) combined with (5.29) give 

(5.30) km.*i = o((Qi*ir), 
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where Q is a positive constant. For this reason the functions fk(ry #, «), of 
the complex variable u, defined by 

CC 

(5.31) fk(r, 4>,u) = X) am+2,icUm 

are regular functions of u as long as Q |</>| \u\ < 1. From the fact that 
1*1 < |0o,*|, (5.15) implies that if \u\ < 2 (log Afi(r))-* then 

lim |*w| = 0. 

Thus the point u = (log ikfi(r))-1 is certainly within the domain of regu­
larity of fk(r, *, u). Let us now go on to consider the functions Fk(r, *, u) 
defined by 

(5.32) Fk (r, 0, u) = expfk (r, <£, u). 

All of the functions Fk(r, $, w) have Maclaurin expansions about u = 0 and 
the radii of convergence of these expansions are certainly all > 2 (log Afi(r))"** 
We write 

(5.33) F*(r, *, tt) = 1 + É 6m.*(f, *) «w. 
ra=l 

We can easily establish that 

(5.34) Ô2TO+M is a polynomial in 0 and is an odd function of <j>. 

(5.35) Z>2m,/fc is a polynomial in </> and is an even function of *. 

(5.36) \bmtk\ = 0((P6|*|)3W), for large |*|, and P 6 and the order relation 
involve constants that are independent of r. 

The result (5.36) follows from a lemma of Moser and Wyman (7). Further, 
(5.15) implies that 

lim |*0|3 (logJlfi(r))"* = 0. 

Hence as long as \u\ < 2 (log M\(r)~% we must have 

8+1 
0((pe\<t>\)is+z (log M^r))-^»). (5.37) 

From the fact that 

I (exp(-<t>2))4>md<l> 
•/-œexp i p 

exists as long as \/3\ < 7r/4 it is easily shown that 

/•œexp i /3 
' • . 2 \ 

= 0((logM1(r))-4 U + 1 ,) (5.38) f °'* ( É imAr, 4>) un) e x p ( - 4>2) rf* 

where in (5.38) the constants entering into the order relation may depend 
on s but not on r. In particular if RStk is given by 
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S Q>mAr, 4>) (log M1(r)yim) exp(-tf>2) d<\> 
-00, f t S+l 

then 

(5.40) \RStk\ =0((logMi(r))-c-+D). 

This completes the preliminary results necessary for the proof of our central 
theorem. 

6. The asymptotic formula. From (1.2) the Laurent coefficients an 

are given by 

(6.1) an = ( 2 « ) - 1 f G(s) s~(n+1) dz, 
Jc 

where C can be any contour within the domain of regularity of G (z) and 
enclosing 2 = 0. We shall assume n is a large positive integer. Hence the 
convention of § 4 that a choice of n determines the value r — r(n) = |Zi(»)|, 
where Z\(n) is the featured solution of 

(6.2) H log G (z) = n. 

We may also consider the points zk(r), Zk(n), (k — 1, 2 , . . . , N) as determined. 
The contour C is now chosen as follows. 

Contour C. The points in the z plane Zk exp (— ie), Zk exp (ie) are joined 
by arcs of the circles \z\ = \Zk\. The points Zk exp (— ie) and Zk exp (ie) are 
joined, respectively, to the points zk exp (— ie) and zk exp (ie) by straight 
lines. Finally ^ exp (ie) is joined to zk+i exp (— ie) by the arc of the circle 
\z\ = \zk\ = r. The convention adopted in a previous section concerning 
zN+\ assures that C becomes a closed contour. Further, the previous work on 
relevant paths also ensures that the contour C does not traverse any of its 
points more than once. 

From Lemma 5.1 the only portions of C that can contribute to the asymp­
totic expansion of rn an/M\ (r) are those portions that intersect a relevant 
path. For this reason we may write 

(6.3) rnan/M1(r) - £ J* 

where 

(6.4) Ik = (27riikT1(f))-V
w f G{z) z~in+1)dz 

and Ck is the arc of the circle \z\ = \Zk\ joining Zk exp (— ie) to Zk exp (ie). 
For this reason we study 

(6.5) Kk = (2JTÏ)-1 f G (2) *"(w+1) dz. 
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The substitution z — Zk exp id makes (6.5) become 

(6.6) Kk = ( 2 T ) _ 1 Z T I G(Zk exp id) e x p ( - ind) dd. 

Expanding log G (Zk exp id) in a Maclaurin expansion about 6 = 0 we have 

(6.7) log G(Zk exp id) - ind = log G(Zk) - § #2log G(Zk) 62 

+ Ê H™ log G(Zk)(id)m/m\ 
m=3 

Hence the substitution 

(6.8) <t> = ( i#2 logG(Z*)) '0 

into (6.6) yields 

(6.9) 2*Kk = G(Z*) V (iff2log G(Zk))~* C* Fk(r, <t>, (log Ml{r))^) 

exp (— 02) d<£ 

where 00,* is given by (5.16) and Fk(r, 0, M) by (5.32). From (5.33) and (5.39) 
we may write 

(6.10) f °' Fk(r, 4>, (log Mxir))-*) e x p ( - 02) <*<*> 
*J-<f>0,k 

= r 0 , t e x p ( - ^ ) ( l + £ &m,*(r, 4>) (log M1(r))-m,2)d<t> + R,s.H 

= f °'*exp(-tf>2)(l + £ 62m,,(log Mi(r))"*) d<*> + 0((log M&))—* 
*J—<t>Q,k m=l 

because of (5.34) and (5.40). Further, since b2m,k(r, <t>) is a polynomial in <j> 
we include only terms which are exponentially small by replacing <j>0fk by 
oo exp (i\f/k), and without any loss in generality we may consider <t> to be now 
a real variable and take limits of integration from — oo to <». If we let 
Am,k(r) be given by 

(6.11) Am,k(r) = - J " f e x p ( - 0 2 ) &2m,*(r, 0) d<t> 

then we have proven 

(6.12) f °'Vft(r, 0, (log Mi(r))-*) e x p ( - 02) ^0 

~ V T ( I + É ^m.tdogMi(r))- r o) 

and (6.9) gives 

(6.13) Kk ~ G(Zk)Zk
n(2TH2log G{Zk)Y\ 1 + É ^«.*(log M i W H . 
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This in turn gives the complete asymptotic expansion for Ik in (6.4) and an 

from (6.3). Although by assumption G(Zk)/Mi(r) is not asymptotically equal 
to zero, it is possible that 

r'w-°((ioei<,))s)' G(Zk),M>,, - V ( l o g M l W ) 

and in such a case I\ and Ik would be terms of different orders. For this reason 
it is better to leave (6.13) as our major formula and in each specific case 
write out (6.3) after the different orders of the Kk have been established. We 
shall illustrate the procedure in the next section. Thus we have established 
the following central theorem of our paper. 

CENTRAL THEOREM. A complete asymptotic expansion of the Laurent co­
efficients of any generating function G(z) that is admissible can be obtained by 
the formulae established in this section. 

In fact it is possible to show that the first two terms of (6.13) are given by 

(6-14) X * ~ Z ^ 2 7 M O 7 G I Z ^ 

I" 3 H2log G(Zk) HA\og G(Zk) - 5(ff3log G(Zk))
2l 

L "*" 24 (#2log G(Z*))3 J 24( i^ logG(Z*) r 

In using these formulae we must examine the solutions of 

(6.15) H log G (z) = n 

and from these we must select the featured path z = Z\(n) and establish all 
of the relevant paths z — Zk{n), (k = 1, 2, . . . , N). The variable r is deter­
mined by 
(6.16) r = \Zi(n)\ 

and all quantities involved in the asymptotic expansion may then be com­
puted. 

7. Specific examples. Since we have already shown that [exp(|(l — JS2))] 

/ ( l — z) is an admissible function we shall use this generating function as 
our first illustration. From (4.20) and (4.21) we have 

(7.1) r = Z l ( M ) = 1 _ _ i T _ A + _ ^ + . . . 

(7.2) Z 2 ( w ) = _1+^_-L__^ + . . . 

Thus 

(7.3) JlfxOO = 2n* e<^-»/*(i _ J L j + . . . ) = G{Z,) 
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(7.4) G(Z2) = è e ( 2 n i + 1 ) / 4 ( l + î | ? + . . . ) . 

(7.5) H2logG(Z1) = 4nm{l-~). 

(7.6) H2log G(Z2) = 4 « 8 / 2 ( l + . . . ) . 

(7.7) HzlogG(Z1) = 24w2(l + . . . ) . 

(7.8) H'log G(Zi) = 192 n6/2 (1 + . . . ) . 

ni+l/4 / , \ 

/ 1 N7Î. 71^+0.25 

(7-10) Z'-h&fcr il+ ...)• 

Thus we have an illustration of a case where K2 is a different order term 
than Ki and i£2 affects only the second term of the asymptotic expansion. 
From (7.9) and (7.10) we find 

(7-11) «»~(2^(1 + (ll + ^ H + ---)-
We have so far in the paper only used admissible functions which have 

Maclaurin expansions. One of the simplest examples of an admissible function 
that has no Maclaurin expansion about z = 0 and does have a Laurent 
expansion is the generating function exp {\x{z — z'1)) for the Bessel Functions 
Jn(x)- We shall assume x is fixed, real, and positive. To use our method on 
this particular generating function is a little like shooting sparrows with 
cannons. It is of course well known that the series definition of Jn{x) will 
act as an asymptotic expansion under these conditions. However it does act 
to illustrate the procedure for examples of similar type but more complicated 
in nature. For this generating function there is only one relevant path 0 = 0. 

(7.12) r = |Zx(n) | - n + ( ^ ~ X ) . 

Hence 

(7.13) Mi(r) = G(Z1) = exp [(n2 - x2f]. 

(7.14) tf2logG(Z!) = (n - x2)\ 

(7.15) H\ogG{Zx) = n. 

(7.16) ^ 4 logG(Z0 = (n - x2)K 
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As a final example we use the generating function exp (s / ( l + s2)) to 
illustrate the method when the relevant paths are not straight lines. For 
this generating function there are two relevant paths. These are 

(7.18) Zl(n)=i+1-^-l+.... 

(7.19) Z,(») = _ i + 1^+i - i - + . . . = Ziin). 

Since zi(r) = Zi(n), z2(r) = Z2(n) the fact that exp (z/(l + z2)) is admissible 
can easily be verified. Hence 

(7.20) G{ZX) = [exp (*(n*(l + i)))} (1 + . . . ). 

(7.21) G(Z2) = [exp (i(»*(l - *)))] (1 + • • • )• 

(7.22) Z r " = [exp (M«è(l + ») - * nr))] (1 + . . . ). 

(7.23) Zrn = [exp (i(»*(l ~ *) + *»'))] (! + • • • ) • 

(7.24) i ï 2 log G(Zi) = 2(1 - i)w3/2 (1 + . . . ). 

(7.25) i ï 2 log G(Z2) = (2(1 + *>«« (1 + . . . ) . 

and 

2 ^ c o s [ n * - j ( 4 » - l ) x ] 
( 7 ' 2 6 ) °» (2x)J(2W)373 • 

8. Conclusion. The major result of this paper has been to give a set 
of conditions on a complex function G{z) by means of which we can recognize 
whether or not G(z) belongs to our class of admissible functions. If G{z) does 
belong to such a class then our central theorem tells us that the complete 
asymptotic behaviour of the Laurent coefficients can be determined. It would 
be desirable to have results that tell us that certain large classes of functions 
are admissible. For example, it is possible to show that all functions of the 
form Pm(z) exp (St(z) + Q(l/z)) are admissible providing Pm(z), Sk(z) are 
polynomials and Q(l/z) is a regular function of its argument. From our experi­
ence we would say that there exists a very extensive class of integral functions 
all of which are admissible. Problems of this type would be worth investigation 
so that in specific examples one could tell, almost at a glance, whether or not 
the generating function is admissible. In such cases one can almost use our 
central theorem to write down the asymptotic behaviour of the Laurent 
coefficients. 

In our terminology Hayman's class of admissible functions required that 
G(z) possess a unique relevant path d = 0 that contributes to the first term 
of the asymptotic expansion. For this reason he was able to prove results 
stating that the product of admissible functions is admissible. In our case 
the two functions involved might have quite different relvant paths and 
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such a theorem is not possible. For example, the functions exp (z/(l — z2)) 
and (exp (z/(z2 — 1)))/(1 — z) are both admissible but their product 1/(1 — z) 
is not admissible. 

When one considers the class of functions for which the method of Darboux 
applies and the class of functions for which the method outlined in this paper 
applies, we now have a very extensive class of functions for which we can 
consider the problem of determining the behaviour of an, as n —• oo, as a 
solved problem. 
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