The Stellar Mass Distribution of Powerful Radio Galaxies Across $1 < z < 5.2$

Nick Seymour1, D. Stern2 and C. De Breuck3
for the SHiZRaG collaboration

1SSC, Caltech, Pasadena, CA 91125, USA, email: seymour@ipac.caltech.edu
2JPL, Caltech, Pasadena, CA 91109, USA, 3ESO, Garching, Germany

Abstract. We present the results of a comprehensive Spitzer survey of 70 radio galaxies across $1 < z < 5.2$. Using IRAC (3.6–8.0 μm), IRS (16 μm) and MIPS (24–160 μm) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame 1.6 μm (H-band). We find that the fraction of emitted light at rest-frame 1.6 μm from stars is >80% for over half the high redshift radio galaxies. The other radio galaxies have 1.6 μm stellar fractions spanning the range 20–80%. The resultant stellar luminosities imply stellar masses of $10^{11} - 12 M_\odot$, independent of redshift, indicating that radio galaxies are amongst the most massive galaxies observed over this redshift range. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the inferred stellar contribution to their shorter-wavelength, mid-IR SEDs. The stellar fraction of the rest-frame 1.6 μm luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5 μm) luminosity. The bolometric energy output of these sources is dominated by the infrared, and the mid-IR luminosities are found to be similar to that of lower redshift ($z < 1$) radio galaxies. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. A weak, but significant, correlation of stellar mass with radio luminosity is found, consistent with earlier results.

Keywords. galaxies: active, high-redshift

Figure 1. Rest-frame H-band stellar luminosity vs redshift for our 70 HzRGs. The dashed lines represent the luminosities of passively evolving elliptical galaxies with $z_{form} = 10$ normalized to $10^{11} M_\odot$ and $10^{12} M_\odot$. Hence the HzRGs have an implied average mass of $10^{11.4} M_\odot$ across $1 < z < 4$ (from Seymour et al. in prep.). Upper limits (downward arrows) are for sources without MIPS detections and crosses indicate the loci of HDF-North SMGS.