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SOME DUAL ASPECTS OF THE POISSON KERNEL

by F. F. BONSALL

(Received 29th November 1988)

The Poisson kernel p(z,f) = (l — |z|2)|l— z<;\ 2 is defined for z in the open unit disc D and C in the unit circle
3D. As usually employed, it is integrated with respect to the second variable and a measure on 3D to yield a
harmonic function on D. Here, we fix a <r-finite positive Borel measure m on D and integrate the Poisson
kernel with respect to the first variable against a function <p in Ll(m) to obtain a function Tm4> on 3D. We ask
for what measures m the range of Tm is L}(3D), for what m the kernel of 7 ,̂ is non-zero, and for what m every
positive continuous function on 3D is of the form Tm^> with 0 non-negative. When m is the counting measure
of a countably infinite subset {at:fce^J} of D, the function (Tmtj>)(Q is of the form £j°=, kkp(ak,Q with
X™=i|A|< 0° . T" e main results generalize results previously obtained for sums of this form. A related
mapping from lf(m) into LF(dD) with 1 < p < o o is briefly considered.

1980 Mathematics subject classification (1985 Revision): 31A10.

1. Introduction

Let D be the open unit disc in C, 3D the unit circle, and

the Poisson kernel for D. The Poisson kernel is normally employed by integrating with
respect to the second variable against an integrable function / on 3D, or with respect to
a Borel measure /i on 3D, in order to construct harmonic functions on D with boundary
values related to / and \i respectively. In the present article, we fix a measure m on D
and integrate the Poisson kernel with respect to the first variable against an integrable
function on D to construct a function on 3D. The special case in which the integration is
with respect to the counting measure of a countably infinite subset of D gives rise to
representations of functions on dD as sums of Poisson kernels with the sequence of
coefficients in /', see [1,2,3,7]. The results in this special case have guided a large part
of this article.

Throughout this article, m is a cr-finite positive Borel measure on D, the <r-finiteness
being required, in particular, to allow the use of Fubini's theorem.

In Section 2, we define Tm(j>, for <f> in Ll(m), by

. (1.1)

By Fubini's theorem, Tm is a bounded linear mapping of Ll(m) into 1}(3D). The adjoint
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208 F. F. BONSALL

T* is therefore a bounded linear mapping of LJ°{3D) into ^(m), and is easily identified
as the mapping that sends g in L°°(3D) to its harmonic extension g\ regarded as an
element of U°(m).

We ask what measures m give TmLl{m) = l}(3D), and prove, Theorem 2.3, that this
holds if and only if m has a property of non-tangential density analogous to the
corresponding property of a sequence of points. The same theorem also gives other
equivalent properties, including the equality j|s"|| oo = Ĥ1 !̂!oo f°r functions g in U°(3D) and
their harmonic extensions gf.

In Section 3, we ask for what measures m the kernel of Tm is non-zero. It follows
easily from Theorem 2.3 that non-tangential density of m implies that ker Tm i= {0}. The
remainder of Section 3 is mainly concerned with conditions under which the converse
implication holds. If $ s ker Tm, we have

$<t>(z)(l-wzyldm(z) = 0 (weD). (1.2)
D

In Theorem 3.3, we show that if m is not non-tangentially dense but a non-zero <j>
satisfies (1.2), then there exists a non-void open subset G of D such that m(G) = 0 and

^<p(z)(z-w)-1dm{z) = 0 (weG).
D

In Theorem 3.4, we suppose that the support of m is the union of a sequence {£„} of
compact subsets of D with connected complements and void interiors, and that, for each
n, En has void intersection with the closure of the union of the remaining sets Ek. For
such m, ker Tm is non-zero if and only if m is non-tangentially dense for 3D. The
particular case in which m is the counting measure of a countably infinite set without
limit points in D is known [3]. In Corollary 3.6, we show that, with m as in Theorem
3.4, Tm has closed range if and only if either TmL\m) = L\8D) or T*U°{8D) = L°°(m).

In Section 4, we consider the representation of continuous functions in the form Tm<f>.
We are unable, even for counting measures, to determine those measures m such that
every continuous function on D is of the form Tm<j> with </> in Ll(m). The following
approximation problem is perhaps the most natural question in this context. For what
subsets A of D is the linear span of {pa:asA} uniformly dense in the space of
continuous functions on D? It is easily proved (Theorem 4.1) that this question is
equivalent to the following question about the space h1 of differences of positive
harmonic functions on D. For what subsets A of D is the zero function the only member
of h1 that vanishes on A1 It would be very interesting to find a geometric character-
ization of these sets.

The remainder of Section 4 is concerned with the representation of positive
continuous functions on 3D (that is continuous functions / such that/(£)>0 everywhere
on 3D). We say that m is a positive Poisson representing measure (PPR measure) if every
positive continuous function / on 3D is of the form
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with 4> a non-negative Borel measurable function on D. In [3], a subset A of D is called
a positive Poisson basic set (PPB set) if every positive continuous function / on 3D is of
the form

k=\

with A ^ O and ak in /I for all k. We prove in Theorem 4.4 that the following three
conditions are equivalent, (i) m is a PPR measure, (ii) For every member h of h1,
sup2eDfi(z) = esssupZ6D/j(z), with the essential supremum relative to m. (iii) The support
of m is a PPB set. This theorem reduces the problem of representation of positive
continuous functions to the problem of characterizing PPB sets, which has been
completely solved by Hayman and Lyons [7].

In Section 5, we fix p with 1 < p < oo and define a mapping T{p) from LP(m) to W{dD)
that is analogous to Tm. In general, T**1 is unbounded, but it is an easy consequence of
Carleson's theorem that T'^1 is bounded if and only if m is a Carleson measure,
(Theorem 5.1). We have been unable to determine the Carleson measures m (if any) for
which T{£] LP(m) = LP(dD). However, non-tangential density of m implies that the range of
T£> is dense in LF(dD), (Theorem 5.2).

In the final section, Section 6, we take l < p < o o , q = p(p—l)~i, and consider certain
sums of Poisson kernels. Let {at:fceM} be a countably infinite subset of D, and, for
each k, let

We define a, possibly unbounded, linear mapping S from lp into W(dD), such that, for X
in the domain of S,

= f XkQk(Q a.e.
fc=i

Let m be the measure on D given by

with 8a the unit mass concentrated at a. Then S is a bounded linear mapping of V into
W(dD) if and only if m is a Carleson measure (Theorem 6.2). This theorem also gives
other properties of S when m is a Carleson measure. In particular, kerS = {0}. In
Theorem 6.3, it is proved that S is bounded and has closed range if and only if {ak} is
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an interpolating sequence for H°°. In this case, the range of S is a closed subspace,
whose elements correspond to unique elements of lp, and this unique coefficient
sequence is given in Corollary 6.4.

The author is indebted to J. G. Clunie for Lemma 3.7.

2. The representation of L\dD)

It is often convenient to use the same symbol to denote an element of Ll(dD) and its
harmonic extension to D, but this convention would be confusing in the present context.
Given an element / of Ll(dD), we therefore denote its harmonic extension to D by p,
thus

f(z)= J / V W ) * (zeD).
In _„

We use [,] to denote the natural bilinear forms on Ll(dD) x U°(dD) and on Ll(m) x
L^m), that is

[/, g]=^~] / V W ) dt (f e L\dD), g e L*>{dD)),
in _„

Mz) dm(z)

For (f> in L}{m), we define Tmcj) as in (1.1).

Lemma 2.1. Tm is a bounded linear mapping of l}{m) into l}(dD), and its adjoint T* is
the harmonic extension mapping of U°(dD) into lf{m), that is

T*mg = g' (geL°>(dD)).

Remark. We are following the usual convention here, in using the same symbol gf to
denote the element of Lx(m) containing the bounded function g\

Proof (of Lemma 2.1). Given (p in L}(m), the function \j/ on D x dD, given by

is Borel measurable, since it is the product of two functions each Borel measurable on
D x 3D. Thus, by Fubini's theorem,

f U\<Mz)\pz(e»)dm(z)}dt = S { f J pz(e")dt\\<f>(z)\dm(z)
-n (.D ) D ( / I -n J
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SOME DUAL ASPECTS OF THE POISSON KERNEL 211

Therefore, Tm<j>el}(dD) and ||Tm$||i ^ | |0 | | i - The mapping Tm is a bounded linear
mapping of Ll(m) into Ll(dD) with norm 1. With the dual space of L1 identified with L°°
as usual, the adjoint T* becomes a bounded linear mapping of U°(dD) into U°(m). To
show that this adjoint is the harmonic extension mapping of U°(dD) into L°°(m), let
4>eL\m), g€Lx(dD). Then

=±- J \\
2rc -„ (D

e")dm(z)}g(e»)dt

g(e")pz(e")dt}dm(z)
J

Since this holds for all 4> in L^m), we have T%g=g\ with gf identified in U°(m).

Notation. We denote by A(m) the support of the measure m, that is the complement
in D of the largest open subset G with m(G) = 0.

Given b > 0, 0 < a < rc/2, let

D(b, a) = {z e D: 6 > 1 - Rez > \lmz\ cot a}.

For C in 3D and b, a as above, we denote by £)(£, b, a.) the triangular open set £D(ft, a).
The measure m, or a subset A of D, is said to be non-tangentially dense for 3D if, for

almost all £ in 3D, there exists a with 0<a<7t/2 such that, for all b>0 , we have
m(D(C, b, a)) > 0, A n £>(£, fe, a) # 0 , respectively.

Lemma 2.2. Let f be a continuous real function on D, then

sup /(z) = esssup/(z),
zeA(m) zeD

where the essential supremum is relative to the measure m.

Proof. Let a = supze/l(m)/(z) and /? = esssup2eD/(z). By definition of A(m),
m(D\A(m)) = 0. Thus f(z)^<x a.e.(m), and so /?^<x. Suppose that /?<<x, and let
G = {zeD:f(z)>f}}. Then GnA(m)^=0, but G is an open set with m(G) = 0, and so
GnA(m) = 0.

Theorem 2.3. The following statements are equivalent to each other.
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(i) TmL\m) =
(ii) TmL\m) = L\dD), and for each f in L\dD),

(iii) For all g in U°(dD),

\\g\\ =| |at| |||5||oo ||5 ||oo>

where the essential supremum Wg^Wa, is relative to the measure m.
(iv) The measure m is non-tangentially dense for dD.
(v) The support A(m) is non-tangentially dense for dD.

Proof. (i)=>(iii). Let TmLi(m) = Ll(8D). By the open mapping theorem, there exists a
positive constant K such that the image of the open ball in L}(m) with centre 0 and
radius K contains the closed unit ball in Ll(dD). Thus, for all / in Ll(dD),

(2.1)

Let geU°(dD) and e>0. Then there exists / in L\dD) with ||/||i = l and |[
| |g |L-e. By (2.1), there exists <p in L\m) with lUILoc + e and Tm<f>=f. Therefore

By Lemma 2.1, this gives

and, by Lemma 2.2, we have

Hgll̂ g/c sup \g\z)\.

zeA(m)

By [2, Theorem 2], it follows that

||g||a>= sup |/(z)|. (2.2)

An application of Lemma 2.2 completes the proof of (iii).
(iii)o(v). As we have seen, (iii) is equivalent to (2.2) holding for all g in LJ°(dD). By [2,

Theorem 2], this is equivalent to (v).
(v)o(iv). Since D(£, b, a) is an open subset of D,
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SOME DUAL ASPECTS OF THE POISSON KERNEL 213

m(D(C, b, a)) = OoA(m) n D(C, b, a) = 0 .

(iv)=>(ii). Let (iv) hold, that is

l LHML (geU°{dD)).

This implies that T* has closed range and zero kernel, and so, by Banach's closed range
theorem [4, p. 488], TmLi(m) = Ll{dD).

Let X denote the quotient Banach space Ll(m)/ker Tm, and define S on X by

Sx = Tm<p tfexeX).

Then S is an invertible bounded linear mapping of X onto L}{dD), and its adjoint S* is
an invertible bounded linear mapping of L°°(<5D) onto X*. If (f>exeX and geU°{dD), we
have

(S*g)(x) = lSx,g] = iTm4>,g] = [«£, T*g]. (2.3)

Let geLx(dD) and e>0. Then there exists <p in Ll{m) with ||</>||i = l and |[(/>, T*g]|>
ll^m^lU-e- Let x denote the coset of 4> in X. Then, by (2.3),

and ||x||^||(/)||1 = 1. Therefore, the norm of the functional S*g satisfies

Since e is arbitrary, we have proved that

IMI^IklU
and so

lls-'HKs*)"1!^1-
Given / in Ll(dD), take y = S~lf. Then 11 ĵ-11 ^ ||-X~|| î  that is

inf

But <pey if and only if Tm(p—f, and so

Remark. [2, Theorem 2] contains other equivalent conditions which can be added
to the list in Theorem 2.3.
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It is also natural to ask for what measures m the range of Tm is dense in Ll(dD).

Theorem 2.4. The following statements are equivalent to each other.

(i) TmLl(m) is norm dense in L\dD).
(ii) If geUa(dD) and g\z)=0 almost everywhere on D relative to m, then g = 0.

(Hi) If gsL™(dD) and g\z)=0for all z in the support of m, then g = 0.

Proof. (i)=>(ii). Let Tml}{m) be norm dense in l}(dD). Then T* has zero kernel. If
ge L^idD) and gf(z) = 0 almost everywhere (m), then T*g is the zero element of U°(m), g
belongs to the kernel of T*,g = 0.

(ii)=>(i). Let (ii) hold, that is T* has zero kernel, and, by the Hahn-Banach theorem,
TmL}(m) is norm dense in L}(dD).

(ii)<*(iii). Apply Lemma 2.2 to |gf|.

Remark. Non-tangential density is plainly a sufficient condition for the statements in
Theorem 2.4. It would be interesting to find a necessary and sufficient geometrical
condition.

3. Measures m for which Tm has non-zero kernel

Corollary 3.1. / / TmL\m) = L\dD), then ker Tm # {0}.

Proof. Let TmLl{m) = L}{dD). Then m(D)>0 and there exists a Borel subset E of D
with 0<m(£)<oo. Since D is a-compact, there exists a compact subset K of D with
0<m(K n E)<x>. Let F = KnE, FC = D\F, and define a measure /i on D by n(X) =
m(XnFc), for Borel subsets X of D. Let ^ = inf{l- |z | :zeF}. For b with 0<b<n,
£ € dD, 0 < a < 7t/2, we have D(£, b, a) <= Fc, and so

By Theorem 2.3, it follows that /x is non-tangentially dense for 3D, and so

(3.1)

Since m(F) <oo, the characteristic function XF °f ^ belongs to Ll(m), and so
TmxFel}(dD). By (3.1), it follows that there exists <f> in L\n) with Tll<t>=TmxF. Since

= 0, we may assume that 0(z) = O for all z in F. Thus.

| dm(z )= J |tf
D F* Fc D

and so (/-eLV). Likewise (Tmtf>)(0 = ( 7 » ( 0 . Thus, Tm4> = T^ = TmXF, and so
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<p — XfGker Tm. Finally, since (p is identically zero on F, \<f> — XF\ = \4>\ + \XFI a n d therefore
| | | |

Notation. We denote by Hm the closed subspace of U°(dD) consisting of those /
with their Fourier coefficients J(ri) zero for all negative n. As is well known, the set of
bounded analytic functions on D coincides with the set {p:feH°°}.

Lemma 3.2. / / <$> e ker Tm, then

\<f)(z)(\-wzyldm(z) = Q (weD).
D

Proof. Let uw(t) = (\-wQ~l(weD,CedD), and let <j)eLl{m) with Tm</> = 0. For w in
D, we have uweH™, and so

= $<t>(z)(l-Wzyldm(z).
D

Deflnition. As in [3], we define the^irm boundary of an open subset G of D to be the
set of C in 3D such that, for every a with 0 < a < n/2, there exists b > 0 with D(£, b, a) c G.

Theorem 3.3. Let m be not non-tangentially dense for dD, but let <f> belong to l}{m),
such that II^H^O and

jcl)(z)(l-wz)-ldm(z) = O (weD). (3.2)
D

Then there exists an open subset G of D such that

(0 m(G) = 0,
(ii) the firm boundary of G has positive Lebesgue measure,

(iii) \D<t>(z){z-w)->dm(z) = 0 (weG).

Proof. By Theorem 2.3, the support A(m) is not non-tangentially dense for 3D, and
therefore, by [2, Theorem 2], there exists g in H°° such that

sup \gi{z)\ < 1 <sup \g\z)\ = Hfl^.
zeA(m) zeD

Let G = {zeD:\g\z)\>l}. Then G is an open subset of D with m(G) = 0. Let E =
{CedD: \g(0\> 1}. Since | |g| |00>l, E has positive Lebesgue measure, and for almost all (
in E, g*(z)->g(Q as z->C non-tangentially. For such £ and a with 0<a<7t/2, there exists
b>0 such that |gf(z)|> 1 for all z in D(C,b,a), that is D(C,fc,a)cG. This proves (ii).
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Define h on G by

(weG).

For w in G, we have dist(w, Gc)>0, where GC = D\G. Thus i/rw, defined by ij/w(z) =
<p(z)(z — w)~l, belongs to Ll(m), and h is well-defined on G and analytic there.

Suppose that (iii) does not hold, and let a be a point of G with /j(a)#0. By geometric
series expansion of (1 —wz)'1, (3.2) gives

\<t>{z)zkdm(z) = Q (fc^O).
D

Thus , for;,fc = 0 , 1 , 2 , . . . ,

\(j){z)zi{\-wz)-kdm{z)=:O (weD). (3.3)
D

Let \w\ < 1/4. Then, for all z in D, we have

(|a| + |z |) |w| | l—wz|-1<2/3,

and so, for z in D,

(\-awyl=(l-zw-(a-z)w)-1= £ (a-zfwk(\ -zw)-(t+1),
fc = 0

with the series converging uniformly absolutely on D. Multiplication by \j/a{z) and
integration gives

by (3.3). This holds whenever |w|< 1/4, and hence, by analyticity, for all w in D.
Take \ji{z) = \lia(z)lh(a). Then \jjeL\m), and

(l-aw)"1 = Ji/'(z)(l-wz)-1dm(z) (weD).

D

It follows that

an = \\ji(z)z"dm(z)
D
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for non-negative integers n, and hence that

for all polynomials p. Given / in H°°, there exists a sequence {pn} of polynomials such
that pn(C)->/(C) a.e. on 3D as n-»oo, and ||pn||oo<M(ne N), with M<oo. Then
P\(z)-*fXz) f° r aH z in D and |pJ(z)|^M (neN,zeD). By Lebesgue's dominated
convergence theorem, it follows that

r(a) = \Hz)f\z)dm(z),\r(a)\^\\il/\\l sup \f(z)\.
D zeA(m)

Since |gf(a)|> 1 >supZ£/1(m)|g
t(z)|, we arrive at a contradiction by taking f=g" with n

sufficiently large.

Remarks. If there exists an open subset G of D satisfying (i) and (ii) in the last
theorem, it is easy to see that m is not non-tangentially dense for 3D.

In the special case when m is the counting measure for a countable subset A of D,
Theorem 3.3 is known [3, Theorem 7]. It is noted there that this leads to various
conditions on the set A sufficient to imply that A is non-tangentially dense for 3D
whenever the kernel of Tm is non-zero. In particular, this is the case if A has no limit
point in D. The following theorem shows that this conclusion still holds when the
support of m is a countable union of suitable compact sets.

Theorem 3.4. Suppose that the support ofm is the union of a sequence {£„} of compact
subsets of D such that, for each n, the complement of En is connected, the interior of En is
void, and En has void intersection with the closure of the union of the remaining Ek.

Then ker Tm is non-zero if and only ifm is non-tangentially dense for 3D.

Proof. Let (p e ker Tm\{0}. By Lemma 3.2,

l(p(z)(l-wz)-ldm(z) = O (weD).
D

Suppose that m is not non-tangentially dense for 3D. Then, by Theorem 3.3, there exists
a non-void open subset Go of D such that rn(Go) = 0 and

\<p(z)(z-wyldm(z) = O (weG0). (3.4)
D

Let E denote the support of m. Since E is of the form stated in the theorem, it is
intuitive, and probably known, that D\E is connected. A proof can be based on the
following statement of Alexander's lemma.
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Lemma 3.5. [8, p. 101]. Let Xl,X2 be subsets of D with Xt compact, X2 relatively
closed in D and Xx nX2 connected. If two points of D\(Xi u X2) are connected in D\Xt

and in D\X2, then they are connected in OV-Yj uX2).

Let wt,w2eD\E, take p with max(|w1|,|w2|)<^<l, let A = {z:|z|^/?}, and let
Pn = <u{Ek: l^k^n}, Qn = <o{Ek: k>n}. Since E is the support of m, it is relatively closed
in D. Therefore Qn is relatively closed in D and QnnA is compact. Therefore, there
exists N with QNnA void. Since D\Ek is connected for each k, repeated application of
Lemma 3.5 shows that D\PN is connected. Since wuw2eintA<=D\QN, they are
connected in D\QN. Therefore, by Lemma 3.5, wuw2 are connected in D\(PNuQN), that
is in D\E.

It now follows by analyticity from (3.4) that

f 4>(z)(z-w)-ldm(z)=0 (weD\E). (3.5)

D

We prove next that

neN). (3.6)

Fix n in N, let Jn = <u{EJ:j^n}> and define/, and gn by

/ » = J <P(z)(z-w)-ldm(z) (weC\En),
En

gn(w)=$ 4>(z)(z-wyldm{z) (weD\Jn),
j

the integrals being well-defined since C\£n and D\Jn are open sets.
Since E is the support of m, (3.5) gives

/»+S»=0 (weD\E).

Since /„ and gn are analytic in C\£n and D\Jn respectively and (C\£n) n (D\Jn) = D\E,
we can define an entire function / by taking f(w) =/n(w) on C\£n and f{w) = — gn(w) on
£„. When |w|>l, we have \z — w\>\w\ — 1 for all z in £„, and so

Thus/(w)-»0 as |w|-»oo, and so / i s identically zero, and (3.6) is proved.
Expanding (z-w)~l in powers of z/w for |vv|> 1 >|z|, we now have

£ w-<*+1> J
k = 0 £„
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and therefore,

\cfi(z)zkdm(z) = O (k = 0,1,2,...).

Since £„ has connected complement and void interior, Mergelyan's theorem (see [9, p.
386]) gives

I <KzMz)dntz)=0
En

for all continuous complex functions \f/ on £„.
It follows that the complex Borel measure fi on £„, given by dfj{z) = (l>(z)dm(z), is the

zero measure. Therefore

$ \<fi(z)\dm(z)=0 (nelM),
En

and so ||0||i=O.

Corollary 3.6. Let m be as in Theorem 3.4. Then the range of Tm is closed in Ll(dD) if
and only if either the range of Tm is L}{dD) or the range of T* is Lf°(m).

Proof. This is an immediate consequence of Theorem 2.3, Theorem 3.4, and
Banach's closed range theorem.

Remark. Let BH(D) denote the space of bounded harmonic functions on D. Then
T*La>(dD) = La>{m) if and only if, for every element g of L°°(m), there exists h in BH(D)
with

Kz)=g{z) (a.e.m). (3.7)

If the support of m is a countable set X = {an:«6M}, U°(m) can be identified with the
space I00 of bounded sequences, and (3.7) holds if and only if A is a harmonic
interpolation set, that is every bounded sequence is of the form {h(an)} with h in BH(D).
By a theorem of Garnett [5], harmonic interpolation is equivalent to H " interpolation.
In these circumstances, it is of interest to know whether there exist any measures m of
the kind considered in Theorem 3.4 that satisfy (3.7) but do not have countable support.
Theorem 3.8 will show that no such measures m exist, at least if we suppose that
m(£k)<oo for each k.

I am indebted to J. G. Clunie for a suggestion on which the proof of the following
lemma is based.

Lemma 3.7. Let K be a compact subset of C, \i a finite positive Borel measure on K,
and suppose that, for every <f> in L°°(/4 there exists a continuous function f on K with
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/(z) = flz)a.e.fo). (3.8)

Then n is supported by a finite subset of K.

Proof. Let aeK, and, for n in M, let Kn = {zeK:\z-a\^n~1}, i//(n) = n(Kn). Either
ij/(n) = n{{a}) for all sufficiently large n, or there exists a subsequence nk such that

) ( k e ^ ) - 1° t n e second case, define </> on K by

<£(z) = 0 (all other z in K).

Plainly, 0 is bounded, and so there exists a continuous function f on K satisfying (3.8).
Since n(Knk\Knkti) = i/,(nk)-iHnk+1)>0, there exists zk in Knk\Knit+1 w i t h / ( z t ) = ( - 1 ) \
But, since limt_oozjk = a, this contradicts the continuity off.

We have proved that \ji(ri) = n{{a}) for all sufficiently large n. Thus, for each a in K,
there exists pa>0, such that the relatively open set G(a), defined by G(a) = {zeK:
\z — a\<pa}, satisfies /z(G(a)) = /i({a}). By compactness of K, there exists a finite subset
A = {ai,a2,...,an} of K with K = pZ=!<*»*)• Since KV4<=UZ=i(G(a4)\{a*}), w e h a v e

li(K\A) = 0. Thus the support of n is a subset of the finite set A.

Theorem 3.8. Let m be as in Theorem 3.4, and let m(Ek) < oo for each k. If the range
of T* is U°(m), then the support of m is a countable set without limit points in D.

Proof. Fix n in N, and let \i be the restriction of m to the compact set En. Given <j>0

in L°{En,n), take </>(z) = <£0(z) on En and <£(z) = 0 on D\En. Then (f>eLx(m), and so there
exists g in BH(D) with g(z) = 0(z) a.e. (m). On £„, we have g{z) = <j>0{z) a.e. (/*), and g is
continuous. Since £„ is the support of n, Lemma 3.7 shows that En is a finite set.

4. Representation of continuous functions

Question 1. For what measures m on D is every continuous function on 3D of the
form Tm(f> with </> in Ll(m)l

We are a long way from a solution to this question, and most of this section is
concerned with a second question.

Question 2. For what measures m on D is every positive continuous function on 3D
of the form Tm(j> with <f> non-negative?

Plainly, a measure m with the property in Question 2 also has the property in
Question 1.

Notation. Let C(dD), CR(dD), C+{dD) denote respectively the sets of complex, real,
and non-negative continuous functions on 3D. A continuous function / on 3D is said to
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be positive if / ( ( ) > 0 for every £ in dD. We denote by h1 the space of all differences of
positive harmonic functions on D. Given a real Borel measure \i on dD, let

It is well known that the mapping n~*{i is a bijection of the space of real Borel
measures onto h1.

If m is non-tangentially dense for dD, then every / in C(dD) is of the form Tm<j> as an
element of Ll(dD), that is

Even in the case when m is the counting measure of a countable set, we do not know
when this holds in the sense of pointwise convergence everywhere or of uniform
convergence. It is, however, easy to prove the following theorem on uniform approxi-
mation to continuous functions by linear combinations of Poisson kernels.

Theorem 4.1. Let A be a subset of D and let V be the linear span of {pa:aeA}. Then
Vis uniformly dense in C(dD) if and only if the zero function is the only member of hl that
vanishes on A.

Proof. V is uniformly dense in C(dD) if and only if the real linear span VR of
{pa:aeA} is uniformly dense in CR(dD). By the Hahn-Banach theorem, this holds if and
only if the zero measure is the only real Borel measure /i on D with

fpo(C) rfMC) = 0 (as A),
3D

that is with fi(a) = 0 (a e A). The result now follows through the correspondence of
members of h1 with real Borel measures on dD.

Remark. It would be interesting to find a geometric characterization of the subsets
A of D with the property in Theorem 4.1.

The remainder of this section is concerned with the representation of positive
continuous functions on dD. Let W(m) denote the set of all continuous functions / on
dD that satisfy

(CedD), (4.1)

with A a non-negative Borel measurable function on D. By Fubini's theorem, (4.1)
implies
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ll/||i=T- ] ne")dt^jX(z)dm(z) = 114,. (4.2)
*n -n D

Thus XeL\(m), the set of non-negative functions in Ll(m), when fe W(m). Note also
that, for all ( in dD, (4.1) gives

{\-\z\){\ + \z\yldm(z),

and so every function in W(m) is either positive or identically zero.
We say that m is a positive Poisson representing measure (PPR measure) if W(m)

contains all positive continuous functions on dD.

Lemma 4.2. The measure m is a PPR measure if and only if W{m) is uniformly dense
in C+{dD).

Proof. Let W{m) be uniformly dense in C+(dD), and let / t be a positive continuous
function on 3D. Since infCe3D/1(0>0, there exists v, in W(m) with

Take f2 =fi~vl. Then there exists v2 in W(m) with

0</2(0-»2(0<l/2 (CedD).

Continuing in this way, we obtain a sequence {vn} of elements of W(m) and a sequence
{/„} of continuous functions such that, for all n in N,fn +1 =fn — vn=fl — (v, +v2 H— + vn)
and

This shows that £"=, yfc(C) converges uniformly to /j(C) on 8D, and so

For each k, there exists Xk in L\{m) with

vk(Q = j Xk(z)pz(Q dm(z) (C £ dD),
D

and, by (4.2) and (4.3),
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Take A = X*°=i h- Then keL\{m) and

that is / \ e W{m). This proves that m is a PPR measure, and the converse is clear.

Lemma 4.3. Let E be a Borel subset of a compact subset of D with m(E)< oo, and let

Then pE e W(m).

Proof. Let X be a compact subset of D containing E, let /? = sup2 6 K|z| and
«x(0 = ( l + z 0 ( l - z 0 " 1 . Then O£R<1 and pt(Q = Reqx(Q. For C,,C2 in 3D,

and so, for all z in K,

Thus

and p£ is continuous on 3D. Since p £ is also of the form (4.1) with k the characteristic
function of £, the lemma is proved.

We recall from [3], that a subset A of D is a positive Poisson basic set (PPB set) if
every positive continuous function / on dD is of the form

/(()= E ^ P j O (CedD),
n = l

with all kn non-negative and an in A.

Theorem 4.4 The following statements are equivalent to each other.

(i) m is a PPR measure.

(ii) For every harmonic function h in the space hl,

sup/i(z) = ess su
: E D : E D
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the essential supremum being relative to the measure m.
(iii) The support ofm is a PPB set.

Proof. (i)=>(ii). Let m be a PPR measure and let heh1. We may assume that
esssupzeDh(z) = Af <oo, since otherwise there is nothing to prove. Also, since h can be
replaced by h — M, we may assume that M = 0, and thus that

li(z)gOa.e.(m). (4.4)

Let n be the real Borel measure on 3D with ji = h, and let weD. Since m is a PPR
measure, there exists k in L\(m) with

By Fubini's theorem and (4.4), we therefore have

Kw) = J pw(0 dftO = J KIM dm(z) =£ 0.

dD D

(ii)o(iii). By Lemma 2.2, (ii) is equivalent to

sup h(z)= sup h(z),
zeD zeA(m)

for all h in h1. But, by [3, Theorem 10], this is equivalent to (iii).
(ii)=*-(i). Assume that (ii) holds, but that m is not a PPR measure. Then, by Lemma

4.2, W(m) is not uniformly dense in C+(dD), and so there exists g0 in C+{dD) and a real
Borel measure fi on 3D such that

(feW{m)), (4.5)

dD

but

J (4.6)

Let /i = /i, and let G = {zeD:/i(z)>0}. Let K be a compact subset of G and £ a Borel
subset of JC with m{E)< oo. Then, by (4.5) and Lemma 4.3,

J
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By Fubini's theorem, it follows that

Thus

J h(z) dm(z) = J U pz(Q dm[z) \ dn{Q = J pE(Q dtf 0 ^ 0.
£ 8D (.£ J dD

m(E) inf /i(z) ^ J h(z) dm{z) ̂  0,

and so m(£) = 0.
By (T-finiteness of m, K is a countable union of Borel sets £„ with m(En) < oo, and so

m(/Q = 0. Finally, since G is a countable union of compact sets, m(G) = 0, and therefore
/i(z)^0a.e.(m). By (ii), we therefore have h(z)^0 for all z in D, — \i is a positive
measure, contradicting (4.6).

5. Mapping into Lp(dD)

Let l<p<oo . We define a linear mapping Tjf' from Lp(m) into Lp(d£>) with domain
as follows. 0 is the set of all <j> in Lp(m) such that / , given by

= $\(t>(z)\pz(Qdm(z),

belongs to U(dD). For 0 in 2, T^'0 is the element of L"(dD) defined for almost all ( in
dDby

Theorem 5.1. T(£> is a bounded linear mapping of LP(m) into L"(dD) if and only if m is
a Carleson measure.

Proof. Let q = p{p—l)~l. For $ in Q) and g in L?(dD), Fubini's theorem gives

= \<t>{z)g\z)dm(z), (5.1)

with gf the harmonic extension of g. If Tj^' is a bounded linear mapping of LP(m) into
LP(dD), (5.1) gives
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$<P(z)g\z)dm(z)
D

with Af <oo. Therefore,

| | | | | | | | (geU(dD)),

and so m is a Carleson measure (see Carleson's theorem, Garnett [6, p. 33], and
Sarason [10, p. 5]).

Conversely, let m be a Carleson measure. Then, again by Carleson's theorem, there
exists a constant C with

, (geU(8D)).

Let geLq{dD) with g^O. For <p in L"(m), we have

that is

By Fubini's theorem, we have

\g\l- (5-2)

Since this holds for all non-negative g in If (3D), it follows that the function / , given by

= \\4>{z)\pz{Qdm{z),
D

belongs to Lf(dD). Thus (t>e@(T%>) and, also from (5.2),

The following example shows that the range of Tj^, with m a Carleson measure and
non-tangentially dense for 3D, can fail to be the whole of LF(dD).
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Example. Let p = 2 and let m be normalized area measure for D. With n in N, let
). By (5.1), we have

and

Thus I I T J ^ I I J ^ H + I ) - 1 ' 2 , while ||gn||2 = l. This is incompatible with T^L2(m) =
L2(dD). For this, by Banach's closed range theorem [4, p. 488], would imply that P*]*
has closed range and zero kernel, and hence would have a bounded inverse on its range.

Remark. It should be noted that if m is the counting measure of a countably infinite
subset of D, then m(D) = oo and so m is not a Carleson measure, Tj^ is not bounded.

We do not know any example in which Ti*)Lp{m) =

Theorem 5.2. Let m be a Carleson measure and non-tangentially dense for 3D. Then
the range of Pp) is dense in W(BD).

Proof. Suppose that T(^Lp(m) is not dense in U(dD). Then, by the Hahn-Banach
theorem, there exists g in U(BD) with ||g||,^0 and [T\Z)W(m),g~\ = {0}. By (5.1), it
follows that

gt(2) = 0a.e.(m), (5.3)

and, by taking real and imaginary parts, we may assume that g is real valued. Let
G = {zeD:g\z)=£0}. Then G is an open set with m(G) = 0.

Since | |g| | , /0, we may assume that g takes positive values on a set of positive
measure. Then there exist c,d with 0<c<d<oo such that g~l((c,d)) has positive
Lebesgue measure. By Fatou's theorem, there exists a subset X of g~l{(c,d)) with
positive Lebesgue measure such that, for all ( in X, g*(z)-*g{Q as z->( non-tangentially.
Since m is non-tangentially dense for 3D, there exists ( in X such that there exists a with
0<a<7i/2 and m(D{£,b,<x))>0 for all b>0. When b is sufficiently small, g1{z)e(c,d) for
all z in D(C,fc,a), and so D(C,,b,ct)cG. This contradicts m(G) = 0.

6. /'-sums of normalized Poisson kernels

Let l<p<oo and q = p(p—l)~\ Let {flt:teW} be a countable subset of D, and, for
each k, let
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We shall be concerned with sums of the form

with X = {Xk} in/p.
Elementary calculations give the existence of positive constants cp, Cp such that, for

all a in D,

Thus the functions Qk are essentially the Poisson kernels pak normalized as elements of
L"(dD).

Let ®(S) denote the set of sequences X = {Xk} in /" such that Yjt=i |At|Qt(£) converges
for almost all C in 3D to an element of L"(dD), and, for X in 3){S) define SX by

(SA)(O=I A4
k=l

In this way, we obtain a linear mapping from V into LP(dD) with domain ®(S), which is
plainly dense in I".

We note that X in lp belongs to $>{S) if and only if the series Yj'=l \Xk\Qk converges in
the norm of W(8D), and that, in this case, Vj'= 1 hQk converges to SX with respect to
that norm.

For z in D, let <5Z denote the unit mass concentrated at z. Let m denote the cr-finite
positive Borel measure on D given by

F o r <f> in L?(m), let V<j> be defined by

Lemma 6.1. (i) V is a linear isometry of LP(m) onto I".

(ii) V<2(T%>) = !2{S).

(iii) SV= T\>\

Proof, (i) For <f> in LP(m),

and so V is a linear isometry of L"(m) into /". Given X = {Xk} in I", define $ on D by
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taking (j)(ak) = (l -\ak\)~
xlPXk(keN) and </>(z)=0 for all other z in D. Then #eZ/(m) and

V4> = X.
(ii) and (iii). With X = V4>, we have

k=l k=l

so that Si{S) = V^(T(p)). With X=V(f> and <£ in @{T(£>), similar equations hold with the
moduli removed, and (iii) is proved.

Theorem 6.2. S is a bounded linear mapping of F into LP{dD) if and only if m is a
Carleson measure. In this case

(i) I?=iO
(ii) S*g = {

(iii) kerS =

(iv)

Proof. By Lemma 6.1, S is a bounded linear mapping of lp into LP(dD) if and only if
T^ is a bounded linear mapping of LP(m) into Lp(dD), that is if and only if m is a
Carleson measure.

Suppose that m is a Carleson measure. Then m(D) <oo, that is (i) holds. With X in F
and g in U(dD), we have

from which (ii) follows.
(iii) Let AekerS and let neM. By (i), there exists a Blaschke product Bn with its zeros

at the points ak with k in M\{«}. We have gn in U°(dD) with g], = BB, and so

https://doi.org/10.1017/S0013091500018149 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018149


230 F. F. BONSALL

Since Bn(an)^0, we have An = 0. Note that ak¥=aj, when j^k since {ak:fceN} was
defined as a set.

(iv) If SI" = LP(dD), then kerS* = {0}. But, by (i), there exists a Blaschke product B
with its zeros at the points ak with k in N. Take g in Lx(dD) with g* = B. Then g is a
non-zero element of U(dD) but, by (ii), S*g = 0.

Theorem 6.3. S is bounded and has closed range if and only if {ak} is an interpolating
sequence for Hm.

Proof. Suppose that S is a bounded linear mapping of lp into LP(dD) and that Slp is
closed in LP(dD). By Theorem 6.2 (iii), kerS = {0}, and so, by Banach's closed range
theorem [4, p. 488],

lq. (6.2)

Let d(a,b) = \a-b\/\l -db\ for a,b in D. We prove that

inf {d(ap ak):j, keN,j^k}>0. (6.3)

By (6.2) and the open mapping theorem, there exists a positive constant M such that,
given X in I" with ||A||,^ 1, there exists g in U(dD) with

and ||g||,^A/. Let j^k. Then there exists g as above with gt{aj) = Q and
(l- |a4 |)1V(fl*)=l.Thus

{\-\ak\)-
l!"=g\ak)-g\a})

Z7C _ „

Let 5 = d(aj, ak). By Harnack's inequality, we have

|pfl><(O-pfl/C) |^2<5(1-.5) " W

Thus, by (6.1),

With C = 2MCP, we have <5(1—^)-1 ^Cl. Thus 5 ^ ( 1 + C ) " 1 , and (6.3) is proved.
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Since m is a Carleson measure and (6.3) holds, it follows that {an} is an interpolating
sequence for H°°, see Garnett [5, Lemma 2].

Suppose on the other hand that {an} is an interpolating sequence for H™. Then m is a
Carleson measure, and so S is bounded. Also, see Shapiro and Shields [11, Theorem 2],
every /* sequence is of the form

with / in Hq. Therefore S*L"(dD) = lq, and, by Banach's closed range theorem, S has
closed range.

Corollary 6.4. Let {ak} be an interpolating sequence for H™ and let X be the closed
linear span of {pak:keN} in LF(dD). Then each f in X is of the form

f=t(B.(am))-1U,Bm]paH, (6.4)
n = l

where Bn is the Blaschke product with its zeros at the points ak with fc#n, and the series
converges in the norm of LP(dD).

Proof. By Theorem 6.3, S is bounded and has closed range. Thus Slp = X, and, by
Theorem 6.2 (iii) each / in X has a unique expression in the form

k=l

with A = {At} in /" and the series convergent in the norm of LP{dD). Then

k=l
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