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ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS II

by K. F. BARTH* and D. A. BRANNAN

(Received 5th October 1992)

An asymptotic tract of a real function u harmonic and non-constant in C is a component of the set
{z:u(z)^c}, for some real number c; a quasi-tract T(^C) is an unbounded simply-connected domain in C such
that there exists a function u that is positive, unbounded and harmonic in T such that, for each point

limu(z) = O;

and a ^"-tract is an unbounded simply-connected domain T in C whose every prime end that contains oo in
its impression is of the first kind.

The authors study the growth of a harmonic function in one of its asymptotic tracts, and the question of
whether a quasi-tract is an asymptotic tract. The branching of either type of tract is also taken into
consideration.

1991 Mathematics subject classification: Primary 31A05, secondary 30C35.

1. Introduction

This paper continues a study, begun in [1], of the asymptotic tracts of functions
harmonic in C (entire harmonic functions).

Definition 1.1. An asymptotic tract (or tract) of a real function u(z) harmonic and
non-constant in C is a component of the set {z:u(z)^c} for some real number c.

It was shown in [1] that each tract T is necessarily simply-connected and unbounded,
and that u is necessarily unbounded in each tract T; in addition, oo is an accessible
boundary point (in C) of each tract T. The local mapping properties of analytic
functions show that the set {z:u{z)i=c} consists of a finite or countable number of
curves which are locally analytic, except at the zeros of /'(z) (where / is any analytic
completion of u) — where the set {z:u(z) = c} branches. Observe that the angle between
the "branches" must be equal to 2n/n for some n ^ l . The growth of u in tracts was
studied in detail in [1] and [2]; and the geometry of level curves of u corresponding to
non-constant functions harmonic in C was considered by Flatto, Newman and Shapiro
with particularly beautiful results in [6].

•The first author gratefully acknowledges support from the Science and Engineering Research Council of
the United Kingdom.
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36 K. F. BARTH AND D. A. BRANNAN

In Sections 2 and 3 below we shall be dealing with both these questions and also with
the relationship between tracts and quasi-tracts and ^"-tracts, which we now define.

Definition 1.2. An unbounded simply-connected domain T in C, 7VC, is called a
quasi-tract if it has the following property:

(Pj) there exists a function u(z) positive, unbounded and harmonic in T such that, for
each point £ e dT n C,

limu(z)=0.

Remark. We will frequently say tha t 'T supports u".

Also, an Inversen-type construction (see, for example, [11; p. 26]) shows that there
exists a path F in T on which u(z)-> + oo. Since F cannot tend to any finite point of dT
(since u(z) = 0 on dT), it follows that oo must be an accessible boundary point of any
quasi-tract T.

Definition 1.3. An unbounded simply-connected domain T in C, 7VC, is called a
•^"-tract ("^"" stands for "topological") if it has the following property:

(P2) Every prime end that contains oo in its impression is of the first kind.

(A good reference on the various types of prime ends is [5; p. 180].)

The two principal areas of interest in our work are:

Question 1.1. Given (the geometry) of an asymptotic tract 7̂  what can be said about
the function u(z) supported by T?

Question 1.2. Given a quasi-tract T, how can we decide when it is an asymptotic
tract?

It was shown in [3] that if the plane consists of the union of (the closures of) k
asymptotic tracts for a single harmonic function u, then u(z) is necessarily a polynomial
whose degree n satisfies the bounds n+l^k^2n. In fact, Question 1.1 was also tackled
earlier in [1] and [2]; we shall tackle Question 1.2 in particular in Section 3 below.

If T is an asymptotic tract, its complement consists of a number of unbounded
simply-connected domains (also asymptotic tracts) and their boundaries. Since T is
simply-connected, it cannot have any "bounded holes" in itself. However, C — T (which
can be regarded as "unbounded holes in T") may consist of a single tract, or of a finite
number of tracts, or it may have the power of the continuum; this phenomenon, which
we shall discuss in Section 4, of Int (C — T) "breaking up" is called "branching". To be
precise, we give the following definition:

Definition 1.4. An unbounded simply-connected domain T in C is said to be
branched of order nT (possibly nT= +oo) if it has the following property:

There exists a family &T of nT non-homotopic (in T) and disjoint (except for the
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ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS II 37

end-point zT) Jordan curves in T connecting some fixed point in T, zT say, to oo; in
addition, any Jordan curve in T joining zT to oo is homotopic (in T) to one of the
elements of &T.

If nT= 1, we say that T is unbranched; if nT< + oo, we say that Tis finitely branched;
if nT = +00, we say that T is infinitely branched. So far as we are aware, this question
of branching has not previously been studied. In Section 5 we study the mapping
properties of / (where / is any analytic completion of w) and show that / has a rather
simple form when the tract has branching of finite order.

The results in Section 6 show that [2; Theorem 1] can be improved when the tract T
is finitely branched.

The authors wish to thank Professor Maurice Heins for a suggestion that simplified
the proof of Theorem 2.1, and the referee for his many exceedingly helpful suggestions
and comments.

2. Asymptotic tracts

Rather loosely, an asymptotic tract can be (both topologically and analytically)
"rather badly—but not too badly-behaved"! In this Section we shall study what can be
said topologically about a tract T. After a couple of definitions we shall begin with two
interesting domains.

Definition 2.1. A set S in C is said to be connected at infinity (in the sense of
Arakelian [7; page 11]) if, for each neighbourhood N of oo, there exists a neighbourhood
M of oo (with MczN) such that each point zeM nS can be joined to oo by a Jordan
curve F entirely contained in (N n S) u {oo}. We shall say that a point zeS is connected
to infinity in S if z can be joined to oo by a Jordan curve that lies in (N n S) u {oo}.

Remark. It follows from the definition of local-connectedness (see, for example, [12;
page 84]) that a set S is connected at oo if and only if Su {oo} is locally-connected at
oo. Hence results involving connectedness at oo can be restated in terms of local-
connectedness at oo.

Example 2.1. Let

and

0, l/2<y<3/4}.

Both £>j and D2 are unbounded simply-connected domains in C. Neither domain can be
an asymptotic tract, since the level curve corresponding to 5D, or dD2 "piles up" on the
segment [+1,+oo) of the positive real axis (technically, neither dDt nor dD2 is
locally-connected). We remark that D2 can be made "more satisfying" by replacing each
of the segments {z:z = x + iy,x^.l,y~leM,y~i'^3} by a suitably-chosen thin
unbounded continuum bounded by a single analytic curve.
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38 K. F. BARTH AND D. A. BRANNAN

FIGURE 1

The domain Dt does not contain a path going to oo so it cannot be a quasi-tract, but
D2 does contain such a path. To see that D2 is a quasi-tract just map D2 onto
{w:|w|<l} by the function w = f(z) so that one of the paths going to oo in D2

corresponds to a path tending to w= 1. The function

u(z) = Re

shows that D2 has the property (PJ and hence is a quasi-tract. However neither domain
is connected at oo. This question of how a tract can "approach" oo leads us to the
following result.

Theorem 2.1. Let u(z) be an entire non-constant harmonic function. Let T be a
component of {z:u(z)^c}. Then T is connected at oo {in the sense of Arakeliari).

Proof. It suffices to prove the theorem when T is a component of {z:u(z)>0}. We
may also assume that O e l

Since 7VC, it follows that for all sufficiently large R the set {z: \z\ = R} n T consists of
at least one and at most a finite number of open arcs. Let txR be a component of
{z:|z| = .R} n T Since T is simply-connected, it follows that T—txR consists of two
simply-connected domains in C. Since T is unbounded, at least one of the two domains
in T — txR is unbounded.

Let D+(aR) be that component of T—aR that contains the intersection of {z:|z|>/?}
with all neighbourhoods of points of <xR; we call this the outer domain associated with
ccR. The inner domain D~(uR) associated with aR is defined in an analogous fashion.

Let U = {z:\z\>R} n T be any neighbourhood (in T) of oo. We need to show that
there exists a neighbourhood V = {z: |z|>R0} n T of oo such that any point z0 in V can
be connected to oo by a curve lying entirely in U. Consider the various outer domains
D+(a.R), i=l,2,...,N, corresponding to the finite number of arcs contained in Tn
{z:\z\ = R}. Each domain D+(ix'R) is either bounded or unbounded. Let Ro be chosen so
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FIGURE 2

that all the bounded outer domains are contained in {z: \z\ < Ro}. Now consider any
point z o e K = {z: |z| >/?0} n X It must lie in one of the unbounded outer domains, call it

Denote the restriction of u{z) to D+{PR) by U(z). On pR we have 0 < l / ( z ) ^ M for
some M and t/(z) = 0 on dD+(PR)~pR.

If l/(z) is unbounded in £>+(/JR) then the usual Iversen-type argument shows that
there exists a path F in D+(PR) on which l/(z)-* + oo. Hence oo is an accessible
boundary point of D+(/?„), and it follows that z0 can be connected to oo by a path lying
in D+(PR). Thus the definition of connected at oo is satisfied in this case.

Now suppose that l/(z) is bounded in D+(PR). This can happen; for example, consider
the domain {z: |z| >/?, Re z < 0, |lmz|<7t/2} and the entire harmonic function excosy.

Given any point zoeD+(fiR)r\ V, we need to show that z0 can be joined to oo by a
path lying in D+{pR) (in V). We will do this by constructing a function U(z) that is
harmonic and positive in £>+(/?R)> tends continuously to 0 as z approaches dD+{f}R), and
is unbounded in D+(/?R).

Let z0 be a fixed point of D+(PR) and let {rn}™=1 be an increasing sequence of real
numbers which satisfy r t >• |2X| and Iimn_00rn = oo. Set Qn equal to the component of
D+(PR)

 n {z : | z |< rn} which contains zv It is clear that Qn lies in fin+i and D+(PR) =
Un°= i ̂ n- ^ 1S e a s y t o s e e t n a t t n e Dirichlet problem with boundary values

JO, SedD+(PR)nnn,
W j l , (ednn-dD+(pR),

has a solution un(z) that is positive and harmonic in Qn. Now normalise the functions
wn(z) by setting

We now need the following [9; Theorem 3.3, page 64]:

Theorem A. Let Q be a domain, aeil, and let <J> denote the class of functions u that
are harmonic on fl, positive and satisfy the normalisation u(a)= 1. Set
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40 K. F. BARTH AND D. A. BRANNAN

A(z) = inf u(z), n(z) = sup u(z), ze£l.
ueO

Then X is continuous and positive on Q, and \i is a continuous finite-valued function on Cl.

With the use of Theorem A it is straightforward to show that {u^z)} is a normal
family on D+(/}R); hence it contains a subsequence, which we denote by {Un(z)}, that
converges uniformly on compact subsets of D+(fiR) to a function U(z) that is harmonic
and positive on D+(/?R) (by Theorem A). We need to show that

lim L/(z) = O,

where £ is any finite boundary point of D+(PR). It is then clear that U(z) is unbounded
in D + ( /U

Consider any finite boundary point ( of D+((1R). Since the boundary of D+(PR)
consists of a portion of a level curve of a harmonic function and a portion of {z: |z| = /?},
there exists a positive number r such that, if we set <%(() = {z:\z-C|<r}, then
<^(C)n 3D+(/?,,) consists of exactly one component. Map ^(()nD+(/?R) conformally by
z=g(w) onto the upper half-disk H = {w:|w|< 1,1m w>0} so that < (̂() nd£>+(j3R)
corresponds to {w: — 1 < Re w < 1}.

If we set Vn(w) = Un(g(w)), we have that Vn{w) is positive and harmonic in H and
vanishes continuously on {w: — 1 <Rew<l}. We also set V(w) = U(g(w)). It suffices to
show that V(w) vanishes continuously on {w: — 2/3<Rew<2/3}. Since Fn(w) converges
to V(w) in H, the vanishing of V(w) on {w: — 2/3<Rew<2/3} is implied by the
following standard result; this then completes the proof.

Lemma B. We define w = u + iv, H = {w:\w\ <l,v>0}, H' = {w: \w\<2/3,v>0}, and Jf?
the family of positive harmonic functions on H which are continuous on H and vanish on
that part of dH on the u-axis. For any heJfwe have h(w)^2000h(%i)v, for weH'.

Lemma B follows in a straightforward fashion from the Poisson integral represen-
tation for a function harmonic in the unit disc and continuous on its closure; see, for
example, [13; Lemma 6.4, page 118]. The proof will be sketched since the authors do
not know an easily accessible reference to it.

Since h(w) is positive and harmonic in H, continuous on the closure of H, and
vanishes at that part of dH on the u-axis, we have, using the Poisson integral
representation for functions harmonic in the unit disc and the reflection principle, that

h{w) = -$y-
n 0

2V'~- . a n ,
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ASYMPTOTIC TRACTS OF HARMONIC FUNCTIONS II 41

for weH. Here the kernel

satisfies the inequality 9/125 <K(<p,w)< 81 for |w|<2/3 and the conclusion follows.

Theorem 2.2. Let u(z) be a non-constant entire function and let T be one component of
the set {z: u(z)^c}, for some real c. Then C — T is connected at oo.

Proof. It suffices to prove the theorem when T is a component of {z:u(z)>0}. Note
that C — T consists of the union of {z.u(z) = 0} and various components of {z:u(z)>0}
and of {z:u(z)<0}. The components of {Z:M(Z)>0} and {Z:M(Z)<0} are connected at oo,
by Theorem 2.1. We need only consider points of {z:u(z) = 0}. Since any neighbourhood
of a point z0 where M(ZO)=0 contains points where u(z)<0, Theorem 2.2 follows in a
straightforward fashion.

In view of the Remark after Definition 2.1, Theorems 2.1 and 2.2 can be rephrased as
follows:

Theorem 2.3. For any asymptotic tract T, the sets Tu{oo} and (C—T)u{oo} are
locally-connected (in C).

In the next section we shall prove that asymptotic tracts are ^"-tracts and that
^"-tracts are quasi-tracts; however, note that it is obvious that asymptotic tracts are
quasi-tracts.

We end this section with an example (related to Example 2.1) to show that a set may
be connected at oo without its complement having the same property.

Example 2.2. We define the following sets:

and
D = fl,uD2u(0,l).

Then the set T = C-D is connected at oo, but C — T and Int(C — T1) are not connected
at oo.

3. Asymptotic tracts, quasi-tracts and ^-tracts

In this section we discuss the relationships between asymptotic tracts, quasi-tracts
and ^"-tracts.
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42 K. F. BARTH AND D. A. BRANNAN

Trivially a tract is a quasi-tract, and Theorems 2.1, 2.2 and 3.1 will imply that an
asymptotic tract is necessarily a ^"-tract. The following example shows that a set may
be a quasi-tract and a ^"-tract without being an asymptotic tract.

Example 3.1. Let T = {z:z = x + iy,y>sin(l/x) if x#0, y>\ for x = 0}. Map T onto
{w:|w|<l} by the function w = f(z) so that oo corresponds to w=l. Let

Then T is both a ^"-tract and a quasi-tract, but consideration of u(z) near z = i shows
that u(z) cannot be the restriction to T of any function harmonic in all of C (so that T
is not a tract); note also that C — T is not locally-connected at 0. Thus this Example
also shows that if T is a ^-tract or a quasi-tract, then C —T need not be
locally-connected.

Example 2.1 showed that a quasi-tract is not necessarily a ^"-tract; however, Theorem
3.2 below will show that a ^"-tract is a quasi-tract. First we prove the following:

Theorem 3.1. Let an unbounded simply-connected domain T in C, where T^C, be
such that both T and C — T are connected at oo (in the sense of Arakelian). Then every
prime end of T that contains oo in its impression is of the first kind (so that T is a
$~-tract).

Corollary. Asymptotic tracts are ^-tracts.

Proof of the Theorem. For prime ends we shall use the notation and terminology of
[5; Chapter 9, pages 167-189]. Let P be a prime end of T that contains oo in its
impression. Since oo is an accessible boundary point of T (as T is connected at oo), oo
is the only principal point of P [5; Theorem 9.7, page 177]. Let {qn} be a chain
belonging to P, and let Dn be the subdomain of T defined by qn that contains qn +1 (see
[5; pages 169-179]). Since oo is the only principal point of P, it follows from [5; pages
171-172] that the qn's may be chosen to be a sequence of circular arcs centred at the
origin and whose radii strictly increase to oo. Let the radius of qn be l/Sn. Since T and
C — T are connected at oo, there is a sequence {en}^=l> where en>0 and en|0, such that
any point of T or C — T lying in {z: \z\ > l/en} can be connected to oo by a Jordan curve
in T n {z: \z\ > l/<5n} or in (C — T) n {z: \z\ > l/dn}, respectively. Now pick subsequences of
the qn and the £„, which for simplicity of notation we shall continue to denote by {qn}
and {£„}, that satisfy the inequalities

Note that the redefined sequence {qn} is an equivalent chain to the original sequence
{qn} [5; page 169].

There is a boundary point of T (a point of C — T) at each end of each qn\ denote
these two points in the order of increasing argument by an and bn. From the argument
in the previous paragraph, we see that an can be connected to oo by a Jordan curve an

lying in (C — T) n {z: \z\> l / ^ - J and that bn can be connected to oo by a Jordan curve
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/?„ lying in (C —T)n{z:|z|>l/<5n_i). If we can show that Dn (the subdomain of T
defined by qn and containing qn+1) is contained in {z:|z|> l / ^ . j } , then it will be clear
that the impression of P only contains the point oo since the impression is a continuum
[5; page 170].

To see that Dn is contained in {z:|z|> l/5n_x}, let zn be a point of qnr\ T. Since T is
connected at oo, there exists a Jordan curve *Pn that connects zn to oo in T n
{z:|z|>l/5n_!}. Now, since qn is a cross-cut of T, by redefining the initial point of ¥„ to
be its last point of intersection zn with qn we may assume that *Pn lies in {z: \z\ > \/8n}
(except for its initial point). It is clear that *Pn divides Dn into two components; denote
the component with an in its boundary by An, and the other component by Bn. The
Jordan curve

an u ¥„ u {z: \z\ = l/<5n, arg an ^ arg z g arg z„}

divides the plane into two components; one of these components, Dn say, is completely
contained in {z:|z|> l/8n-1}. Similarly, Bn is contained in {z:|z|> l/5n_ x}, and the proof
is complete.

Theorem 3.2. A $~-tract is a quasi-tract.

Proof. We map T onto the unit disc in the w-plane in a one-one conformal fashion
by a function / By Caratheodory's Theorem [4], / can be extended to be a
homeomorphism between the prime end compactification T* of T and {w:|w|<l} (see
[5; pages 172-175]). We may normalise the mapping function / so that one of the
prime ends with oo in its impression corresponds to the point w=l. It then follows
readily that

is positive and unbounded in T and has limit zero at any finite boundary point of T.
Hence T is a quasi-tract.

A natural way in which to proceed is to try to characterise topologically tracts and
quasi-tracts. This seems very difficult. We begin with the question for tracts:

Question 3.1. If we add "the finite boundary of T consists of one or more locally
analytic curves except for a set of isolated points where dT has tangents from the left
and from the right and the angle between the tangents is a rational multiple of 2n" to
the definition of a ^"-tract, is T a y-tract if and only if T is a component of the set
{z:u(z)>0} for some non-constant entire harmonic function M(Z)?

Let us consider the simplest case—where dT consists of just one locally analytic
Jordan curve. Surprisingly, in a beautiful paper [6] Flatto, Newman and Shapiro have
shown that, if u(z) is an entire harmonic function and vanishes on the curve y = x° for
n^3 , then u(z) = 0. This shows that even in the simplest case the answer to the above
question is negative, and that it will be very difficult to characterise topologically a tract
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of an entire harmonic function. However, given a ^"-tract T that is bounded by one
locally analytic curve, one can always approximate T as closely as one likes, using the
standard approximation theorems, by a domain T such that T is a component of
{z: u{z) > 0} for some entire harmonic function u(z).

As Example 2.1 shows, an unbounded simply-connected domain can be a quasi-tract
and need not be connected at oo. Thus it appears that the topological characterisation
of quasi-tracts will also be difficult.

It would also be interesting to relate whether an unbounded simply-connected
domain D is an asymptotic tract or a quasi-tract to its prime end structure at oo. If D
has at least one prime end of the first type with oo in its impression, then the argument
used in Theorem 3.2 may be used to show that D is a quasi-tract. However, Theorems
2.1, 2.2 and 3.1 show that D need not be an asymptotic tract. If all prime ends of D that
contain oo in their impression are either of the third or fourth kinds, then oo is not an
accessible boundary point and D cannot be a quasi-tract. If all the prime ends of D that
contain oo in their impression are of the second kind and have oo as their principal
point, then the situation is unclear. Let P be any such prime end; the argument used in
Theorem 3.2 may be used to produce a curve tending to oo in D on which u(z)-»+ 00,
and u(z)->0 as z approaches any other prime end of D. However, it is not clear to what
value u(z) tends, if any, as z approaches a subsidiary (finite) point of P.

4. Branching of tracts and quasi-tracts

In this Section we investigate how large the order of branching of tracts and
quasi-tracts may be. If u(z) = e* cos y +1, we see that {z:u(z)>0} is countably-infinitely
branched. The following theorem shows that the order of branching of a tract may have
the power of the continuum.

Theorem 4.1. There exists an entire harmonic function u(z) and a component T of
{z: u(z) > 0} such that there is an uncountable number of nonhomotopic (in T) paths Fa such
that the following are satisfied:

(i) Each path Fa connects a fixed point be T to oo in T;

(ii) u(z)-* + oo as \z\-» + oo along each path rx.

Proof. The authors originally had a rather complicated example using Arakelian's
Theorem, and wish to thank the referee for making a suggestion that made them realise
that the following simple function has the desired properties.

Let

Since / is entire, the function
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/ * i t, \ v r4nsin(4n0) , , ie.
u(z) = Im/(z) = £ — v, (where z = re">)

is harmonic in the entire plane.
We now define El = {9:9 = na,0<a<l;a has finitely many 0's and 2's but infinitely

many l's and infinitely many 3's when expanded in base 4}, and £2 =
{9:6 = n<x,0<(x< l;a has finitely many l's and 3's but infinitely many 0's and infinitely
many 2's when expanded in base 4}. Then, if 9eE1, we have that sin(4"0)<O for all
sufficiently large n (depending on 9) so that

u(rel8)-» — oo, as r-» + oo;

similarly, if 9eE2, we have that sin(4"0)>O for all sufficiently large n (depending on 9)
so that

u{re>a)-y + oo, as r-» + oo.

Clearly Ex and £ 2 are both dense and uncountable in every subinterval of (0, n). Since
there are only a countable number of components of {z:u(z)>0} there must be at least
one of these components, call it T, that contains an uncountable number of half-lines
Le = {reie:9eE2,r>r(6)} on which u-> + oo as r-* + ao. Since Et is dense in every
subinterval of (0, n), the existence of the desired family {Fx} of curves follows easily.

5. The mapping properties of a harmonic function in a tract with finite branching

The results of this Section shows that in a tract with branching of finite order,
associated with a given harmonic function u, any analytic completion / of u has a
particularly simple form.

We deal first with the case for branching of order 1.

Theorem 5.1. Suppose that T is an unbranched quasi-tract which is also a Sf -tract (in
particular, an unbranched tract), and let «(z) be harmonic and positive in T and approach
zero as z approaches any finite boundary point of T. Let v(z) be any harmonic conjugate of
u(z) in T. Thenf(z) = u(z) + iv(z) maps T one-to-one onto Hw = {w: w = u + iv,u>0} with oo
in the z-plane corresponding to oo in the w-plane.

Remark. This result is known at least in the simpler case where T is a Jordan domain
(see, for example [8; Theorem 10.2, page 754]).

Proof. Recall that u(z) must be unbounded in T and that there must exist at least
one path F in T such that

lim u(z) = oo.
2-* oo.zeP
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Now let v(z) be any harmonic conjugate of u(z) in T, and let z=g(Q map Hc =
{C: C = ^ + ' ^ <S > 0} one-to-one conformally onto T with the prime end P to which F
converges corresponding to oo. Set

Note that l/(() is defined and positive in ff(; we need to show that l/(()->0 as £->i>7
from within H?.

Since g{Q maps H? onto T, g(Q must approach a prime end Pn of T as £-•»/ from
within H(. If the impression of Pn does not contain oo, then u(g(0)->Q as g(Q-*Pn, by
hypothesis. Thus we may now suppose that, on the other hand, the impression of Pn

contains oo; then, by the Corollary to Theorem 3.1, Pn coincides with oo, since T is a
^"-tract.

Hence g(Q-*co as (-»»; from within //(. By letting ( tend to in along the line segment
s = {l — t + in:0^£<l}, we obtain a path x = {z:z=g(l — t + in,O^t< 1} in T along which
z-»oo. Since T is unbranched, z approaches the (unique) prime end at oo in T. Hence
C=g~1(z) approaches the prime end in the (-plane corresponding to z = oo, namely oo;
this is contrary to our hypothesis. Thus u(g(Q)-*0 as £->i/7 from within Hn.

Now a standard uniqueness theorem of Bouligand (see, for example, [8; Theorem
10.1, page 752]) shows that C/(C) = cRe( for some real constant c. Taking harmonic
conjugates, we see that f(g(Q) = cC + id for some real constant d. Thus g{Q = f~l{cZ, + id),
so that f~l maps Hc one-to-one onto T and / maps T one-to-one onto //c.

This completes the proof of Theorem 5.1.
For the case of finite branching of order higher than one we need an extension of the

uniqueness theorem used above.

Theorem L. Let u(z) be harmonic and positive in Hz = {z:Rez>0}, and let E be a
finite subset of the imaginary axis I.

7/limz_? reHiu(z) = 0/or each point £ e / - E , then

7-1 * " « 7 .

where E = \Jn
J=1itj,c^O, andc^Ofor j=l,2,...,n.

Theorem L is a consequence of a more general theorem of Lohwater [10];
alternatively, Theorem L could be proved directly from the Poisson integral represen-
tation for u.

Theorem 5.2. Suppose that T is a quasi-tract which is also a &-tract and is branched of
order n>\. Let u{z) be harmonic and positive in T and approach zero as z approaches any
finite boundary point of T. Suppose that v is any harmonic conjugate of u, and that
f=u + iv. Then:
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(i) / maps T p-to-one ( l ^ p ^ n ) onto / /w = {w: Rew>0} with oo in the z-plane
corresponding to p points on the imaginary axis in the w-plane, and

(ii) The number of zeros of f' in T is p—\.

Remark. Recall that we proved in Section 2 that the tracts of entire harmonic
functions are ^"-tracts, so Theorem 5.2 applies to them.

Proof. As in the proof of Theorem 5.1, there is a path F in T such that
limj-.a, ze ru(z) = oo. By hypothesis there are n nonhomotopic curves {Ft}J = 1 which end
at oo such that any other path in T which ends at oo is homotopic to one of the paths
in the set {Tk}. Choose the notation so that F is homotopic to Fn. Let v be any
harmonic conjugate of u in 7̂  and let z=g(O map JJ? = {£:£ = £+ ''7. £>0} one-to-one
and conformally onto T with the prime end Pn to which Fn converges corresponding to
oo. Set

Note that l/(Q is defined and positive in // ( . Denote by itk the point that corresponds to
the prime end Pk to which Ffc converges, for k = l,2,...,n— 1. In order to apply
Theorem L we need to show that l/(Q-»O as C,^>in from within H^, except possibly for
n = tk, k= 1,2,...,n— 1. To see this, we note that the points in for n^tk correspond
under the mapping z=g(Q to prime ends Pn whose impression does not contain oo.
Thus, just as in the proof of Theorem 5.1, we can show that u(z)->0 as z-*Pn, so that

) = u(g(())-»O as (,->ir\. Hence Theorem L applies, so that

"J
where c^O, and Cj^O for j= l,2,...,n— 1.

Let the degree of the rational function

be p, where 1 ^ p ̂  n. Setting w = u + iv, we have that R(() is a p-to-one mapping of the
C-plane onto the w-plane. An elementary computation shows that Re R(Q > 0 if and only
if Re (>0 ; hence R(Q is a p-to-one mapping of / / ? onto HW. Since g(Q is a one-to-one
mapping of //? onto T, it follows that /(z) is a p-to-one mapping of T onto Hw as
desired. Clearly oo in the z-plane corresponds to p points (including oo) on the
imaginary axis in the w-plane.

We now consider the number of zeros of / ' . Elementary calculations show that
R'(0>0 for ( = !>/ except for n = ts, where j= 1 ,2 , . . . ,n - l , and that i?'(Co) = ° >f and only
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if K ' ( - Q = O. Since R' has 2p-2 zeros, it follows that R' has p-1 zeros in HQ and that / '
has p-1 zeros in T (because g'(C)#0 in H^j. The reason that p may be less than n is that
some of the numbers ci may be zero—that is, u may remain bounded in the "branch" of
the tract "determined" by T,-.

We now study the existence of positive harmonic functions approaching oo along the
various "branches" of 7^tracts.

Theorem 5.3. Suppose that T is a 3~-tract which is branched of order n. Let {Tk}"k=l

be n nonhomotopic curves in T connecting a point beT to oo. Then there exist n functions
Uj{z),j= 1,2, ...,n, that are positive and harmonic in T such that, for each fixed j :

(i) Uj{z)-*0 as z approaches any finite boundary point of T;

(») l i m ^ ^ ^ ^ u(z) = + oo; and

(Hi) lim2_00 z e Au(z)=0, where A is any curve connecting b and oo in T which is not
homotopic to Tj.

Remark. It follows from this Theorem that T supports any function of the form

n

"00 = £ CjUj(z)
j=l

where c^O, and that we can make u approach oo along any desired subset of { r ^ } ^ t

by an appropriate choice of the c/s.

Proof. As in the proof of Theorem 3.1 we map T onto {£:|C|<1} by a mapping
£=g(z) with the prime end to which I", converges corresponding to the point £=1.
Suppose that the prime end to which r,- converges corresponds to the point eWj. Then
the functions

have the desired properties, since if two curves in T ending at oo are nonhomotopic
their images under g must end at different points of the unit circle.

6. The growth of harmonic functions along an asymptotic path in a tract which is
branched of finite order

Suppose that u(z) is harmonic and non-constant in the plane. It was shown in [2]
that there exists a path T such that

p^->oo asz->oo along T (6.1)
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for <x<% but not necessarily for a^.j (see [2; Theorem 1, page 363] for a precise
statement of the result). In [1; Theorem 3, page 216] it was shown that this result can
be improved if one makes an assumption about the angular width of the tract that
contains P. We now show that (6.1) can be improved if one assumes that the tract that
contains F is branched of finite order (no assumption on the angular width of T is
required).

Theorem 6.1. Let T be a quasi-tract which is also a 2T-tract (in particular, the tract of
an entire harmonic function), and suppose that OeT. Let u(z) be supported by T. If T is
finitely branched and has inner mapping radius m at 0, then there exists a curve F in T
joining 0 to oo along which

l i m inf^^^^O, (6.2)
z->oo,zer | z | "•

where c is positive and depends on u. If T is unbranched, then c = u(O).

Remark. To illustrate Theorem 6.1, let T be the plane slit along the negative real
axis from — 1 to — oo, and let

u(z) = Re(z + l)1/2 (zeT).

Then the mapping radius of T at 0 is 4 (cf. the Koebe function), and there exists a path
F (viz. the positive real axis) in T that joins 0 to oo along which

lim "(z) - 1
11111 TIX/2

z - * o o , z e T | 2 I

Thus Theorem 6.1 is best possible in the case that T is an unbranched quasi-tract. Of
course, this particular domain T is not the tract of any entire harmonic function;
however, in [1; pages 219-225] an entire harmonic function £(t) was constructed with a
tract T such that

where M(r) = max{^(t):teT, \t\ = r} and O<L<1; it follows for this function that on any
path F in T we must have

Hence Theorem 6.1 is best possible in the unbranched case. An example showing that
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Theorem 6.1 is best possible in the case that T is branched of order n can be
constructed by adapting the methods in [1; pages 219-225], but we omit the details as
they are rather lengthy.

Proof of Theorem 6.1. We know that there is at least one curve A such that u(z)-»oo
as z->oo along A. Let g map {C:|C|< 1} one-to-one and conformally onto T with g(0) = Q
and the prime end P to which A converges corresponding to the point ( = 1. (Recall that
since T is a 5~-tract, the impression of P must consist exactly of the point oo.) Set
h(z)=g~1(z). Transplanting the results of Theorem L to the unit disk and setting
U(Q = u(g(Q), we deduce that

l+i " ^ eiBj + C

j± i 6 ^ (6.3)

where 07#O, c^O and c,-^0 for j = l,2,...,n—l. Also by the Koebe Distortion
Theorem,

(|C|<D.

We denote by T the segment [0,1). For aer, we write /?=g(a), so that fisT. As OL-*\
along T, /J->oo along some curve T=g(x) lying in T because the impression of the prime
end P that corresponds to the point £ = 1 consists only of the point oo. We will prove
that

which gives (6.2).
Let the left hand side of (6.5) be denoted by p; obviously O^p^ +00. Let {/J*}£°=i be

a sequence of points on F with fik->co and

™ - » P (as/c^oo). (6.6)

Put <xk=g~i(f}k); then <xke[0,1), and ak-»l as k-*oo. Now choose any positive number e.
Then there exists some number K such that

4w2 (6.7)

Set

(6.8)
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and note that (6.3) implies that

1P^- (6>9)

Substituting for u(Pk) in (6.7) and using (6.8) and (6.9), we obtain

c —+ Y, c jRe"i9—— = \Pk\ll2(P + E)- (6.10)
1 — cck J = i e J <x.k

Putting at = C and Pk=g{0 in (6.4), we see that

< m ^, ( O ^ a ^ l ) . (6.11)
(l-«k)

Substituting for |/?*| from (6.11) into (6.10), we obtain that

which we then rewrite in the form

e J —

Letting fc-»oo, we obtain

since ffj^O for j= l,2,...,n— 1. Because e is arbitrary, it follows that p^2c/wi1/2, as
required.
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