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Abstract

Let K := Q(a) be an algebraic number field which is given by specifying the minimal polynomial
f(X) for a over Q. We describe a procedure for finding the subfields L of K by constructing
pairs (w(X), g(X)) of polynomials over Q@ such that L = Q(w(a)) and g(X) is the minimal
polynomial for w(a). The construction uses local information obtained from the Frobenius-
Chebotarev theorem about the Galois group Gal(f), and computations over p-adic extensions
of Q.
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1. Introduction

Let f(X) € Z[X] be an irreducible polynomial of degree n with a root a,
and consider the algebraic number field K := Q(a). Without any real loss in
generality, we shall simplify the discussion by assuming that f(X) is monic,
s0 a is an algebraic integer. From Galois theory we know that K has only a
finite number of subfields, and we want to describe a procedure to construct
these subfields. Our objective is to specify each subfield L of K by a pair
(w(X), g(X)) of polynomials in Q[X] such that L = Q(w(a)) and g(X)
is the minimal polynomial of w(a) over Q.
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REMARK 1. It can be seen that the problem of describing a subfield L
of degree m over Q in this way is formally equivalent to finding a pair of
polynomials w(X), g(X) € Q[X] with g(X) irreducible of degree m such
that

g(w(X))=0 (mod f(X)).

Since the relation will remain true if we replace w(X) by its remainder
modulo f(X) there is no loss in generality in assuming that degw(X) <
n = deg f(X). Clearly, if we are given a pair w(X), g(X) of polynomials
it is easy to check whether they specify a subfield of K in this sense.

REMARK 2. If we are only given w(X) then there is a well-known algo-
rithm for computing g(X) using linear algebra. Indeed g(X) is the minimal
polynomial of the linear transformation & — w(a) of Q(a) into itself, and
a matrix for the latter over the basis 1, o, ..., " ! s easily constructed.
The converse problem of finding w(X) when g(X) is given seems to be
much harder, although the following lemma suggests one approach.

LEMMA. Let K be an arbitrary field, and let f(X) and g(X) be separable
irreducible polynomials over K of degrees n and m respectively, with m < n.
Let a bearootof f(X) in a suitable extension field. Define h(X) € K[X] to
be the monic polynomial of degree mn whose roots are the products of roots
of g(X) by roots of f(X), and assume all of these products are distinct (see
Appendix A). Then

(a) each irreducible factor of h(X) over K has degree divisible by n;

(b) g(X) has arootin K(c) ifand only if h(X) has an irreducible factor
k(X) of degree n;
and

(c) if h(X) has an irreducible factor k(X) of degree n, then the greatest
common divisor GCD(k(Xa), g(X)) (calculated over K(a)[X]) has the form
X — w(a) where w(X) € K[X] and w(a) is a root of g(X).

PrOOF. Let E be a splitting field for f(X)g(X) over K, and let G :=
Gal(E/K). Let Q, " C E be the sets of roots of f(X) and g(X), respec-
tively. Then G acts in a natural way on QxI, and this action is permutation
equivalent to the action of G on the set of roots of #(X) because we are as-
suming that the latter roots are distinct. Moreover, elementary Galois theory
shows that the orbits of G on QxI" correspond bijectively to the irreducible
factors of A(X) over K, such that the length of the orbit is equal to the de-
gree of the corresponding factor. Since G acts transitively on 2, the orbits
of G on Q x I have lengths which are multiples of 7, and so (a) follows.
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Moreover, if g(X) has a root f in K(a), then off has degree at most n
over K, and so A(X) has an irreducible factor of degree exactly n. This
proves part of (b). Finally, if k(X) is an irreducible factor of degree n of
h(X), then it has exactly one root of the form af (for some root g of
g(X)) because G is transitive on Q. Hence g(X) and k(Xa) have exactly
one root in common, namely 8. Thus

GCD(k(Xa), g(X)) = X — w(a)

for some w(a) € K[a], and B = w(a). This proves (c) and completes the
proof of (b). O

REMARK 3. The lemma is useful for computations over both algebraic
number fields and finite fields, but the range of its application is limited by
the degree of the polynomial A(X) which has to be factored, so we have
avoided using this approach below. (For factorization algorithms see [1] and
[13]).) We also note that, under the same hypotheses as the lemma, if g is a
root of g(X), then K(a) = K(B) if and only if m = n and g(X) has a root
in K(a). Thus the lemma can be used as a basis for deciding isomorphism
of extensions. Further results of this type appear in [23]. In particular, [23,
Lemma 3.1] gives a generalization of part (c) of the lemma above.

Let Q := {a = o, a,, ..., a,} be the set of roots of f(X) in some
splitting field F of f(X) over Q. (For later convenience we shall assume
that Q is contained in some “universal” field U which contains a copy Qp of
the p-adic closure of Q for each prime p.) The problem of finding subfields
of K is related to the problem of calculating the action of the Galois group
Gal(f) of F over Q on Q. The latter problem appears to be quite difficult,
even for moderate sized degrees ([6], [15], [20], [21] and [22]). The cases
where n < 4 are classical and were solved in the last century using criteria
based on the discriminant and the cubic resolvent (see [9] or [25]). In the past
ten years or so, John McKay and his co-workers have developed techniques to
handle polynomials of degrees up to 11. Some of these techniques have been
incorporated in a procedure in the symbolic computation language MAPLE
to compute the Galois group of any polynomial of degree n < 7. However,
as it presently stands, McKay’s technique requires an exhaustive catalogue
of all transitive groups of the degree in question, and enough information
about invariants to discriminate between these groups. Since there are over
300 transitive groups of degree 12 (see [18]), a straightforward application
of these techniques would be very unwieldly for » = 12. One motivation
to consider the problem of the present paper is that construction of subfields
could help in simplifying such Galois computations.
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2. Two key ideas for computing Galois groups

Since the ideas are pertinent to our own problem, we shall briefly outline
the two main ideas which lie behind McKay’s programs ([15], [22]). It should
first be noted that the action of Gal(f) on Q is only to be determined up
to permutation isomorphism since no labelling of the roots is prescribed.

(A) Use of the Frobenius-Chebotarev Theorem. Let p be a prime which
does not divide the discriminant disc(f) of f(X), and consider the factor-
ization

(1 S(X) = £i(X)--- £(X) (modp)

where the f,(X) € Z[X] are monic of degree n,, say, and irreducible modulo
p . Then Frobenius showed that Gal(f) contains a permutation of  whose
disjoint cycles have lengths n,, ..., n,, respectively (see [25, Section 61]
for a simple proof). For later purposes we note that we have in fact more
precise information about this permutation. The condition that p ¢ disc(f)
is equivalent to the condition that the factors f,(X) are distinct modulo p.
It therefore follows from (1) that the factorization of f(X) over the p-adic
field Qp has the form

(2) fX) = f(X)- £(X)

where f,.(X ) is a monic irreducible polynomial in Z,[X] which is con-
gruent (modp) to f(X) for i = 1,...,r [2, page 275]. Moreover, if
F,=Q,(Q) C U isthe splitting field of f(X) over Q,, then Gal(F,/Q,)
is cyclic, and this group has a generator x which for each i/ permutes the
roots of f,(X) in a cycle, say (g, ..., ;) where s; =n, — 1, such that

v, =7p (modp) fort=0,...,s5
(see [17, pages 208-209]). Of course, as a permutation group on 2, the
cyclic group (7) is a subgroup of Gal(f); this is the essence of the Frobenius
theorem quoted above.

In the case where (1) holds we shall use the notation cycle(p) = (n,, ...,
n,), where we may assume that n, <--- <n_. Chebotarev [24] showed that
the density (in the sense of Dirichlet) of the primes p for which cycle(p)
takes a specified value is equal to the proportion of permutations in Gal(f)
with this cycle type. For example, asymptotically, 1/|Gal(f)| of the primes
have cycle(p) = (1, 1, ..., 1) =1" (the cycle type of the identity); these are
the primes for which f(X) factors into distinct linear factors modulo p.
Recently, effective estimates have been obtained for the number of primes
p < x which have a specified value for cycle(p) (see [10] and [19]), but the
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bounds are so large that they do not enable us to use the Chebotarev theorem
as more than a heuristic aid in computing Galois groups.

The first main step in McKay’s program is to use fast methods of fac-
torisation over finite fields (see, for example, [13]) to compute cycle(p) for
enough values of p to give definite lower bounds on Gal(f). From the dis-
tribution of cycle types we can often guess what the action of Gal(f) on
Q probably is. Indeed, when Gal(f) acts as the symmetric or alternating
group on {2, the information obtained from a small number of cycle types is
almost always enough to give a rigorous determination of Gal(f). (The two
cases are distinguished by computing disc(f); the latter is a square exactly
when Gal(f) < Alt(€2).) We should add that a classical theorem of van der
Waerden shows that for “almost all” polynomials Gal(f) will act as the sym-
metric group on 2, so that polynomials with more interesting Galois groups
have to be constructed rather carefully.

(B) Action of Gal(f) on k-sets and k-tuples. Let k > 2 and let Q%
denote the set of subsets of size k of . For each of these k-subsets we
form the product of its elements, and consider the monic polynomial A(X)
of degree (,':) whose roots are these products. Assuming that the roots of
h(X) are distinct (see Appendix A), the action of Gal(f) on Q®) js permu-
tationally equivalent to its action on the set of roots of #(X). In particular,
each orbit of Gal(f) on Q® corresponds to an irreducible factor of h(X)
over ) whose degree is equal to the length of the orbit. Similarly, using for
example the monic polynomial g(X) of degree n!/(n—k)! whose roots have
the form

(ail + 1)(ai2 +2)-- (aik + k)

with #,, i, ..., i, distinct,the lengths of the orbits of G on the set of all k-
tuples of distinct elements from Q can be determined. Difficulties involved
in factoring polynomials of high degree limit such calculations to the case
where k = 2 or 3, but even this much information (together with the cyle
information above) is sufficient to distinguish between the possible Galois
groups in many cases (see [3] and [16]). Here as elsewhere we are describing
the techniques in terms of products of the roots, but one can equally well
work with sums or other suitable functions.

3. Subfields and bases

Put G := Gal(f) and note that G is transitive on Q because f(X) is
irreducible. Let F :=Q(a,, ..., a,) be the splitting field of f(X) over Q,
and for each subgroup H of G let Fix(H) denote the subfield of F which is
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fixed under H in the Galois connection. In particular, K = Q(a) = Fix(G)
where G, is the stabilizer of o in G.

Now suppose that L is a subfield of K, so Q € L C K. Then for some
subgroup H with G, < H < G we have L = Fix(H). Let A be the orbit
of a under H, and put 4 := |A|. Then it is easily verified that A is a
block of imprimitivity for G, H is the setwise stabilizer G{ A} of Ain G,
and Al = |H : G | =[K : L] = d. Conversely, for each block A for G
with a € A, L := Fix(G{A}) is a field with Q € L € K. This gives a
bijective correspondence between the blocks A of size d containing o and
the intermediate fields L with [L : Q)=n/d.

Nextlet A=A, A,, ..., A, be the complete system of blocks which are
images of A under G (so m = n/d). Assume that the products

6, =[[{e;la;€A} fort=1,2,...,m

are distinct (see Appendix A). Then the action of G on the set of blocks
is permutationally equivalent to its action on the set {J,,d,,...,d,}. In
particular, H := G{ A} is the stabilizer of J := d, , and so L := Fix(H) equals
Q).

Thus the problem of finding the subfields of K reduces to two subprob-
lems:

(i) find the blocks A for G which contain a;

(ii) express the product J of the roots in A in the form § = w(a) where
w({X) € Q[X], and calculate the minimal polynomial of § over Q.

ReMARK. Although ¢ is an algebraic integer, w(X) need not lie in Z[X]
because 1, «, ..., o' need not be a basis for the algebraic integers in Q(a)
(but see Appendix C). However, the (monic) minimal polynomial g(X) for
0 does lie in Z[X] and its roots are the products J, defined above.

4. Finding blocks

If G has a block of size d then, of course, d must divide n. For each
prime p { disc(f), the Frobenius-Chebotarev Theorem gives local informa-
tion about G which may restrict the sizes of possible blocks. In some cases
this may be enough to show that are not blocks for certain values of d .

Suppose that A is a block of size d for G and suppose that we know that
G contains an element 7 of cycle type (n,, ..., n,). Since A is a block we
known that A"NA = A or @ for each 7 € G. Therefore for some integer
k > 1 we have

j k
A" NA=@ for1<j<kandA® =A.
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In this case, if some cycle of length n, in 7 contains a point from A, then
k divides n; and the cycle contains exactly n,/k poiints of A. Since this
applies to each block in the system of imprimitivity containing A, there must
be a partition {/,,..., I} of {1,2,...,r} and integers k, > 1 such that
fort=1,...,s:

(3) dk,=> {n,|icl}andk |n forallicl,.

Often computing cycle(p) for a small set of primes will quickly eliminate
certain values of d, but the following example shows that in general not all
spurious values will be eliminated.

ExaMPLE. Let G < Sym(15) be permutation isomorphic to Alt(6) in its
action on unordered pairs ((g) = 15). Then G is primitive (and so only has
blocks of size 1 and 15). However, its cycle types are

115, 35, 53, 1326, 112143’ 1334’
which do not rule out 3 or 5 as possible block sizes.

Now suppose that d appears to be a possible block size. Then for any
prime p { disc(f) the factorization (2) of f(X) over Z,[X] and the cor-
responding information about the element n from the Galois group usually
severely restricts the ways into which the roots in Q can fall into blocks of
size d. With some care in the choice of p we can always ensure that the
roots in at least one block will consist of complete cycles of 7. For example,
recall that in any transitive permutation group the number of fixed points
of an element averaged over the group is exactly 1. Thus, according to the
Chebotarev theorem, it should not be difficult to find a prime p such that
n, =1 in cycle(p), and then any block A which contains a root in a 1-cycle
of m must consist of roots from a union of complete cycles of n (compare
with (3)). In such a case the product J of the roots in A will be the product
of all roots of a certain set of the fNI.(X ), and hence 6 € Z,. Note that
because of the transitivity of G, there is no loss in generality in choosing A
first and then specifying o arbitrarily as one of the roots in A.

In actual computation, of course, we cannot be sure a priori that a partic-
ular set A of roots which we choose is actually a block, nor can we compute
the roots (or d) exactly, so this step in finding a block is a tentative one. In
the next section we shall see how to decide whether the chosen set A of roots
really is a block. The point at this stage is to use the Frobenius theorem to
restrict the number of sets A which we have to examine.

5. From blocks to fields

We now look at the second of the subproblems listed above. Suppose that
A is a block of size d for G (with m = n/d), and let § denote the product
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of the elements in A. We suppose further that we have chosen A so that
for some prime b1 disc(f) the elements in A form the complete set of
roots of certain f;(X) in (2) (see Section 4). We shall first describe the main
algorithms which we shall need, and then explain how they can be used in
practice.

Computation of J to arbitrarily high precision in Z, (in other words

computing J as an integer modulo pk for an arbitrarily high value of k) is
achieved by the use of Hensel lifting from the factorization (1). Specifically,
for any integer k£ > 1, Hensel lifting enables us to go from the mod-p
factorization

S(X) = £(X)--- f(X) (modp)

toa mod-pk factorization
fX) = f(X) £(X) (modp")
withf;‘(X) = f,(X) (mod p) foreach i ([2], [27]). Since f;'(X) isa mod-pk

approximation to Z.(X ), we can easily derive a mod -pk approximation to
J.

The second step is to compute the minimal polynomial g(X) of é. This
is done by using the algorithm of Lenstra, Lenstra and Lovasz [12]. The basic
idea of the LLL-algorithm is to find “short vectors” in lattices over Z, but
as [12] shows the algorithm can be applied as follows. Let uy(X) € Z,[X]
be a given monic polynomial of degree /,, and suppose that there exists
an (unknown) monic polynomial u(X) € Z[X] which is irreducible over Z
such that u,(X) divides u(X). If the degree / of u(X) and a bound B
on the size of its coefficients are specified, and the coefficients of u,(X) are

given to within modulo pk (where k can be computed from / and B) then
the LLL-algorithm will either find u(X) or show that no such polynomial
satisfies the specified bounds. It is shown in [12] that the time to carry out
this computation is 0(112 + lg(logB)3) . Various modifications have been
proposed (see, for example, [7] and [8]), but in practice the running times of
programs which implement the LLL-algorithm remain highly dependent on
the degree: [ = 10 is certainly feasible, but / = 20 might not be.

Suppose now that the minimal polynomial g(X) (of degree m = n/d)
for & has been computed. It remains to compute w(X) € Q[X] such that
0 = w(a) for some a € A. One approach to this is an application of the
lemma at the beginning of the paper. This might be the easiest approach
for small degrees, but the factorization of the polynomial A(X) described
there is a serious bottle-neck for even moderate values of n and m. A
modification of this approach is to compute the polynomial k(X) of degree
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n described in the lemma directly as the minimal polynomial of ad using the
LLL-algorithm and a p-adic approximation to ad ; but again the efficiency
is severely limited by the degree n. The following approach appears to be
better except when the degrees are quite small.

Suppose w(X) € Q[X] has degree < n such that § = w(a) where §
is the product of elements in some block A for G, and a € A. Then
transitivity of the Galois group G shows that for each root o' € Q, we
have w(a') = 6’ where &' is the product of the elements in the block A’
conjugate to A with o’ € A’; so w is the interpolating polynomial for the
pairs (o', d’') (o' € Q). Fix a prime p ¢ disc(f) and p ¢ disc(g) (this
need not be the same prime as was used in computing g(X)), and compute
the roots of f(X)modp and g(X)modp in some finite splitting field over
the field F, of p elements. Determine a partition of the set of roots of
S(X)modp into subsets I',, ..., ', of size d such that the product of the
roots in each I'; gives a root y;, of g(X)modp (we may have to consider
several possible partitions of this form). Now construct an interpolating
polynomial wy(X) € Z[X] of degree < n such that w,(B) = y, for all
B €T;. Then g(wy(X)) =0 mod(f(X), p) and a natural modification of
Newton’s method in the ring Z,[X]/( S(X)) (see Appendix B) allows us to
compute (to arbitrarily high accuracy in Z,) the polynomial w(X) € Z,[X]
such that

g(w(X)) =0 (mod f(X)) and w(X)=wy(X) (modp).

Finally, the technique described, for example, in [5] shows how to recover
from a mod -pk approximation of the coefficients of w(X) the rational val-
ues of these coeflicients.

We now summarize the overall strategy of the steps involved in going
from a (putative) block A and a p-adic approximation for the product ¢
of its elements to the computation of g(X) and w(X). (In step (a) we are
assuming that g(X) is separable; see Appendix A.)

(a) Use the LLL-algorithm to compute the minimal polynomial g(X) of
0. The degree of g(X) is m and its coefficients are easily bounded in terms
of f(X) because the roots of g(X) are products of d roots of f(X). If
the LLL-algorithm fails to construct g(X), then A is not a block.

(b) Assuming g(X) has been constructed in (a), choose a prime p ¢
disc(f) disc(g), and compute the roots of f(X)modp and g(X)modp in
a finite extension of F,. Then partition the set of roots of the former into
subsets of size d whose products give the roots of the latter. If such a parti-
tion does not exist, then A is not a block. If there is more than one partition
of this form then the remaining steps must be carried out for each of these
different partitions.
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(c) Find wy(X) € Z[X] of degree at most n — 1 as the interpolating poly-
nomial from the set of roots of f(X)modp to the set of roots of g(X)modp
according to the partition obtained in (b).

(d) Apply Newton’s method to compute w”(X) € Z[X] such that
g(w* (X)) =0 (mod f(X), pk) and w*(X) = wy(X) (mod p) for sufficiently
large k, and then use the continued fraction technique described in [5] to
compute w(X) € Q[X] such that w(X) = w*(X) (modp®). An upper
bound of the sizes of the numerators and denominators of the coefficients of
w(X) is given in Appendix C, and this can be used to determine an upper
bound on the order k£ to which the computations must be taken. However,
in general we may expect much smaller values of k& to be satisfactory.

(e) Finally, check that g(w(X)) =0 (mod f(X)). This check succeeds if
and only if A is a block. In the latter case, if we put = w(a), then Q(J) is
a subfield of Q(a) of degree m over Q and g(X) the minimal polynomial
of § over Q.

6. An example

The method described above sounds more complicated than it is in prac-
tice. The following example should clarify some of the steps involved. All
calculations were carried out with simple APL programs on a microcomputer.
Polynomials are represented below by listing their coeflicients in decreasing
order of degree.

The polynomial

f=(1006408 -4 —1280 —88)

is irreducible over Z and has a root Au where A and u are roots of ¢, =
(10022) and ¢, =(10 —1 —1), respectively. Let o denote a root of
f(X). We shall compute a generator for a subfield of Q(a) of degree 4 over

Q.
Using standard algorithms [13] to compute the factors of fmodp for

various primes p, we obtain
J/ 3 5 7 11 13
cycle(p) 12! 1'2'3'¢' 1%22° 1%22% 3¢
Similar factorizations also show that 2, 23 and 37 divide disc(f) because
in these cases f modp is not separable. Actually disc(f) = 2%23%372101°,
but we shall not use this.

We now look for a block of size 3 (= 12/4). Taking p = 5, we can see that
if there are blocks of size 3, then one must consist of the roots of the linear
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and quadratic factors of f(X) over Z,. In particular, this shows that there
is at most one block of size 3 which contains the root of the linear factor,
and so there is at most one subfield of Q(a) which has degree 4 over Q. The
two polynomials (1 3) and (1 2 3) are irreducible factors of f(X) (mod?5).
When we apply Hensel lifting to the product of these two factors we find that

f=(13)(123)--- (mod5)

lifts to
f=(103156734 5497064)--- (mod5'?).

The product of the roots of the linear and quadratic factors of f(X) in
Z,[X] is therefore
6 = —5497064 (mod5'0).

Using this approximation over Zg in the LLL-algorithm gives (tentatively)
the minimal polynomial for J as

g=(161288).

The process is tentative at this stage because it is based on the so-far
unproved assumption that there is a block of size 3. It is easily verified that
g(X) is irreducible over Q, so it remains to find a polynomial w(X) € Q[X]
of degree at most 11 such that g(w(X)) =0 (mod f(X)).

For convenience, we change to the ring Z, to carry out the remaining
calculations. Factoring into irreducibles, we have

S=ADA3NA0)(136)(141)(145)(166) (mod7)
and
g=(11)(16)(166) (mod7).

Note that 7 { disc(f)disc(g) because f(X)mod7 and g(X)mod7 clearly
have distinct roots.

Let i be an element in an extension field of F, with i> = —1. Then
working modulo 7 we find that the roots of f can be grouped in sets of
3 in exactly one way so that the corresponding products give the roots of
g (mod7), namely

6=4(-2+i)(=2—i), 1=6(-3+2i)(=3~2i

and
—=3+2i=Fi(2+3)(-2F 20).

We now interpolate to get a polynomial wy(X) € Z[X] such that wy(a,) =
d; (mod7) whenever o; is a root of f(X) and J; is the root of g(X) in
which «; appears as a factor (mod 7). This gives

w,=(524255261003) (mod7).
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Since g(wy(X)) =0 (mod f(X), 7), Newton’s method (see Appendix B) can
be applied to obtain a better approximation

w” = (4362552---934832) (mod7%)

such that w* = w, (mod7) and g(w*(X)) =0 (mod f(X), 7%).

Finally, using the technique described in [5], we obtain a rational approx-
imation w = w* (mod 7*), namely,

w=7l—4(—8 15 -5 -344148 —6 108 60 — 84 28 — 44).

Since a direct check shows that g(w(X)) = 0 (mod f(X)), therefore § =
w(a) is an element of degree 4 in Q(«) with minimal polynomial g(X),
and the computation is complete. As we observed above, Q(J) is the only
subfield of Q(a) of degree 4 over Q.

Appendix A. Products of k-subsets of roots

In Section 3 we assumed that the products 6, (t=1, ..., m) of elements
in a set of conjugate blocks for G were distinct. Occasionally this assumption
may not hold, and then Q(J) is not equal to Fix(G { A}) . We shall detect this
anomalous situation when we discover that the minimal polynomial g(X)
of & has degree < m. The problem can be corrected by replacing f(X) by
f(X —r) (or equivalently the roots a, by a; + r) for suitable (almost any)
integer r. To see why this is so, define

0, (X):=[{X+e;,l0;€A} fort=1,...,m.

These polynomials are all different since they have different roots. Thus there
are at most (, )d < mn values of r such that for some s and ¢ with s # ¢
we have ¢ (r) = ¢,(r). Any other value of r € Z has the required property.

Similar arguments apply in other computations where we need to have
distinct products of roots of various polynomials. See also [23].

Appendix B. Newton’s method

In Section 5 we refer to the use of Newton’s method in Z,[X]/( f(X)).
This requires a little bit of explanation because Newton’s method is usually
used over a field (compare with [11, pages 308-311]). The process in the
present situation is as follows. Assume that p > 2 and that as an initial
approximation we have w,(X) € Z[X] of degree at most n — 1 such that

g(wy(X)) =0 (mod f(X), p).
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We are also assuming that p t disc(g) and so g(X)modp is separable;
therefore g'(wO(X }) is relatively prime to f(X) modulo p. Thus we can
use the Euclidean algorithm to compute A,(X) € Z[X] of degree at most
n — 1 such that

ho(X)g (wy(X)) =1 (mod f(X), p).

The general step is to go from

(@) g(w (X)) =0 (modf(X),p*)
and
(5) h(X)g'(w, (X)) =1 (mod f(X), p®)

(where w, (X) and A, (X) are integer polynomials of degree at most n— 1)
to the corresponding relations with k+1 in place of k (k=0,1,...). The
only tricky point is that it is not quite straightforward to compute 4, (X) (k >
1) using the Euclidean algorithm because for £ > 0 we are working over a

ring Z/(pzk) with divisors of 0. This problem is avoided by the double
iteration given by
k+1
Wiy (X) = W, (X) — e (X)g(w, (X)) (mod f(X),p” )
and
k+1
B (X) = 1 (X){2 = B (X)g (W, (X))} (mod f(X), p” ).

A straightforward calculation shows that

w,,,(X) = wy(X) and h, (X)=h(X) (modp®)

and that (4) and (5) remain invariant under the substitution of k +1 for k
(it is here that we need p > 2).

Finally, the sequence {w, (X)} is a Cauchy sequence in the p-adic metric
and so has a p-adic limit w(X) € Z,[X] such that g(w(X)) =0 (mod f(X))
and w(X) = wy(X) (modp). Because f(X)modp and g(X)modp are
separable, there last two conditions determine w(X) uniquely. Indeed, if
we also have v(x) € Z,[X] with degree at most n — 1 such that g(v(X)) =
0 (mod f(X)) and v(X) = wy(X) (mod p), then for each root o, € Q, v(a;)
and w(a;) are roots of g(X) with v(a;) = w(a;) (modp). Thus v(e;) =
w(a;) for each i because g(X)modp is separable, and so v(X) = w(X)
because f(X) is separable. In particular, if there is a set of conjugate blocks
A,..., A, for G acting on Q which map onto the given set of subsets
I,,...,T,, (seeSection 5) under the mod p mapping from Zp[Q] onto the
splitting field of f(X)modp, then w(X) € Q[X].
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For further examples of applications of Newton’s method to algebraic
problems see [14] and [26].

Appendix C. Bounds on the coefficients of w(X)

Suppose that the discriminant disc(f) = D12D2 where D, and D, are
integers and D, is squarefree. Then every algebraic integer in Q(a) lies in

DI_IZ[a] [17, page 58]. Thus, if w(X) € Q[X] satisfies g(w(a)) =0, then
D,w(X) has the form u,+u X + -~~un_1X"_l € Z[X]. This gives

n
i

-1 .
Ug+ U+ +u, o =D16t(,.) (i=1,...,n)

where a; € Ay - If we define A4 to be the n x n matrix [aj._l] , and use the

fact that (det A)2 = DfD2 , we can solve these equations to obtain

-1

(g, Uy oy Uy ) = DI(JI(I), 5:(2)’ eees 5:(,,))'4
However DIA_l = 8|D2|_l/2Adj(A) where |e| = 1. Thus, if |a,| < ¢, for
all 7, then Hadamard’s determinant inequality gives the bound

—1/2_(n—=1)/2 n(n—1)/2+d
lu;| <|D,| "“n o .

It seems likely that these bounds will usually grossly overestimate the size of
the numerators and denominators of the coefficients of w(X). For further
results on this problem see [1] and [3].
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