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Integral Representation for U3 × GL2

Eric Wambach

Abstract. Gelbart and Piatetskii-Shapiro constructed various integral representations of Rankin–Sel-

berg type for groups G×GLn, where G is of split rank n. Here we show that their method can equally

well be applied to the product U3 × GL2, where U3 denotes the quasisplit unitary group in three

variables. As an application, we describe which cuspidal automorphic representations of U3 occur in

the Siegel induced residual spectrum of the quasisplit U4.

1 Introduction

1.1 Summary

Gelbart and Piatetskii-Shapiro [4] outlined three ways to obtain integral representa-

tions for generic cuspidal automorphic representations of groups of the type G×GLn,

where G is of split rank n. Two of their methods have been worked out for unitary

groups G in more detail by Watanabe [17]. We will show that a similar method works

on ResE/F GL(2) ×U3. Here E/F denotes a CM field extension, and U3 is the quasis-

plit unitary group in three variables. Essentially the clue is to embed both groups into

the quasisplit U4, where GL2(E) can be realized as a Levi component of a maximal

proper parabolic subgroup. Starting with a cuspidal automorphic representation of

ResE/F GL(2), one obtains an Eisenstein series on U4. This function can be restricted

to U3 and integrated against a cuspform. Performing the standard procedure of dou-

ble coset analysis and the Rankin–Selberg method, the integral decomposes into an

Euler product over F of local zeta integrals. The convergence of the global integral

results from the fact that U3 is of split rank one with a center Z such that Z(F)\Z(AF)

is compact. Therefore the rapid decay of the cuspform on the smaller group suffices

for the convergence. In a completely split case, i.e., on GL3 ×GL4, the analogous

integral would not converge, and one has to truncate the Eisenstein series. Here this

is not necessary.

In the analysis of the local zeta integrals we obtain the following results. For suf-

ficiently large real part of s, they converge absolutely and normally in s. They can

be analytically extended to a meromorphic function of s ∈ C. At a finite place, the

local integrals are rational functions of q−s, and at unramified places they equal a

degree 12 Euler factor over F associated with an explicitly given representation of the

L-group of U3 ×ResE/F GL(2). We do not establish a functional equation of the local

integrals, nor can we say anything more precise about the ramified local integrals.

At an archimedean place, we again obtain convergence for large real part of s and
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1384 E. Wambach

analytic continuation. The precise determination of the archimedean zeta integrals

is quite subtle, as can be seen in the work of Koseki and Oda [12]. In the present

case an additional difficulty is given by the fact that these local integrals also include

Whittaker functions on GL2(C) coming from the Levi subgroup of U4. We expect,

but do not verify here, that under suitable restrictions on the Eisenstein series these

local integrals equal a product of Γ-functions times a polynomial in s, and that they

coincide with the expected Langlands L-factors from the nonarchimedean places.

The present paper presents the details for an integral representation which is a

special case of a more general theory which is announced and summarized in [16].

More precisely, here we investigate the properties of an integral, using Gelfand–Graev

models, of the form [16, (2.7), p. 349] specialized to the case U3 × GL2. The origi-

nal motivation for this work stems from the author’s thesis, in which the goal was to

use this particular integral representation to obtain information about period inte-

grals on U (2) ×U (3). Namely, one can pass from U (2) to GL(2, E) via base change.

Applying the integral representation of the present work to cuspidal automorphic

representations on GL(2, E) that are in the image of that lift could lead to an integral

representation on U (2)×U (3), i.e., on two groups, none of which is GLn. Moreover

one might be able to extract information about the nonvanishing of the central value

of the Rankin–Selberg L-function in terms of U (2)-period integrals on U (2)×U (3).

The work of Gelbart and Piatetskii-Shapiro [3] can be interpreted as giving a central

value formula on U (2)×U (3) in terms of U (2)-period integrals for automorphic rep-

resentations whose U (2)-part is noncuspidal. One goal of my work is to obtain such

a period integral formula for cuspidal automorphic representations, which would

have applications to the analogue of the Gross–Prasad conjecture (formulated in [7]

for orthogonal groups) in the setting of unitary groups.

One application in that direction of the formula obtained in this paper consists of

Theorem 1.3. In it we describe how the residual representations of U4 that arise from

the Siegel parabolic decompose when restricted to U3.

1.2 Statement of the Main Results

Here are the main global and local results of this paper. The notation will be defined

precisely at the beginning of Section 2.

Theorem 1.1 Let π be an irreducible generic unitary cuspidal automorphic represen-

tation of U3. Let τ be an irreducible unitary cuspidal automorphic representation of

GL(2, E). Let ϕ ∈ π denote a cuspform, and let E∗(s, g, τ) denote an Eisenstein series

on U4, induced from a maximal parabolic P of type (2, 2) and the representation τ of its

Levi factor M. Here, U4 denotes the quasisplit unitary group in four variables, and we

identify M with ResE/F GL(2). Embed U3 into U4 and identify it with its image. Let dh

denote a fixed Haar measure on U3(AF).

(i) The global integral

(1.1) I(s, ϕ, E∗) =

∫

U3(F)\U3(AF)

ϕ(h)E∗(s, h, τ) dh

converges absolutely and uniformly for s in a compact subset of C in which the
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Eisenstein series has no poles. It thus defines a meromorphic function of s ∈ C

whose poles are contained in the poles of E∗.

(ii) The integral equals 0 unless π is generic. If π is generic, then for suitable choices

of ϕ and E∗, and for ℜ(s) sufficiently large, it decomposes into a product of local

integrals. More precisely, in such a situation we have the equality

I(s, ϕ, E∗) =

∫

N3(AF)\U3(AF)

Wϕ(g)W τ (s, g) dg.

Here Wϕ denotes a Whittaker function associated with ϕ, and W τ (s, g) is a func-

tion on U4(AF) that is related to functions in a Whittaker model of τ .

We will define the space of functions W τ (s, g) more precisely below. It is a rep-

resentation space for U4, and the function on M given by m 7→ W τ (s,m) is, up

to a certain dependency on s, in the Whittaker model of τ . In particular, for ap-

propriate choices of ϕ and the Eisenstein series, these functions decompose into a

tensor product of local functions. Thus for ℜ(s) sufficiently large, I(s, ϕ, E∗) decom-

poses into a product of local integrals over the places of F. We write I(s, ϕ, E∗) =∏
v Iv(s,Wv,W

τ
v ), where the local integrals are given by

Iv(s,Wv,W
τ
v ) =

∫

N3(Fv)\U3(Fv)

Wv(g)W τ
v (s, g) dg.

Here the functions Wv run through a Whittaker model of πv (we suppose it exists,

for otherwise the global integral is 0). The following can be said about these local

integrals. Recall that we are working with explicit Eisenstein series, to be constructed

below. In particular, they are suitably normalized.

Theorem 1.2 Let v be a place of F. We denote the local component of an integral of

the above type by Iv = Iv(s,Wv,W
τ
v ). Then the following assertions hold.

(i) The archimedean local integrals Iv converge absolutely for ℜ(s) sufficiently large.

They have meromorphic continuation to s ∈ C.

(ii) Let v be a finite place of F, with residue field of order q. Then the local integral Iv is

a rational function in q−s.

(iii) For a finite place v at which U3, π and τ are unramified, and for which the data in

Iv is unramified, the integral equals

(1.2) Iv(s,Wv,W
τ
v ) = L(s + 1

2
, πv × τv).

This is an Euler factor of degree 12 over F.

The Euler factor appearing at the unramified places can be described precisely as

follows. Let LG =
LG0

⋊ Gal(E/F) be the L-group of G = U3 × ResE/F(GL2/E) in

finite Galois form. Here LG0
= GL3(C) × GL2(C) × GL2(C), and the nontrivial

element c ∈ Gal(E/F) acts by

c(g, h1, h2)c−1
=







1

−1

1


 t g−1




1

−1

1


 , h2, h1


 .
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Let ρn denote the standard n-dimensional representation of GLn(C), and let triv de-

note the trivial representation of GL2(C). Then ρ := Ind(LG, LG0 ; ρ3 ⊗ ρ2 ⊗ triv)

is a 12-dimensional irreducible representation of LG. The local unramified L-factor

occurring in (1.2) is then given by the following Langlands type L-factor:

L(s + 1
2
, πv × τv) = L(s + 1

2
, πv × τv, ρ) = det

(
112 − q−s

v ρ(t(πv × τv))
)−1

.

Here t(πv × τv) ∈ LG is (any element of) the semisimple conjugacy class attached to

πv × τv by the local Langlands correspondence in the spherical case.

1.3 Application

The residual discrete spectrum of U4 is described in [11, Theorem 1.1]. Since U4

has, up to conjugacy, three different proper parabolic subgroups, this spectrum can

be viewed as the direct sum of three subspectra, each corresponding to one class

of parabolics. Here we are interested in the part coming from the Siegel parabolic,

whose Levi component is isomorphic to ResE/F GL2. From the results of Kon-No

[11], it follows that the representations which occur in this part are induced from

cuspidal representations of the Levi factor ResE/F GL2 of the form τ ⊗ |det( · )|1/2
AE

,

subject to two conditions:

(A) The central character ωτ of τ has trivial restriction to A
×
F .

(B) L(s, τ ,Asai) has a simple pole at s = 1.

Results by Flicker [2] then imply that τ is the image under the unstable base

change from U2 to GL2 of a stable cuspidal L-packet on U2.

More precisely, suppose we fix a character µ : E×\A
×
E → C×, whose restriction

to A
×
F equals the quadratic character associated with E/F by class field theory. We

also fix an element w0 ∈ WF −WE, where WF,WE denote the Weil group of F and E

respectively. These two choices give rise to homomorphisms of L-groups:

ξ1 : L(U2) −→ L(ResE/F GL2),(1.3)

ξ2 : L(U2 ×U1) −→ LU3.(1.4)

The first map is defined in [2, p. 143], where it is denoted bκ. The second one is

defined in [14, pp. 51–52], where it is denoted ξH . However here we insist that in the

definition of ξ2 the character µ is replaced by its inverse µ−1.

Flicker [2] showed that if τ satisfies the two conditions (A) and (B) above, then

there exists a stable cuspidal L-packet τ0 on U2 that maps to τ under the base change

defined by ξ1. Our result is the following.

Theorem 1.3 Let τ be an irreducible unitary cuspidal automorphic representation of

ResE/F GL2 satisfying (A) and (B). Let τ0 be the stable cuspidal L-packet on U2 which

maps to τ under the unstable base change correspondence defined by ξ1.

Let σ be the global Langlands quotient of IndU4(AF)
P(AF) (τ ⊗ | · |

1/2
AE

) that occurs in the

residual spectrum of U4. Suppose it acts on the space Vσ ⊂ L2
disc(U4(F)\U4(AF)).
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Via the embedding U3 ⊂ U4, we may view the smooth functions in Vσ as automor-

phic forms on U3. Denote by Vσ,0 the projection of this space onto the space of cuspforms

on U3, and by σ0 the representation of U3 on this space.

(i) The space Vσ,0 is nonempty.

(ii) The constituents of σ0 are the unique generic cuspidal representations in the endo-

scopic L-packets ξ2(τ̃0 × ν), as ν runs through the characters of U1(F)\U1(AF).

Here τ̃0 denotes the contragredient of τ0. Each of the L-packets ξ2(τ̃0 × ν), or

better the L-packet on U3 associated with τ̃0 × ν via the unstable base change defined

by ξ2, contains a unique generic cuspidal representation, by [5, Theorem I].

This theorem, or rather the proof that is given below, has the following corollary.

Corollary 1.4 Let τ be an irreducible unitary cuspidal automorphic representation of

ResE/F GL2. If there exists an irreducible unitary cuspidal automorphic representation

π of U3 and a finite set S of places of F that includes the archimedean ones such that the

partial L-function LS(s, π × τ) has a simple pole at s = 1, then L(s, τ ,Asai) also has a

simple pole at s = 1.

2 The Global Setup and Proof of Theorem 1.1

2.1 Notation

We begin by describing the algebraic groups that appear. Recall that E/F is a CM

extension of number fields. Let (V, 〈 · , · 〉) be a 4-dimensional hermitian space over

E of Witt index 2. Fix a maximal totally isotropic subspace L inside V . Then L defines

a maximal parabolic subgroup P of type (2, 2) inside the unitary group of (V, 〈 · , · 〉).

We also fix an anisotropic line A ⊂ V and denote its orthogonal complement by

W = A⊥. The isotropic line L ∩ W =: LW inside W defines a minimal parabolic

subgroup of the unitary group associated with W . More precisely, these choices give

rise to the following algebraic groups over F:

U4 = U (V ), unitary group of (V, 〈 · , · 〉),

P = StabU4
(L) = {h ∈ U4 ; h(L) = L}, a maximal parabolic of type (2, 2),

U3 = U (W ), unitary group of (W, 〈 · , · 〉|W×W ),

B3 = StabU3
(LW ), a minimal parabolic of U3,

B = StabU4
{(0) ⊂ LW ⊂ L ⊂ (LW )⊥ ⊂ V}.

So B is a minimal parabolic subgroup of U4 and is contained in P; U3 is naturally

embedded in U4. Notice however that B3 is not contained in P. Denote by N,N3, re-

spectively NB, the unipotent radicals of P,B3, respectively B. In order to fix Levi sub-

groups for these parabolics, we need to introduce extra structure. Choose a nonzero

vector e ∈ LW , and a second isotropic vector e ′ ∈ W such that 〈e, e ′〉 = 1. Next we

choose two nonzero vectors a ∈ A,w ∈ W such that w ⊥ (LW ⊕ Ee ′) and such that

〈w,w〉 = −〈a, a〉. Replacing w by a multiple if necessary, we may further assume that

l := w − a ∈ L. Set l ′ := w + a.
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1388 E. Wambach

With these notations, L ′
= Ee ′ ⊕ El ′ is a maximal isotropic subspace of V com-

plementary to L. We can now pin down Levi components of our parabolic subgroups

as follows. Let M3 denote elements of U3 which, written in matrix form with respect

to the basis {e,w, e ′} of W , are diagonal. Similarly let MB ⊂ B denote the elements

of U4 that are diagonal with respect to the basis {e, l, l ′, e ′} of V . Finally let M ⊂ P

be the unique Levi factor which contains MB. It consists of 2 by 2 block diagonal

matrices with respect to this fixed basis of V .

Set d = 〈a, a〉. Then 〈w,w〉 = −d and 〈l, l ′〉 = −2d. Therefore with respect to the

bases of W and V fixed above, the hermitian pairings are represented by the matrices




0 0 0 1

0 0 −2d 0

0 −2d 0 0

1 0 0 0


 on V, and




0 0 1

0 −d 0

1 0 0


 on W.

The embedding is then given explicitly by

(2.1) U3 −→ U4;




a b c

d e f

g h i



 7−→




a b b c

d/2 (e + 1)/2 (e − 1)/2 f /2

d/2 (e − 1)/2 (e + 1)/2 f /2

g h h i


 .

In what follows, we will often, by abuse of notation, identify elements of U3 with their

images in U4. The following notation for an element in N3 will be convenient

(2.2) n(x, y) =




1 x y

0 1 x̄/d

0 0 1



 , x, y ∈ E, d · TrE/F(y) = NE/F(x).

2.2 The Global Integral

Now let π be an irreducible unitary cuspidal automorphic representation of U3. Let

Vπ denote the space of cuspforms on which π acts by right translation. By multiplic-

ity 1 [14, Theorem 13.3.1], Vπ is uniquely determined by π.

Let τ be an irreducible unitary cuspidal automorphic representation of

ResE/F GL2 ≈ M ⊂ U4.

We define a space of Eisenstein series on U4, following Moeglin and Waldspurger

[13]. First we establish some notations. Let κ =
(

0 1
−2d 0

)
. For a matrix x ∈ GL2(AE),

set x̃ = κ−1(tx̄−1)κ, and m(x) = diag(x, x̃) ∈ M(AF) (a 2 by 2 block diagonal matrix

in U4). We will use the same notation when x is an element of GL2(E ⊗ R) for any

F-algebra R. Then the modulus character δ : P(AF) → C× is given by

δ(m(x)n) =
∣∣NE/F(det x)

∣∣2

AF
, x ∈ GL2(AE), n ∈ N(AF).

Fix a compact open subgroup K f ⊂ U4(AF, f ) and a maximal compact subgroup

K∞ ⊂ U4(F ⊗Q R). Set K = K∞ × K f and suppose this data chosen such that
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U4(AF) = P(AF)K . Then δ can be extended to a function on U4(AF), still denoted

by δ, by setting δ(pk) := δ(p), for p ∈ P(AF) and k ∈ K . Let Ĩ(τ) denote the

space of continuous functions f̃ from U4(AF) into the space of τ which are K-finite

on the right and satisfy f̃ (m(x)ng) = τ(x) f̃ (g) for all x ∈ GL2(AE), n ∈ N(AF),

g ∈ U4(AF). Then let I(τ) denote the space of functions f on U4(AF) which are

of the form f (g) = f̃ (g)(12) for some f̃ ∈ Ĩ(τ). Given f ∈ I(τ), the associated

Eisenstein series is defined by

(2.3) E(s, g, f ) :=
∑

γ∈P(F)\U4(F)

δ(γg)
s+1
2 f (γg).

It is known [13, p. 85, Proposition] that the sum defining the Eisenstein series

converges absolutely and normally in s for ℜ(s) sufficiently large. Moreover, [13,

p. 140] it has an analytic continuation to a meromorphic function of s ∈ C. For a

fixed value of s away from the poles, it defines an automorphic form on U4(AF); in

particular, it is a function of moderate growth. Since the series converges normally

in s, the growth condition is satisfied uniformly for s in any compact subset of C

in which E has no poles. In fact, we can normalize the Eisenstein series so that the

number of poles is finite. The normalizing L-factor can be determined by analyzing

the action of LM on Lie(LN) by conjugation [6, §I.2.5]. This factor is given by the Asai

L-function (as defined in [8, pp. 66–67]). Define

E∗(s, g, f ) := L(1 + 2s, τ ,Asai) E(s, g, f ).

For a cuspform ϕ ∈ Vπ and an Eisenstein series E∗(s, g, f ) as above, consider the

integral

I(s, ϕ, E∗) =

∫

U3(F)\U3(AF)

ϕ(h)E∗(s, h, f ) dh.

Lemma 2.1 The integral converges absolutely and uniformly for s in a compact subset

of C in which the Eisenstein series has no poles. Therefore it defines a meromorphic

function of s ∈ C whose poles are contained in the poles of E∗.

Proof Let us first show convergence. We need to define a Siegel set of U3. Let K3 ⊂
U3(AF) be a maximal compact subgroup such that the equality U3(AF) = B3(AF)K3

holds. Recall the Levi subgroup M3 of B3, consisting of diagonal matrices with respect

to the coordinate basis {e,w, e ′} of W . For an idele α ∈ A
×
E , we denote m3(α) the

transformation in U3(AF) that sends e to αe, w to w, and e ′ to ᾱ−1e ′. Fix a compact

subset C ⊂ B3(AF) and a positive real number c. Then we define the Siegel set

Σ = Σ(c,C) = {pm3(t)k; p ∈ C, t ∈ F+, k ∈ K, |t| > c > 0}.

Here F+ denotes the idelesα ∈ A
×
F for which there exists a positive real number r such

that αv = r for every archimedean place v, and αv = 1 for every nonarchimedean

place v. By reduction theory it is possible to choose c,C such that U3(AF) = U3(F)Σ.
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1390 E. Wambach

The elements in Σ can also be written in the form m3(t) · ω, for |t| > c, t ∈ F+

and ω in a fixed compact subset Ω of U3(AF). Therefore to check the convergence

of I(s, ϕ, E∗), it suffices to show that the following integral converges uniformly for

ω ∈ Ω.

(2.4)

∫

t∈F+

|t|>c

ϕ(m3(t)ω) E∗(s,m3(t)ω, f ) |t|
−2

d×|t| .

The condition of slow growth says that given any compact subset D of C in which

E∗ has no poles, there exist positive constants a, b such that for any s ∈ D, ω ∈ Ω, t ∈

F+ with |t| > c, |E∗(s,m3(t)ω, f )| ≤ a |t|
b
. The condition of rapid decay says that

ϕ(m3(t)ω) satisfies the same inequality with the additional fact that b can be chosen

to be any real number. (Of course the corresponding a will then depend on b.) There-

fore the integral (2.4) can be majorized by a constant multiple of
∫

t∈F+ ,|t|>c
|t|

−1
d×t ,

and hence is finite.

Note that for the convergence of this integral it was crucial that U3 is of split rank

one. If E were globally split, i.e., E = F ⊕ F and U3 ≈ GL3,U4 ≈ GL4, then the

corresponding integral does not converge, and one needs to truncate the Eisenstein

series. Suppose, for example, that we are in such a completely split situation, and that

π has trivial central character. Then the global integral involves integrating over the

center of GL3, and we are essentially integrating a GL4-Eisenstein series over it.

∫

F×\A
×

F

E




t

t

t

1


 d×t.

By the condition of slow growth, this can only be majorized by max{|t| , |t|
−1

}k for

some positive integer k, which is not enough for the integral to converge.

We can also look at a simpler example, namely the analogous integral for GL1 ⊂
GL2, embedded as diagonal matrices whose second entry equals 1. This is the domain

of integration for the global integral representation for automorphic L-functions of

GL2. The function to be integrated is an automorphic form on GL2, from which

one subtracts the constant term of its Whittaker–Fourier expansion (see [18, (4.1),

p. 199]). This is a more elementary example of the same philosophy, since on GL2

truncating automorphic forms essentially means subtracting their constant term.

In our nonsplit case, before proving the decomposition of the global integral for

certain ϕ and E∗, which is a standard application of the Rankin–Selberg method, we

begin with a double coset analysis and some further geometric considerations.

Lemma 2.2 The double coset space P(F)\U4(F)/U3(F) consists of only one element.

In other words, U3(F) acts transitively on the set of maximal isotropic subspaces of V .

Proof It is easier to show this result the other way around. Namely, it suffices to

show that P(F) acts transitively on the set of lines A ′ in V whose nonzero elements

a′ ∈ A ′ satisfy 〈a′, a′〉 ∈ N(E×)〈a, a〉. But this is well known; it follows, for example,

from Witt’s theorem.
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The following lemma follows from the explicit formula (2.1).

Lemma 2.3 Given the fixed basis of W above, consider an element h in the Borel

subgroup B3 of U3. Write

h =



α ∗ ∗
0 β ∗
0 0 ᾱ−1


 , α ∈ E×, β ∈ E1,

with respect to the fixed basis {e,w, e ′} of W . Then h ∈ B3 ∩P if and only if β = 1, i.e.,

h acts as the identity on the quotient (Ee)⊥/Ee.

We also need to compare the unipotent radicals N3 of B3, NB of B, and N of P.

Since N3 ⊂ NB and N3 ∩ N = ZN3
, we can identify the cosets

(2.5) ZN3
\N3 = N\NB.

By this identification we mean that a set of coset representatives of the left-hand side,

when embedded into U4, will be a set of coset representatives of the right-hand side.

For a cuspform ϕ ∈ Vπ , and a nontrivial character ψ of F\AF, define the associated

Whittaker function by

Wϕ(g) =

∫

N3(F)\N3(AF)

ϕ(n(x, y)g) ψ−1(TrE/F(x)) dxdy.

The notation n(x, y) was defined above in (2.2). The measure dx on E\AE is selfdual

with respect to the character ψ−1 ◦ TrE/F , similarly the measure dy on F\AF is self-

dual with respect to ψ. By assumption π is generic, which implies the existence of

a character ψ such that the functions Wϕ(g) are nonzero. Thus we may assume ψ
chosen such that this condition is satisfied. Consider the function

ϕ0(g) =

∫

F\AF

ϕ(n(0, y)g) dy.

Define R := B3 ∩ P. Then in view of Lemma 2.3, the Whittaker–Fourier expansion

along N3 has the form

(2.6) ϕ0(g) =

∑

r∈N(F)\R(F)

Wϕ(rg).

With this in mind, we compute the integral, assuming ℜ(s) sufficiently large so

that the manipulations are justified. We prefer to use the unnormalized Eisenstein
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series, in order not to have to carry around the additional Asai L-factor.

I(s, ϕ, E) =

∫

U3(F)\U3(AF)

ϕ(h)E(s, h, f ) dh

=

∫

U3(F)\U3(AF)

ϕ(h)
∑

γ∈P(F)\U4(F)

δ(γh)
s+1
2 f (γh) dh

=

∫

U3(F)\U3(AF)

ϕ(h)
∑

γ∈R(F)\U3(F)

δ(γh)
s+1
2 f (γh) dh (by Lemma 2.2)

=

∫

R(F)\U3(AF)

ϕ(h)δ(h)
s+1
2 f (h) dh

=

∫

R(F)ZN3
(AF)\U3(AF)

ϕ0(h)δ(h)
s+1
2 f (h) dh (since ZN3 ⊂ N)

=

∫

N3(F)ZN3
(AF)\U3(AF)

Wϕ(h)δ(h)
s+1
2 f (h) dh (by (2.6))

=

∫

N3(AF)\U3(AF)

∫

N3 (F)ZN3
(AF)\N3(AF)

Wϕ(nh)δ(nh)
s+1
2 f (nh) dndh

=

∫

N3(AF)\U3(AF)

Wϕ(h)

∫

N(AF )NB(F)\NB(AF)

ψ ′(n) δ(nh)
s+1
2 f (nh) dndh (by (2.5)).

Here ψ ′ denotes the nondegenerate character on the quotient N(AF)NB(F)\NB(AF)

that is induced by ψ under the identification (2.5). The inner integral will be given a

name:

W̃ τ (s, g) :=

∫

NB(F)N(AF )\NB(AF)

δ(ng)
s+1
2 f (ng)ψ ′(n) dn.

The notation is justified since the function W̃ τ (s, g) is related to Whittaker func-

tions in the space of τ . Under the isomorphism M ≈ ResE/F GL(2), NB ∩ M cor-

responds to a unipotent radical U of a Borel subgroup of M. Moreover, ψ defines a

nondegenerate character on N3(F)ZN3
(AF)\N3(AF) ≈ NB(F)N(AF)\NB(AF), hence

also of U (F)\U (AF). If we denote this character by ψ ′ ′, then we obtain

W̃ τ (s, g) = δ(g)
s+1
2

∫

NB(F)N(AF )\NB(AF)

f (ng)ψ ′(n) dn

= δ(g)
s+1
2

∫

U (F)\U (AF)

f (m(u)g) ψ ′ ′(u) du

= δ(g)
s+1
2

∫

U (F)\U (AF)

f̃ (g)(u)ψ ′′(u) du.

The last integral is nothing but the Whittaker function of f̃ (g) along U with re-

spect to the character (ψ ′′)−1, evaluated at the identity. It will be convenient to set
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W τ (s, g) = L(1 + 2s, τ ,Asai)W̃ τ (s, g). Then for suitable choice of data the functions

W τ (s, g) and W̃ τ (s, g) are decomposable into a product of local functions. We denote

the local components at a place v of F by W τ
v (s, g) and W̃ τ

v (s, g), respectively. This

finishes the proof of the global Theorem 1.1.

Note that the computations in this section can be performed with either the un-

normalized or the normalized Eisenstein series. All statements are correct for both of

them. This is because they differ by a meromorphic function L(1 + 2s, τ ,Asai), which

has the two properties that it decomposes into an Euler product for large real part of

s, and that it is bounded at infinity in vertical strips of finite width, and hence does

not affect convergence questions.

Both Eisenstein series have advantages. The normalized one E∗ has fewer poles

and gives rise to a nicer formula for the local integrals in Theorem 1.2. The unnor-

malized one E is needed for the application in Theorem 1.3.

3 The Local Integral

3.1 The Local Integral at Nonsplit Nonarchimedean Places

Suppose v is a finite place of F which remains prime in E. Let w denote the place of E

lying above v. Let q = qv denote the order of the residue field of F at v. We consider

the integrals

Iv(s,Wv,W
τ
v ) =

∫

N3(Fv)\U3(Fv)

Wv(g)W τ
v (s, g) dg.

Here Wv runs through the functions in the Whittaker model W(πv, ψv) of πv, and

W τ
v belongs to a space of functions defined as follows. We consider functions u(s, g)

for which there exists a compact open subgroup Kv ⊂ U4(Fv) such that u(s, · ) has its

support in P(Fv)Kv and is right Kv invariant. Moreover, we require that there exist a

function W ∈ W(τv, ψ
′ ′
v ) in the Whittaker model of τv, defined using the unipotent

radical U (Fv) and the character (ψ ′′)−1
v , with the following property. Whenever nv ∈

N(Fv), kv ∈ Kv, xv ∈ GL(2, Ew) are such that nvm(xv)kv = gv lies in the support of

u(s, · ), then

(3.1) u(s, gv) = Lv(1 + 2s, τv,Asai)δ(m(xv))
s+1
2 W (xv).

We require that W τ
v be a finite linear combination of such functions u(s, g).

Proposition 3.1 (i) The integrals Iv(s,Wv,W
τ
v ) converge absolutely for ℜ(s) suffi-

ciently large. They are rational functions of q−s and therefore can be analytically

continued as functions of s to the entire complex plane.

(ii) Suppose v is unramified in E and πv and τv are both spherical. Let

t(πv × τv) =



α

1

1


 ×

(
β1

β2

)
× 12 ⋊ c
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be the Langlands parameter attached to them. Let W 0
v be the normalized spherical

Whittaker function of πv, and W τ ,0
v = u(s, g) be right Kv-invariant, for Kv such

that Kv ∩ M(Fv) = GL2(OEw
),Kv ∩ U3(Fv) = U3(Ov), and moreover such that

W (in (3.1)) is the normalized spherical Whittaker function of τv. Then

Iv(s,W 0
v ,W

τ ,0
v )

= Lv(s + 1/2, τv × πv) = det(112 − q−sρ(t(πv × τv)))−1

=
∏

i=1,2

(1 − βiq
−2(s+1/2))(1 − βiαq−2(s+1/2))(1 − βiα

−1q−2(s+1/2)).

(3.2)

We remark that the Euler factor can also be interpreted through the standard base

change BC(πv) of πv to GL(3, Ew). Namely, it is the Rankin–Selberg convolution

L-factor of BC(πv) × τv of degree 6 over Ew, as defined in [9]. The group U3(Ov)

denotes a fixed hyperspecial maximal compact subgroup of U3(Fv), (which exists by

our choice of U3) to be quasisplit and v to be unramified in E.

Proof Since the functions under the integral are smooth in the algebraic sense, we

see that, given Wv,W
τ
v as above, there exists a finite number of matrices ki ∈ U3(Ov),

1 ≤ i ≤ n, such that

(3.3) Iv(s,Wv,W
τ
v ) =

n∑

i=1

∫

E×

w

Wv(m3(α)ki)W
τ
v (m3(α)ki) |α|

−2
Fv

d×α.

Now the Whittaker functions in the space of πv and τv can be uniformly bounded

by gauges. More precisely there exists a positive real number r such that for any

W ∈ W (πv, ψv) there exists a Bruhat–Schwartz function Φ on Ew such that

∀α ∈ E×
w , n ∈ N3(Fv), k ∈ Kv : |W (nm3(α)k)|

C
≤ |α|rEw

Φ(α).

With that bound, together with a similar well-known one for GL2(Ew), the integrals

Iv(s,Wv,W
τ
v ) can be majorized in absolute value by a finite sum of integrals of the

form ∫

E×

w

Φ
′(α) |α|

r ′+s
Ew

d×α,

for a constant real number r ′ that only depends on πv and τv, and a Bruhat–Schwartz

function Φ
′ that depends on the particular ingredients. In any case, this Tate-type

integral converges for ℜ(s) + r ′ > 0. The assertion that the local integrals are rational

functions in q−s follows from (3.3), by taking into account the fact that Whittaker

functions restricted to the diagonal {m3(α), α ∈ E×
w }, are finite sums of products of

Bruhat–Schwartz functions on Ew with finite functions on E×
w .

The result (ii) rests upon the fact that since W 0
v and W τ ,0

v are invariant under the

maximal open compact subgroup U3(Ov), the integral in question becomes essen-

tially a sum. More precisely, using the Iwasawa decomposition

U3(Fv) = N(Fv)A(Fv)U3(Ov)
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with A being a maximal F-split torus of U3, we obtain

Iv(s,W 0,W τ ,0
v ) =

∑

n∈Z

W 0(m3(̟n
v )) W τ ,0

v

(
s, diag(̟n

v , 1, 1, ̟
−n
v )

)
|̟n

v |
−4
Fv

= Lv(1 + 2s, τv,Asai)

×
∑

n∈Z

W 0(m3(̟n
v )) |̟n

v |
2(s+1)
Fv

W
(

diag(̟n
v , 1)

)
|̟n

v |
−4
Fv
.

The absolute value factor on the right appears because of the expression of the Haar

measure with respect to the Iwasawa decomposition. The formula (3.2) now follows

from the standard formulas for the spherical Whittaker functions, which are well

known for GL2. For U3 they are given in [1, Theorem 5.4]. Namely, the integral

Iv(s,W 0,W τ ,0
v ) equals Lv(2s + 1, τv,Asai) times

∑

n≥0

|̟v|
n
Ew

αn+1 − α−n−1

α− α−1
|̟v|

2n(s+1)+2 n
2

Fv

∑

k+l=n

(βk
1β

l
2) |̟n

v |
−4
Fv

=
1

α− α−1

∑

k,l≥0

[α(αβ1)k(αβ2)l − α−1(α−1β1)k(α−1β2)l]q−2(k+l)(s+1/2)

= (1 − β1β2q−2(2s+1)) ×
∏

i=1,2

(
1 −

αβi

q2s+1

)−1(
1 −

α−1βi

q2s+1

)−1

Since Lv(2s+1, τv,Asai) = (1−β1q−(2s+1))−1(1−β2q−(2s+1))−1(1−β1β2q−2(2s+1))−1,

this finishes the proof in the nonsplit nonarchimedean case.

3.2 The Local Integral at Split Nonarchimedean Places

Suppose v is a finite place of F which splits in E. In this section, | · | denotes the

normalized absolute value on F×
v . Let q = qv be the order of the residue field of F

at v. Denote the two places of E lying above v by w1,w2. Choosing one place w1 is

equivalent to fixing an embedding of E into Fv. Supposing we have made this (non-

canonical) choice, there are isomorphisms

(3.4) GL4(E ⊗F Fv) ≈ GL4(Fv) × GL4(Fv), g ⊗ 1 7−→ (g, g).

Composing the natural embedding of U4(F ⊗F Fv) →֒ GL4(E ⊗F Fv) with the pro-

jection onto the first factor defines an isomorphism U4(Fv) ≈ GL4(Fv). Similarly

U3(Fv) ≈ GL3(Fv). We remark here that in the computations that follow we actu-

ally must check that the result we obtain does not depend on our initial choice of a

place w1. This fact translates into a symmetry condition among the Euler factors. It

is satisfied by all our results.

Now πv is an irreducible representation of GL3(Fv), and τv = τw1
⊗ τw2

is an

irreducible representation of GL2(Ew1
)×GL2(Ew2

) ≈ GL2(Fv)×GL2(Fv). The local
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zeta integrals we are considering are

Iv(Wv,W
τ
v ) =

∫

N3(Fv)\GL3(Fv)

Wv(g)W τ
v (s, g) dg.

Here Wv denotes a function in the Whittaker model W(πv, ψv) of πv. Under the

identification U3(Fv) ≈ GL3(Fv), N3(Fv) gets identified with the unipotent upper

triangular matrices in GL3(Fv), and ψv is a nondegenerate character of this group.

The functions W τ
v (s, g) are defined analogously to the inert case, but let us make

some of the differences more precise. Again W τ
v is a finite linear combination of

functions u(s, g) which are smooth in the algebraic sense and satisfy the following

condition. There exists a compact open subgroup Kv ⊂ U4(Fv) such that u(s, · ) has

its support in P(Fv)Kv and is right Kv invariant. Moreover we require that there exists

a function W ∈ W(τv, ψv) in the Whittaker model of τv, with the following property.

Whenever nv ∈ N(Fv), kv ∈ Kv, xv ∈ GL(2, E⊗ Fv) are such that nvm(xv)kv = gv lies

in the support of u(s, · ), then

u(s, gv) = Lv(1 + 2s, τv,Asai)δ(m(xv))
s+1
2 W (m(xv)).

Now the Whittaker model is a tensor product

W(τv, ψv) = W(τw1
, ψw1

) ⊗ W(τw2
, ψw2

).

Assume for simplicity that W corresponds to a pure tensor W1 ⊗ W2 under this

isomorphism. Then if an element mv ∈ M(Fv) corresponds to the pair (m1,m2)

under the identification M(Fv) = GL(2, E ⊗ Fv) = GL(2, Ew1
) × GL(2, Ew2

), the

following identities hold.

δ(mv) = |det(m1)|
2
Ew1

|det(m2)|
2
Ew2

= |det(m1m2)|
2,

(3.5)

W (mv) = W1(m1)W2(m2).(3.6)

On the other hand, when we identify U4(Fv) with GL4(Fv) using the place w1

and the basis {e, l, l ′, e ′}, then M(Fv) maps onto the 2 × 2 block diagonal matri-

ces. Suppose the element mv 7→ diag(A,D),A,D ∈ GL2(Fv) under this identifica-

tion. Now M(F) consists of matrices (with respect to the same basis) of the form

diag(X, X̃),X ∈ GL2(E) and X̃ = κ−1t X̄−1κ. Recall that κ =
(

0 1
−2d 0

)
. If we com-

pare this with the identification (3.4) above, we find that

m1 = A, m2 =
t(κDκ−1)−1.

Using (3.5) and (3.6), one obtains the following formulas, which will be used in the

computations below.

W (diag(A,D)) = W1(A)W2(t(κDκ−1)−1),(3.7)

δ(diag(A,D)) =
∣∣det(AD−1)

∣∣2
.(3.8)

In this context we call W τ
v (s, g) unramified if it is right invariant by GL4(Ov) and the

functions W1 and W2 are normalized spherical Whittaker functions.
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Proposition 3.2 (i) The integrals Iv(Wv,W
τ
v ) converge absolutely for ℜ(s) suffi-

ciently large. They are rational functions of q−s and therefore can be analytically

continued to the entire complex plane.

(ii) Suppose τw1
, τw2

, and πv are spherical. Let the Langlands parameters be

t(πv × τv) =



α1

α2

α3


 ×

(
β1

β2

)
×

(
γ1

γ2

)
⋊ 1.

Suppose W 0
v is the normalized spherical Whittaker function of πv, and W τ ,0

v is

unramified in the sense described above. Then

Iv(s,W 0
v ,W

τ ,0
v ) = Lv(s + 1/2, τv × πv)

= det(112 − q−sρ(t(πv × τv)))−1

=

3∏
i=1

2∏
j=1

(1 − αiβ jq
−(s+ 1

2
))−1 (1 − α−1

i γ jq
−(s+ 1

2
))−1.

(3.9)

Again the main Euler factor may be interpreted in terms of the Rankin–Selberg

convolution of τv = τw1
⊗τw2

and the standard base change of πv to GL(3, E⊗F Fv) =

GL(3, Ew1
) × GL(3, Ew2

).

Proof Let us note some general facts about these integrals. First, due to the Iwa-

sawa decomposition GL3(Fv) = N3(Fv)A(Fv) GL3(Ov), the domain of the integral in

question consists of the last two factors. On the other hand, for convergence ques-

tions we may assume that the support of W τ
v is contained in P(Fv)Kv ⊂ GL4(Fv).

So one needs to know the Iwasawa decomposition in U4 of an element in the image

of U3. Since for most practical purposes, i.e., convergence and computation of the

unramified case, it suffices to consider diagonal matrices, we introduce the following

notation: d(a, b, c) will denote the element of U3(Fv) ≈ GL3(Fv) given by a diagonal

matrix with entries a, b, c ∈ F×
v . We then have (cf. (2.1))

ι(d(a, b, c)) =




a
b+1

2
b−1

2
b−1

2
b+1

2

c


 ∈ U4(Fv) ≈ GL4(Fv).

If v does not divide 2, then the Iwasawa decomposition U4(Fv) = P(Fv)U4(Ov) of the

matrix on the right-hand side is given as follows:

|b| = 1 : ι(d(a, b, c)) =




a

12

c







1
b+1

2
b−1

2
b−1

2
b+1

2

1


 ,

|b| 6= 1 : ι(d(a, b, c)) =




a
2b

b−1
b+1

2

0 b−1
2

c







1

0 −1

1 b+1
b−1

1


 .
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If v divides 2, there are more cases for |b| = 1. Again for the purpose of show-

ing convergence we may suppose that given W τ
v , there exist two Whittaker functions

Wi ∈ W(τwi
, ψ ′ ′

wi
), i = 1, 2, such that the following equality holds (cf. (3.7)).

W τ
v

(
s,

(
A 02

02 D

))
= Lv(2s + 1, τv,Asai)W1(A)W2(κtD−1κ−1)

∣∣det(AD−1)
∣∣s+1

.

Now we write the local integral as a sum of three terms and show for each one

that it converges absolutely for ℜ(s) sufficiently large. The first integral will be over

the domain where b has absolute value 1. Since (OFv
)× is compact, and the functions

involved Kv-finite, we may as well assume, for the purpose of showing convergence,

that b = 1. The second term will be over |b| < 1 and the third one over |b| > 1. We

need to use in all cases one basic result concerning bounds on Whittaker functions.

It follows directly from [9, Proposition 2.2, p. 181]. This result has already been used

in the nonsplit case, but it is recalled only here because in the split case one must be

more careful about convergence questions.

Lemma 3.3 Let σ be an irreducible generic representation of GLn(Fv). Suppose it is

realized in its Whittaker model W with respect to some nondegenerate character. Then

there exists a positive number r which only depends on τ , such that for a given Whittaker

function W ∈ W there exists a positive Bruhat–Schwartz function Φ ∈ S(Fn−1
v ) with

the following property.

|W (diag(a1, a2, . . . , an))|
C
≤ Φ

( a1

a2
, . . . ,

an−1

an

)
|a1a2 . . . an|

r
Fv
.

Using this result we now show that each of the three terms converges. The first

one, where we set b = 1, simply becomes

∫

(F×

v )2

Wv(d(a, 1, c))W τ
v (s, ι(d(a, 1, c)))

∣∣∣
a

c

∣∣∣
−2

d×a d×c

=

∫

(F×

v )2

Wv(d(a, 1, c))W1

(
a 0

0 1

)
W2

(
c−1 0

0 1

) ∣∣∣
a

c

∣∣∣
s−1

d×a d×c.

Using the lemma and making a change of variables c 7→ c−1, we can bound this

expression in absolute value by

∫

(F×

v )2

Φ(a, c) |ac|r+s−1
d×a d×c.

Again r does not depend on the particular Whittaker functions, and Φ ∈ S(F2
v ). This

is a local integral of Tate-type, hence it converges for ℜ(s) > 1 − r.

For the second and third term, we need to use the above matrix identities. For

simplicity of exposition we also assume that v does not divide 2. Then in the case
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|b| < 1 we need to bound an integral of the form

∫

(F×

v )3

|b|<1

Wv

(
d(a, b, c)

)
W τ

v

(
s, ι(d(a, b, c))

) ∣∣∣
a

c

∣∣∣
−2

d×a d×b d×c =

∫

(F×

v )3

|b|<1

Wv

(
d(a, b, c)

)
W1

(
a 0

0 2b
b−1

)
W2

(
c−1 0

0 2
b−1

)

×
∣∣∣

4ab

(b − 1)2c

∣∣∣
s+1 ∣∣∣

a

c

∣∣∣
−2

d×a d×b d×c.

First we note that |b − 1| = 1. Then, using Lemma 3.3, we can bound this expression

by

∫

(F×

v )3

|b|<1

Φ1

( a

b
,

b

c

)
Φ2

( a(b − 1)

2b

)
Φ3

( b − 1

2c

) ∣∣∣∣
4ab

c

∣∣∣∣
r ′+s+1 ∣∣∣

a

c

∣∣∣
−2

d×a d×b d×c.

Here again the Φi ’s are appropriate Bruhat–Schwartz functions. Notice that they

combine to essentially one Bruhat–Schwartz function on F4
v evaluated at the variables

(a/b, b/c, 1/c, a). Thus, changing c to c−1 once again, we see that we are essentially

dealing with Tate-type integrals and hence obtain absolute convergence for ℜ(s) >
1 − r ′.

The third integral for |b| > 1 works similarly to the second, except that now

|b − 1| = |b|, and we need to make an extra change of variables b 7→ b−1. This

establishes the absolute convergence. It is then a direct consequence of the known

behavior of Whittaker functions on the diagonal that the resulting integral is a ratio-

nal function of q−s.

We now calculate the integrals in the spherical case. Suppose ι(U3(Ov)) ⊂ U4(Ov)

and we are in the situation of Proposition 3.2(ii). Then the integral reduces to an

integral over the diagonal A(Fv) ≈ (F×
v )3.

Iv(s,W 0
v ,W

τ ,0
v ) =

∫

(F×

v )3

W 0
v

(
d(a, b, c)

)
W τ ,0

v

(
ι(d(a, b, c))

) ∣∣ac−1
∣∣−2

d×a d×b d×c.

This in turn reduces to a triple infinite sum. Because of the absolute convergence for

ℜ(s) large that we just established, we can rearrange the summands as we like without

changing the result.

For (n,m, r) ∈ Z3, n ≥ m ≥ r (respectively (n,m) ∈ Z2, n ≥ m) we denote

by ρ(n,m,r) (respectively ρ(n,m)) the irreducible finite dimensional representation of

GL3(C) of highest weight (n,m, r) (respectively of GL2(C) of highest weight (n,m)).

We write χ(n,m,r)(A) for the trace of ρ(n,m,r) evaluated at a matrix A ∈ GL3(C), and

define similarly χ(n,m)(B),B ∈ GL2(C).

We split Iv(s,W 0
v ,W

τ ,0
v ) into three parts as before. The term corresponding to

|b| = 1 will contribute L(1 + 2s, τv,Asai) times the expression

∑

n,m∈Z

a=̟n,c=̟m

W 0
v (d(̟n, 1, ̟m))W1

(
̟n

1

)
W2

(
̟−m

1

) ∣∣̟n−m
∣∣s−1

.
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Clearly the nonzero contributions arise only when n ≥ 0 ≥ m. Changing m to −m,

this equals

(3.10)

∞∑

n,m=0

|̟|
n+m

χ(n,0,−m)(A) |̟|
n/2
χ(n,0)(B) |̟|

m/2
χ(m,0)(C) |̟|

(n+m)(s−1)
.

Here the notation means

A = diag(α1, α2, α3), B = diag(β1, β2), C = diag(γ1, γ2).

Next we investigate the contributions from |b| < 1. Now we obtain L(1 + 2s, τv,Asai)

times a triple sum which looks as follows (since |2b/(b − 1)| = |b| , |(b − 1)/2| = 1):

∑

n,m∈Z

a=̟n,c=̟m

∞∑

r=1
b=̟r

W 0
v (d(̟n, ̟r, ̟m))W1

(
̟n

̟r

)

×W2

(
̟−m

1

) ∣∣̟n+r−m
∣∣s+1 ∣∣̟n−m

∣∣−2
.

Making the shift a = ̟r+n, b = ̟r, c = ̟−m, we see that the nonzero terms add

up to

(3.11)

∞∑

n,m=0

∞∑

r=1

|̟|n+m+r χ(n+r,r,−m)(A) |̟|n/2 χ(n+r,r)(B)

× |̟|
m/2

χ(m,0)(C) |̟|
(n+m+2r)(s+1)

|̟|
−2(n+m+r)

.

Finally the same analysis as above shows that the integral over |b| > 1 con-

tributes the Asai L-factor times the following infinite sum (use |2b/(b − 1)| = 1,

|(b − 1)/2| = |b|, and set a = ̟n, b = ̟−r, c = ̟−m−r):

(3.12)

∞∑

n,m=0

∞∑

r=1

|̟|
n+m+r

χ(n,−r,−m−r)(A) |̟|
n/2
χ(n,0)(B)

× |̟|
m/2

χ(m+r,r)(C) |̟|
(n+m+2r)(s+1)

|̟|
−2(n+m+r)

.

Combining the three separate contributions (3.10), (3.11), and (3.12), the unram-

ified local integral Iv(s,W 0
v ,W

τ ,0
v ) equals L(1 + 2s, τv,Asai) times

(3.13)

∞∑

n,m=0

q−(s+1/2)(n+m)χ(n,0)(B)χ(m,0)(C)

×
(
χ(n,0,−m)(A) +

∞∑

r=1

q−(s+1/2)2rχ(n+m+r,m+r,0)(A)(β1β2)r(α1α2α3)−m

+

∞∑

r=1

q−(s+1/2)2rχ(n+m+r,n+r,0)(A−1)(γ1γ2)r(α1α2α3)n
)
.
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In the last line, we used the fact that the contragredient representation of ρ(a,b,c)

is ρ(−c,−b,−a), and that the corresponding characters satisfy χρ(A) = χρ̌(A−1). As

written above, it is clear that the local integral has the expected symmetry.

Next note that, for a ≥ b ≥ 0,

χ(a,b,0)(A) =
1

(α1 − α2)(α1 − α3)(α2 − α3)

∑

τ∈S3

sgn(τ)αa+2
τ (1)α

b+1
τ (2).

Let us set ǫ = ((α1 −α2)(α1 −α3)(α2 −α3))−1, and X = q−s−1/2. Using this, we

compute that the sum of the second and third line in (3.13) equals

ǫ
∑

τ∈S3

sgn(τ)αn+2
τ (1)ατ (2)α

−m
τ (3)

(
1

1 − β1β2ατ (1)ατ (2)X2
+

γ1γ2α
−1
τ (2)α

−1
τ (3)X

2

1 − γ1γ2α
−1
τ (2)α

−1
τ (3)X

2

)
.

Combining this with the sum over n and m, the unramified local integral

Iv(s,W 0
v ,W

τ ,0
v ) equals L(1 + 2s, τv,Asai) times the sum over τ ∈ S3 of

ǫ sgn(τ)α2
τ (1)ατ (2)(1 − ατ (1)α

−1
τ (3)β1β2γ1γ2X4)

(1 − β1β2ατ (1)ατ (2)X2)(1 − γ1γ2α
−1
τ (2)α

−1
τ (3)X

2)

2∏

i=1

(1−βiατ (1)X)−1(1−γiα
−1
τ (3)X)−1.

This implies that Iv(s,W 0
v ,W

τ ,0
v ) equals L(1 + 2s, τv,Asai) times L(s + 1/2, πv × τv)

times

ǫ
∑

τ∈S3

sgn(τ)α2
τ (1)ατ (2)

1 − ατ (1)α
−1
τ (3)β1β2γ1γ2X4

(1 − β1β2ατ (1)ατ (2)X2)(1 − γ1γ2α
−1
τ (2)α

−1
τ (3)X

2)

×
2∏

i=1

(1 − βiατ (2)X)(1 − βiατ (3)X)(1 − γiα
−1
τ (1)X)(1 − γiα

−1
τ (2)X).

At this point, proving the local formula (3.9) is equivalent to showing the equality

of the following two expressions, which we may view as polynomials of degree 20

in X.

∑

τ∈S3

sgn(τ)α2
τ (1)ατ (2)(1 − ατ (1)α

−1
τ (3)β1β2γ1γ2X4)(1 − β1β2ατ (1)ατ (3)X

2)

× (1 − β1β2ατ (2)ατ (3)X
2)(1 − γ1γ2α

−1
τ (1)α

−1
τ (2)X

2)(1 − γ1γ2α
−1
τ (1)α

−1
τ (3)X

2)

×
2∏

i=1

(1 − βiατ (2)X)(1 − βiατ (3)X)(1 − γiα
−1
τ (1)X)(1 − γiα

−1
τ (2)X)

!
= ǫ−1

2∏
i, j=1

(1 − βiγ jX
2)

3∏
i=1

(1 − α1α2α3β1β2α
−1
i X2)(1 − α−1

1 α−1
2 α−1

3 γ1γ2αiX
2).

It turns out that the terms of odd degree in X on the left-hand side all vanish, and

that the two expressions are equal. The verification is lengthy, but straightforward.

This finishes the proof of Proposition 3.2.
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3.3 The Local Integral at Archimedean Places

Let v be a real place of F, so that Fv ≈ R, Ev ≈ C. We consider local integrals of the

form

Iv(s,Wv,W
τ
v ) =

∫

N3(Fv)\U3(Fv)

Wv(g)W τ
v (s, g) dg.

Here Wv denotes a function in the smooth Whittaker model W(πv, ψv) of πv, as

described in [12, §5.3]. Let W(τv, ψv) denote the space of smooth functions in the

Whittaker model of τv. Let Kv ⊂ U4(Fv) be a maximal compact subgroup. Then we

require of W τ
v (s, g) that it be smooth in g, right Kv-finite, left N(Fv)-invariant, and

that for any g the function on M(Fv) ≈ GL(2,C) defined by

mv 7→ L(1 + 2s, τv,Asai)−1δ(mv)−
s+1
2 W τ

v (s,mvg)

is independent of s and lies in W(τv, ψv) (for values of s at which there is no pole).

Lemma 3.4 There exists a positive real number r such that for ℜ(s) > r and any two

functions Wv,W
τ
v , the integrals Iv(s,Wv,W

τ
v ) converge absolutely and normally in s.

Moreover, they can be analytically continued to meromorphic functions of s ∈ C.

Proof By the Iwasawa decomposition it suffices to show the convergence and ana-

lytic continuation of integrals of the form

(3.14)

∫

F×

v

Wv(diag(t, 1, t−1))W τ
v (s, diag(t, 1, 1, t−1)) |t|

−2
Fv

d×t

= L(1 + 2s, τv,Asai)

∫

F×

v

Wv(diag(t, 1, t−1))W

(
t

1

)
|t|

2s
Fv

d×t.

Here W ∈ W(τv, ψv) is a Whittaker function on GL(2,C) associated with τv. For

such a function there is a well-known bound due to Jacquet and Shalika. The follow-

ing lemma recalls their result [10, Proposition 4.].

Lemma 3.5 There exists a finite set X of finite functions on C× such that for all V ∈
W(τv, ψv) there exist Bruhat–Schwartz functions φx ∈ S(C), x ∈ X such that

V

(
t

1

)
=

∑

x∈X

φx(t) · x(t).

A similar result holds for the functions Wv on U3(Fv) when restricted to the largest

split torus. It was proved by Soudry for quasisplit SO2l+1 in [15, Proposition 3.3], and

can be obtained for U3 in a similar manner (see also Watanabe [17, (4.2)]). Taking

into account how finite functions on R× look, the integral (3.14) therefore reduces

to a finite sum of terms of the form

L(1 + 2s, τv,Asai)

∫

F×

v

φ(t) |t|
2s+n
R

log |t|
m

d×t.
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In the above equation, n is a real number, m a nonnegative integer, and φ ∈ S(C). It

is known that such integrals have the desired convergence and analytic continuation

properties, hence the same is true for Iv(s,Wv,W
τ
v ). This finishes the proof of Lemma

3.4.

The precise determination of archimedean Zeta integrals is quite subtle, as can be

seen in the work of Koseki and Oda [12]. In the present case an additional difficulty is

given by the fact that these local integrals also involve Whittaker functions on GL2(C)

coming from the Levi factor M of the parabolic subgroup P ⊂ U4.

However we would like to point out one important property that these integrals

have. Namely, if we quotient out by the Asai L-factor and set

I∗v (s,Wv,W
τ
v ) = Iv(s,Wv,W

τ
v ) · Lv(1 + 2s, τ ,Asai)−1,

then the meromorphic properties do not change. Moreover, the following is true.

Lemma 3.6 For any s0 ∈ C there exist finitely many data Wv,i,W
τ
v,i , 1 ≤ i ≤ r, such

that the sum
∑r

i=1 I∗v (s,Wv,i ,W
τ
v,i) is holomorphic and nonzero at s = s0.

Proof We present a sketch of the argument. If ℜ(s) is sufficiently large, the function

t 7→ Wv(diag(t, 1, t−1)) |t|
2s

belongs to L2(F×
v ), and it is known that the functions

W ∈ W(τv, ψv), when restricted to matrices of the form diag(t, 1), are dense in this

space. Therefore we can choose, for any given Wv, a function W τ
v such that the func-

tion

k 7→ F(k) :=

∫

F×

v

Wv(diag(t, 1, t−1)k)W τ
v (s, ι(diag(t, 1, t−1)k)) |t|−2

Fv
d×t

is not identically zero. Here k ∈ K ⊂ U3(Fv) is a maximal compact subgroup such

that the Iwasawa decomposition U3(Fv) = N3(Fv) diag(t, 1, t−1)K, t ∈ F×
v , holds.

Then I∗v (s,Wv,W
τ
v ) =

∫
K

F(k) dk. Since F 6= 0, and since we are free to replace

Wv by πv(φ)Wv for any smooth function φ on K , this proves the lemma in the case

ℜ(s0) ≫ 0.

To pass to the case of an arbitrary complex number, one proceeds analogously to

[15, Proposition 7.2]. (See also [17, Lemma 6].) One first shows that linear combina-

tions of integrals I∗v (s,Wv,W
τ
v ), viewed as meromorphic functions of s, contain the

space of archimedean Rankin–Selberg integrals on suitable general linear groups. But

for these, which are studied in [10], the desired nonvanishing result is known. Note

that contrary to the case of large real part, in general we can only assure that a finite

linear combination is holomorphic and nonzero, and we have to include functions

which are not necessarily K-finite.

4 Proof of the Application

First let us restate the content of the two main theorems in a way that is more suitable

for certain applications, including the one we have in mind here.
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Theorem 4.1 Let π be an irreducible generic unitary cuspidal automorphic represen-

tation of U3. Let τ be an irreducible cuspidal automorphic representation of GL(2, E).

Let ϕ ∈ π denote a cuspform, and let E(s, g, f ) denote an Eisenstein series on U4, de-

fined as in (2.3), i.e., unnormalized with respect to the functional equation. Then there

exists a finite set S of places of F, including all the archimedean ones, and a meromorphic

function C(s), defined as a finite product of local integrals, such that for ℜ(s) ≫ 0,

(4.1)

∫

U3(F)\U3(AF)

ϕ(g)E(s, g, f ) dg = C(s) ·
LS(s + 1/2, π × τ)

LS(1 + 2s, τ ,Asai)
.

It is clear from the proofs that a little more can be said about the function C(s). For

us, what is most important, is that it can be analytically continued to a meromorphic

function of s ∈ C, and that for a fixed number s0 one can find suitable choices for ϕ
and E such that the resulting C(s) is holomorphic and nonzero at s = s0.

Next we recall a description of the part of the residual spectrum of U4 that comes

from the Siegel parabolic P. The following result was proved in [11, Theorem 4.4].

Theorem 4.2 (T. Kon-No) Let τ be an irreducible unitary cuspidal automorphic rep-

resentation of GL2(E) whose central character ωτ has trivial restriction to A
×
F . More-

over assume that L(s, τ ,Asai) has a (necessarily simple) pole at s = 1. Then the global

Langlands quotient of IndU4(AF)
P(AF) (τ ⊗ |det( · )|1/2

AE
) appears in the residual spectrum of

U4. These representations appear with multiplicity one, and they, with their direct sum

(over τ), comprise all of the residual spectrum that arises from cuspidal data from the

parabolic P.

We remark that in rephrasing Kon-No’s theorem we also used the fact that the pole

condition of the Asai L-function is equivalent to the nonvanishing of certain period

integrals (see [8, §3.13], or the appendix of [11]).

Now fix a τ that satisfies the conditions of the above theorem. The pole of the Asai

L-function implies that the representation τ is isomorphic to its Galois conjugate τ ′,

which is defined by τ ′(g) = τ(ḡ). Moreover, by [2, Theorem 1], the pole of the Asai

L-function implies that τ is the image of a stable L-packet on U2 under the unstable

base change lift.

The unstable base change lift is defined via the homomorphism ξ1 of L-groups

(1.3). So let τ0 denote the unique stable cuspidal global L-packet on U2 whose unsta-

ble base change is τ . We remark that if τ0 has central character ω0, that is, if one and

hence all representations in the packet have this central character, then the central

character of τ satisfies ωτ (z) = ω0(z/z̄)µ(z)2.

Now let E(s, g, f ) be an Eisenstein series on U4, as defined in (2.3), corresponding

to τ . Then, due to our definition, E(s, g, f ) has a simple pole at s = 1/2, and the

space of functions g 7→ Ress=1/2 E(s, g, f ) occurs in the residual spectrum of U4. Let

Vσ(τ ) denote the space of functions on U4 so obtained, and σ(τ) the representation

of U4 on this space. Consider now the restriction of functions in Vσ(τ ) to U3.

Let π be a unitary irreducible cuspidal automorphic representation of U3. If π
is not generic, then the global integral (1.1) is identically zero, so π does not occur

in any Siegel induced automorphic representation of U4. So let us assume that π is
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generic. Recall the two facts that L(s, τ ,Asai) is holomorphic and nonzero at s = 2

and that the data on the left-hand side of the equality (4.1) can be chosen so that

C(1/2) 6= 0. From this it follows that π and the restriction of σ(τ) to U3 have a

nonzero L2-pairing if and only if LS(s, π × τ) has a simple pole at s = 1.

But this L-function equals the Rankin–Selberg convolution of τ and the stan-

dard (or stable) base change of π to GL3(E). Thus if, for example, π lies in a stable

L-packet, then its base change is cuspidal and LS(s, π × τ) is entire. Hence the only

possibility for a pole is if π is endoscopic. More precisely, the following is true. Since

τ is the unstable base change of τ0, the following equality of local L-factors holds, at

least for almost all places v of F.

Lv(s, τ) = Lv(s,BCu(τ0)) = Lv(s,BC(τ) ⊗ µ).

Here we denote by BCu the unstable base change and by BC the stable base change.

Therefore LS(s, π × τ) = LS(s,BC(π) × BC(τ0) ⊗ µ). Particularly, if the base change

of π is cuspidal, then this standard Rankin–Selberg L-function has no poles. On

the other hand, from the explicit description of the discrete spectrum of U3 given in

[14], it also follows for which π LS(s, π × τ) does have a pole. Namely, if π lies in a

packet that is the endoscopic transfer with respect to ξ2 ((1.4), which uses µ−1) of an

L-packet ρ2 × ρ1 on U2 ×U1, then

Lv(s, π) = Lv(s,BC(ρ2) ⊗ µ−1) · Lv(s,BC(ρ1)).

Combining these facts, we see that in this case,

LS(s, π × τ) = LS(s,BC(ρ2) × BC(τ0)) · LS(s,BC(ρ1) ⊗ BC(τ0)).

The second factor has no poles and is nonzero at s = 1, since τ0 is stable. The first

has a simple pole at s = 1 precisely when ρ2 ≈ τ̃0. This proves Theorem 1.3.

The Corollary 1.4 to Theorem 1.3 follows directly from the arguments used in the

above proof. For clarity, we emphasize again that LS(s, τ ,Asai) has a simple pole at

s = 1 if and only if E(s, g, f ) has a simple pole at s = 1/2, for τ an irreducible unitary

cuspidal automorphic representation of ResE/F GL(2). All of these poles contribute

to the residual spectrum of U4. Also, if an irreducible cuspidal automorphic repre-

sentation π of U3 is not endoscopic, then it is stable, hence its base change to GL(3)

is cuspidal, and the Rankin–Selberg L-function L(s, π × τ) is entire. In particular, it

has no poles.
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