QUANTUM DEFORMATIONS

 OF SIMPLE LIE ALGEBRASMURRAY BREMNER

Abstract

It is shown that every simple complex Lie algebra \mathfrak{g} admits a 1-parameter family \mathfrak{g}_{q} of deformations outside the category of Lie algebras. These deformations are derived from a tensor product decomposition for $U_{q}(\mathfrak{g})$-modules; here $U_{q}(\mathfrak{g})$ is the quantized enveloping algebra of \mathfrak{g}. From this it follows that the multiplication on \mathfrak{g}_{q} is $U_{q}(\mathfrak{g})$-invariant. In the special case $\mathfrak{g}=\mathfrak{g l}(2)$, the structure constants for the deformation $\mathfrak{\xi l}(2)_{q}$ are obtained from the quantum Clebsch-Gordan formula applied to $V(2)_{q} \otimes V(2)_{q}$; here $V(2)_{q}$ is the simple 3-dimensional $U_{q}(\mathfrak{H}(2))$-module of highest weight q^{2}.

1. Introduction. Lyubashenko and Sudbery [LS] have suggested that the quantized enveloping algebra $U_{q}(\mathfrak{g})$ of a simple complex (finite dimensional) Lie algebra g ought to be regarded as the universal associative enveloping algebra of some (as yet undetermined) non-associative algebra \mathfrak{g}_{q}. The relation between \mathfrak{g}_{q} and \mathfrak{g} should be analogous to that between $U_{q}(\mathfrak{g})$ and $U(\mathfrak{g})$, and there should be a PBW-type theorem relating $U_{q}(\mathfrak{g})$ and \mathfrak{g}_{q}. For other work along these lines, see [DH] and [DHGZ].

The purpose of this note is to show that a natural candidate for the "quantum Lie algebra" g_{q} can be obtained from the decomposition of the tensor square of the $U_{q}(\mathrm{~g})$-module V_{q} corresponding to the adjoint representation V of \mathfrak{g}. Thus in every case $\operatorname{dim}\left(\mathfrak{g}_{q}\right)=$ $\operatorname{dim}(\mathfrak{g})$; deformations of \mathfrak{g} satisfying this condition appear to be new except when $\mathfrak{g}=$ $\mathfrak{s l}(n)$. The structure constants of $\mathfrak{g l}(2)_{q}$ are worked out in detail using the quantum Clebsch-Gordan formula (§VII. 7 of [K]).

The algebras \mathfrak{g}_{q} defined in this note are not Lie algebras (except for a few special values of q): this is clear since every simple complex Lie algebra g has only trivial deformations in the category of Lie algebras (Chapter XVII of [K]). However the algebras \mathfrak{g}_{q} are structurally very closely related to Lie algebras, and so Lie-theoretic techniques should be applicable to this larger class of non-associative algebras.

General references on quantum groups are $[\mathrm{K}]$, $[\mathrm{CP}]$, [J] and [Lu]. We assume throughout that q is a complex number with $q \neq 0$ and q not a root of unity.

THEOREM. Let g be a simple complex Lie algebra, and let $U_{q}(\mathfrak{g})$ be the corresponding quantized enveloping algebra. There exists a deformation \mathfrak{g}_{q} of g such that
(1) \mathfrak{g}_{q} is a $U_{q}(\mathfrak{g})$-module with $\operatorname{dim}\left(\mathfrak{g}_{q}\right)=\operatorname{dim}(\mathfrak{g})$,

[^0](2) the multiplication $\mathrm{g}_{q} \otimes \mathrm{~g}_{q} \rightarrow \mathrm{~g}_{q}$ is a morphism of $U_{q}(\mathrm{~g})$-modules,
(3) g_{q} possesses a $U_{q}(\mathrm{~g})$-invariant bilinear form.

Proof. Let V denote the adjoint representation of \mathfrak{g}. Then V is also a $U(\mathrm{~g})$-module, so let V_{q} denote the corresponding $U_{q}(\mathrm{~g})$-module. We need two properties of $U_{q}(\mathrm{~g})$ modules:

- Every finite dimensional $U_{q}(\mathfrak{g})$-module is semisimple. See Theorem 10.1.14 of [CP], Theorem 5.17 of [J], or Theorem 6.2.2 of [Lu].
- The $U_{q}(\mathrm{~g})$-module V_{q} has the same formal character as the $U(\mathrm{~g})$-module V (as given by the classical Weyl character formula). See Corollary 10.1.15 of [CP], Theorem 5.15 of [J], or Theorem 33.1.3 of [Lu].
These results imply that the decomposition of any tensor product of $U_{q}(\mathfrak{g})$-modules is the same as the decomposition of the corresponding tensor product of $U(\mathrm{~g})$-modules. In particular, the Lie bracket and the Killing form on g show that $V \otimes V$ contains a copy of V and a copy of \mathbb{C}, and so $V_{q} \otimes V_{q}$ contains a copy of V_{q} and a copy of \mathbb{C}. The projections $V_{q} \otimes V_{q} \rightarrow V_{q}$ and $V_{q} \otimes V_{q} \rightarrow \mathbb{C}$ give a multiplication and a bilinear form on $\mathrm{g}_{q}=V_{q}$ satisfying the given conditions.

The case $\mathfrak{g}=\mathfrak{Z l}(2)$ Let U_{q} denote the quantized universal enveloping algebra of $\mathfrak{\xi l}(2)$ as defined in Chapters VI-VII of [K]. As an algebra U_{q} has generators E, F, K, K^{-1} and relations

$$
K K^{-1}=K^{-1} K=1, \quad K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F, \quad[E F]=\frac{K-K^{-1}}{q-q^{-1}}
$$

The coalgebra structure is given by

$$
\begin{gathered}
\Delta(K)=K \otimes K \\
\Delta\left(K^{-1}\right)=K^{-1} \otimes K^{-1} \\
\epsilon(K)=\epsilon\left(K^{-1}\right)=1 \\
\Delta(E)=1 \otimes E+E \otimes K \\
\Delta(F)=K^{-1} \otimes F+F \otimes 1 \\
\epsilon(E)=\epsilon(F)=1 .
\end{gathered}
$$

The bialgebra U_{q} becomes a Hopf algebra if we define the antipode by

$$
S(K)=K^{-1}, \quad S\left(K^{-1}\right)=K, \quad S(E)=-E K^{-1}, \quad S(F)=-K F
$$

Let $V(n)_{q}$ for $n \geq 0$ denote the unique simple U_{q}-module with highest weight q^{n}; then $\operatorname{dim} V(n)_{q}=n+1$. If v_{0} is a highest weight vector in $V(n)_{q}$ then the vectors $v_{i}=\frac{1}{[i]!} F^{i} v_{0}$ for $0 \leq i \leq n$ form a basis of $V(n)_{q}$. Here $[i]=\left(q^{i}-q^{-i}\right) /\left(q-q^{-1}\right)$ and $[i]!=$ $[i][i-1] \cdots[1]$. The quantum Clebsch-Gordan formula (Theorem VII.7.1 of [K]) states that for $n \geq m \geq 0$ there is a U_{q}-module isomorphism

$$
V(n)_{q} \otimes V(m)_{q} \cong V(n+m)_{q} \oplus V(n+m-2)_{q} \oplus \cdots \oplus V(n-m)_{q}
$$

In the special case $n=m=2$ we obtain
(*)

$$
V(2)_{q} \otimes V(2)_{q} \cong V(4)_{q} \oplus V(2)_{q} \oplus V(0)_{q}
$$

Let v_{0} denote a highest weight vector for the copies of $V(2)_{q}$ on the left side of $(*)$. Lemma VII.7.2 of [K] gives highest weight vectors x_{0}, y_{0} and z_{0} for the summands $V(4)_{q}$, $V(2)_{q}$ and $V(0)_{q}$ on the right side of $(*)$. Let s_{i} denote the i-th vector in the ordered basis $\left\{x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, y_{0}, y_{1}, y_{2}, z_{0}\right\}$ and let t_{j} be the j-th vector in the ordered basis

$$
\left\{v_{0} \otimes v_{0}, v_{0} \otimes v_{1}, v_{0} \otimes v_{2}, v_{1} \otimes v_{0}, v_{1} \otimes v_{1}, v_{1} \otimes v_{2}, v_{2} \otimes v_{0}, v_{2} \otimes v_{1}, v_{2} \otimes v_{2}\right\}
$$

Then $s_{i}=\sum_{j=1}^{9} c_{i j} t_{j}$ where $C=\left(c_{i j}\right)$ is the matrix of quantum Clebsch-Gordan coefficients:
$\left(\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 / q^{2} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 / q^{4} & 0 & 1 / q & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / q^{2} & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 / q^{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \left(q^{2}+1\right) / q^{3} & 0 & \left(q^{2}-1\right) / q^{2} & 0 & -\left(q^{2}+1\right) / q^{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 / q^{2} & 0 \\ 0 & 0 & 1 & 0 & -q /\left(q^{2}+1\right) & 0 & 1 / q^{2} & 0 & 0\end{array}\right)$.
Rows 1,6 and 9 give, respectively, the highest weight vectors of $V(4)_{q}, V(2)_{q}$ and $V(0)_{q}$:
$x_{0}=v_{0} \otimes v_{0}, \quad y_{0}=v_{0} \otimes v_{1}-\frac{1}{q^{2}} v_{1} \otimes v_{0}, \quad z_{0}=v_{0} \otimes v_{2}-\frac{q}{q^{2}+1} v_{1} \otimes v_{1}+\frac{1}{q^{2}} v_{2} \otimes v_{0}$.
Columns 1-5, 6-8 and 9 of C^{-1} are

$$
\begin{gathered}
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & q^{2} /\left(q^{4}+1\right) & 0 & 0 & 0 \\
0 & 0 & q^{4} /\left(q^{8}+q^{6}+2 q^{4}+q^{2}+1\right) & 0 & 0 \\
0 & q^{4} /\left(q^{4}+1\right) & 0 & 0 & 0 \\
0 & 0 & \left(q^{7}+2 q^{5}+q^{3}\right) /\left(q^{8}+q^{6}+2 q^{4}+q^{2}+1\right) & 0 & 0 \\
0 & 0 & 0 & q^{2} /\left(q^{4}+1\right) & 0 \\
0 & 0 & q^{8} /\left(q^{8}+q^{6}+2 q^{4}+q^{2}+1\right) & 0 & 0 \\
0 & 0 & 0 & q^{4} /\left(q^{4}+1\right) & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
\\
\\
\left(\begin{array}{ccc}
0 & 0 & 0 \\
q^{4} /\left(q^{4}+1\right) & 0 & 0 \\
0 & q^{5} /\left(q^{6}+q^{4}+q^{2}+1\right) & 0 \\
-q^{2} /\left(q^{4}+1\right) & 0 & 0 \\
0 & \left(q^{4}-q^{2}\right) /\left(q^{4}+1\right) & 0 \\
0 & 0 & q^{4} /\left(q^{4}+1\right) \\
0 & -q^{5} /\left(q^{6}+q^{4}+q^{2}+1\right) \\
0 & 0 & 0 \\
0 & 0 & -q^{2} /\left(q^{4}+1\right) \\
& & 0
\end{array}\right)
\end{gathered}
$$

$$
\left(\begin{array}{c}
0 \\
0 \\
q^{4} /\left(q^{4}+q^{2}+1\right) \\
0 \\
-\left(q^{3}+q\right) /\left(q^{4}+q^{2}+1\right) \\
0 \\
q^{2} /\left(q^{4}+q^{2}+1\right) \\
0 \\
0
\end{array}\right)
$$

Now identify the copies of $V(2)_{q}$ on the left and right sides of $(*)$. Let X^{\prime} denote a highest weight vector in $V(2)_{q}$, and set $H^{\prime}=F X^{\prime}$ and $Y^{\prime}=\frac{1}{[2]!} F^{2} X^{\prime}$. Columns 6-8 give the structure constants of $\mathfrak{\xi l}(2)_{q}$ (written with brackets although the composition is not anticommutative in general):

$$
\begin{gathered}
{\left[X^{\prime} X^{\prime}\right]=0} \\
{\left[X^{\prime} H^{\prime}\right]=\frac{q^{4}}{q^{4}+1} X^{\prime}} \\
{\left[X^{\prime} Y^{\prime}\right]=\frac{q^{5}}{\left(q^{4}+1\right)\left(q^{2}+1\right)} H^{\prime}} \\
{\left[H^{\prime} X^{\prime}\right]=\frac{-q^{2}}{q^{4}+1} X^{\prime}} \\
{\left[H^{\prime} H^{\prime}\right]=\frac{q^{2}\left(q^{2}-1\right)}{q^{4}+1} H^{\prime}} \\
{\left[H^{\prime} Y^{\prime}\right]=\frac{q^{4}}{q^{4}+1} Y^{\prime}} \\
{\left[Y^{\prime} X^{\prime}\right]=\frac{-q^{5}}{\left(q^{4}+1\right)\left(q^{2}+1\right)} H^{\prime}} \\
{\left[Y^{\prime} H^{\prime}\right]=\frac{-q^{2}}{q^{4}+1} Y^{\prime}} \\
{\left[Y^{\prime} Y^{\prime}\right]=0 .}
\end{gathered}
$$

Column 9 gives the U_{q}-invariant bilinear form on $\mathfrak{Z l}(2)_{q}$:

$$
\begin{aligned}
& \left(X^{\prime}, Y^{\prime}\right)=\frac{q^{4}}{\left(q^{4}+q^{2}+1\right)} \\
& \left(H^{\prime}, H^{\prime}\right)=\frac{-q\left(q^{2}+1\right)}{\left(q^{4}+q^{2}+1\right)} \\
& \left(Y^{\prime}, X^{\prime}\right)=\frac{q^{2}}{\left(q^{4}+q^{2}+1\right)}
\end{aligned}
$$

and all other pairings are 0 . Now define $H=a H^{\prime}, X=b X^{\prime}, Y=c Y^{\prime}$ where

$$
a=b=-q^{-4}\left(q^{6}+q^{4}+q^{2}+1\right), \quad c=q^{-5}\left(q^{6}+q^{4}+q^{2}+1\right) .
$$

Then we obtain
$(* *)$

$$
\begin{gathered}
{[X X]=0} \\
{[X H]=-\left(1+q^{2}\right) X} \\
{[X Y]=H} \\
{[H X]=\left(1+q^{-2}\right) X} \\
{[H H]=\left(q^{-2}-q^{2}\right) H} \\
{[H Y]=-\left(1+q^{2}\right) Y} \\
{[Y X]=-H} \\
{[Y H]=\left(1+q^{-2}\right) Y} \\
{[Y Y]=0 .}
\end{gathered}
$$

(In the limit case $q=1$ we obtain the $\mathfrak{\xi l}(2)$ relations $[H X]=2 X,[H Y]=-2 Y,[X Y]=$ H.) The bilinear form becomes

$$
\begin{aligned}
& (X, Y)=\frac{3\left(q^{2}+1\right)^{2}\left(q^{4}+1\right)^{2}}{4 q^{5}\left(q^{4}+q^{2}+1\right)} \\
& (H, H)=\frac{3\left(q^{2}+1\right)^{3}\left(q^{4}+1\right)^{2}}{4 q^{7}\left(q^{4}+q^{2}+1\right)} \\
& (Y, X)=\frac{3\left(q^{2}+1\right)^{2}\left(q^{4}+1\right)^{2}}{4 q^{3}\left(q^{4}+q^{2}+1\right)}
\end{aligned}
$$

where we now take $-4 z_{0} / 3$ as basis for $V(0)_{q}$. (In the limit case $q=1$ we obtain the Killing form $(X, Y)=4,(H, H)=8,(Y, X)=4$.)

Final Remark. The algebra $\mathfrak{S l}(2)_{q}$ is not a quantum Lie algebra in the sense of [Li] since by definition such an algebra A is anticommutative. The algebras of [Li] also satisfy the quantum Jacobi identity $J_{q}(x, y, z)=(x y) \sigma(z)+(y z) \sigma(x)+(z x) \sigma(y)=0$, where $A=\oplus_{n \in \mathbb{Z}} A_{n}$ is \mathbb{Z}-graded and $\sigma=\left(J+J^{-1}\right) / 2, J\left(a_{n}\right)=q^{n} a_{n}$ for any $a_{n} \in A_{n}$. The algebra $\mathfrak{B l}(2)_{q}$ fails to satisfy the quantum Jacobi identity, since any \mathbb{Z}-grading of $\mathfrak{B l}(2)_{q}$ must have $\operatorname{deg}(H)=0$ and then $J_{q}(H, H, H)=3\left(q^{-2}-q^{2}\right)^{2} H$, which is non-zero for $q \notin\{0, \pm 1, \pm i\}$.

Note added in Proof. The main theorem of this paper has also been proven by G. W. Delius and M. D. Gould in Quantum Lie algebras, their existence, uniqueness and q-antisymmetry, King's College London preprint KCL-TH-96-05, q-alg/9605025, Commun. Math. Phys., to appear.

References

[CP] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge, 1994.
[DH] G. W. Delius and A. Hüffmann, On quantum Lie algebras and quantum root systems, MSRI preprints on quantum algebra and topology, q-alg/9506017.
[DHGZ] G. W. Delius, A. Hüffmann, M. D. Gould and Y.-Z. Zhang, Quantum Lie algebras associated to $U_{q}\left(\mathfrak{g l}_{n}\right)$ and $U_{q}\left(\mathfrak{g l} \mathfrak{l}_{n}\right)$, MSRI preprints on quantum algebra and topology, q-alg/9508013.
[J] J. C. Jantzen, Lectures on Quantum Groups, American Mathematical Society, 1995.
[K] C. Kassel, Quantum Groups, Springer-Verlag, 1995.
[Li] K.-Q. Liu, Characterizations of the quantum Witt algebra, Lett. Math. Phys. 24(1992), 257-265.
[Lu] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.
[LS] V. Lyubashenko and A. Sudbery, Quantum Lie algebras of type A_{n}, MSRI preprints on quantum algebra and topology, q-alg/9510004.

Department of Mathematics and Statistics
University of Saskatchewan
Room 142 McLean Hall
106 Wiggins Road
Saskatoon, SK
S7N 5E6
e-mail: bremner@math.usask.ca

[^0]: The author thanks the Natural Sciences and Engineering Research Council of Canada for financial support through grant OGP0153128, and J. Szmigielski for reference [LS].

 Received by the editors April 2, 1996.
 AMS subject classification: Primary: 17B37; Secondary: 17A01.
 (c) Canadian Mathematical Society 1997.

