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Oblique Incidence of a train of Plane Waves on a
Semi-Infinite Plane.

By H. S. CARSLAW,

The problem of the incidence of a train of plane waves on a
semi-infinite plane, when the edge of the plane is perpendicular to
the direction of the waves, is a two-dimensional one, and was first
fully treated in a paper by Sommerfeld.* It was also discussed
by me in a paper published in the Proceedings of the London
Mathematical Society, f

The three-dimensional problem, when the edge of the plane is
not perpendicular to the direction of the waves, is a very obvious
extension of the method followed in these papers It was suggested
to me some years ago by Sommerfeld, and I publish the solution
now principally because a. long paper J in the current issue of
Schlomilch's Zeitschrift fiir Matliematik und Physik has re-opened
the questions of Diffraction which were first solved by this method.

§1.
Let the origin be taken in the edge of the plane, and this line as

the axis of z, the plane as the plane of xz, and the direction from
which the waves are coming as the line (I, m, n), or in Spherical
Polar Coordinates by the angles (#', <f>).

* Math. Annalen, Bd. XLVII.—Math. Theorie der Diffraction.

t Proc. Lend. Math. Soc, xxx.—Some Multiform Solutions of Certain
Partial Differential Equations.

% Schldmilch's Zeitschrift, Bd. XLVI.—Uber die Beugung der Rontgen-
strahlen. A. Sommerfeld.
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FIG. 1.

Our problem is the investigation of the circumstances which
follow when a train of Plane Waves, e.g., Sound Waves, comes in this
direction, and strikes upon the plane. We shall find terms in our
result corresponding to the waves of Incidence, Reflection, and
Diffraction.

The wave-length is supposed finite, so that the approximate
methods applied to waves of light are not available.

If the plane were unlimited and not bounded by the straight
edge, the problem would present no difficulty. The solution depends
upon the equation

32M O~U <?U

0
32M O~U <?U

r 3 + —; + —;, + K-U
d? d* d1

with — = 0, at the plane, y = 0.

These are satisfied by u = el<lx+my+nz) + <>(te - "V+"2>.
In the case now considered we proceed from the solution

_. g»«r(co80 cos9' + sine sine' COB(# - <)>'))

and transform this by the introduction of the complex variable, a.
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In this way we obtain, by Cauchy's Theorem,

1_ (*«»•( cos0 cos0' + sin0 sin0' cos(a - <j>)) f
(1)

as an equivalent expression for u0, the path of integration in the
a-plane being originally a circuit round the point a = </>', enclosing no
other singularity of the integrand.

_»/crcos 0cos0' I
Thus uo = —

J
7.jurainO sinO' cos(a - ip) e -,do. (2)

Since sin0 and sin^' are always positive, this integral is of exactly
the same form as that * to which we were brought in the discussion
of the two-dimensional form. I t was then shown that this circuit
may be deformed into the path (A) of Fig. 2. I t was also shown,
and this is the fundamental part of the method, that for this physical
problem what we really need is a Multiform Solution, a solution
depending on <f> in such a way that the period is 4TT.

FIG. 2.

Deformation of circuit round a = <p',for m>. The small circle round <j>'
is the original circuit. The path {A) is the two dark curved lines.

Sec Proc. Lond. Math. Soc, xxx.,
pp. 126-133.

https://doi.org/10.1017/S0013091500032661 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500032661


74

We have such a solution at once in the form

t* — ~—6

4 J
iicrcoa0cos$' \ inr sin0 sin0'cos(a -

(3)

the integral being taken round the path (A), of Fig. 2, corresponding
to the value of <f> involved.

(i) This function is a solution of our equation

V2« + «2M = 0,
since every element of the integrand is a solution; and we
have excluded the possibility of infinite values,

(ii) The function is periodic in <j> and of period i-r : for when we
let <f> change, the path of integration in the a-plane is
only pushed parallel to itself in the direction of the real
axis of a: and when </> is increased by 47r, the integrand
itself returns to its original value,

(iii) The function is finite and continuous for all values of r.

This follows from the choice of our path (A),
(iv) When | <j> - <f> | <ir, the function takes the value w0 at r = » ;

when 7T< | <j} - (j> J <3TT, the value at r = » is zero.

FIG. 3.
The dark curved lines denote the path (A) for the values <f> and

when the period i« iv.
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The proof of this property follows from Fig. 3. In the first case

the path (A) of integration is deformable into the two rectilineal

parts, in which the real part of the exponential is negative, and

thus vanishes when r = » ; and we have in addition the circuit

round the singular point a = <f>, this circuit giving the original

value ua. In the second case there is no singular point within the

closed circuit with which we have completed the path (A); and,

hence, when r = » that integral now vanishes.

When we associate with this value of u, which we may call u(<f>'),

that which corresponds to the value - <£', say u( - <£'), we obtain

u ••= u(<f>') + u( - </>'),

a solution of our equation \j"u + K"M = 0, with the condition

^ = 0 at 4> = 0 and <j> = lir,
o<f>

and we are enabled to write down the velocity potential •!> of our
physical problem.

§2.

The integral corresponding to (3) was fully discussed in Sommer-

feld's original paper.* The space with which we are concerned,

namely.

0 < r < x, \

0 < 6 < IT , I

0 < 4, < 27T, J
has to be considered in three parts—

(A) 0 < <f> < 7T - <j>',

(B) 7T — <\> < <̂> < IT + <£',

(C) TT + (j>' < (/) < IV.

* Math. Ann., Bd. XLVII., pp. 357-374.
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In (A) we find

<& = cos2-7r| —(COS# cos0' + sin0 sin#' cos(<£ - </>')) -\ I

+ COS2JTI -£-(cos0cosff + sinOsin0'cos(<£ + <j>')) + — I

T)-T)•

In (B) we find

<i> = COS2JTJ r—(COS^ cosfl' + sin0 8in9'cos(<|) - <̂ ')) + — I

where A and T are the wave-length and period of the incident-wave.
Hence we may regard the disturbance in the region (A) as made up
of three parts

(i) The Incident Wave—in the direction (I, m, n), or (#', <£');

(ii) The Reflected Wave—in the direction (0', - <£');

(iii) A Series of Waves proceeding outwards from the edge of
the Plane.

In (B) the Reflected Wave does not enter, and in (C) we have
only what we may call the Diffracted Wave.

No records of experimental investigations of this physical
problem are to be had. I t would be interesting to see to what
extent they would agree with our results, as in the two-dimensional
case the polarising effects of the Diffraction are fully recognised in
the mathematical formulae. The only observations which at all
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bear upon it are those of Maey,* who deals with rays proceeding
from a point, not plane waves such as we have had to consider.
He finds that the edge of the screen appears brighter when the
direction of incidence and diffraction are supplementary. This
may appear to be illustrated in our problem by the fact that when
0 + 6' = ir, the diffracted waves take the simple form of a plane
wave proceeding from the origin whose amplitude changes with the
distance from the origin.

* Wied. Ann., Bd. XLIX., p. 91.—Uber die Beugung des Lichtes, an
einem geraden scharfen Schirmrande.
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