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ABSTRACT

We consider a risk model in which the claim inter-arrivals and amounts depend
on a markovian environment process. Semi-Markov risk models are so introduced
in a quite natural way. We derive some quantities of interest for the risk process
and obtain a necessary and sufficient condition for the fairness of the risk (positive
asymptotic non-ruin probabilities). These probabilities are explicitly calculated
in a particular case (two possible states for the environment, exponential claim
amounts distributions).
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1. INTRODUCTION

Several authors have used the semi-Markov processes in Queuing Theory and
in Risk Theory [e.g., CINLAR (1967), NEUTS (1966), NEUTS and SHUN-ZER

CHEN (1972), PURDUE (1974), JANSSEN (1980), REINHARD (1981)]. Besides,
some duality results lead to nice connections betweer the two theories [FELLER

(1971), JANSSEN and REINHARD (1982)].
Semi-Markov risk models may be defined as follows. Consider a risk model

in continuous time; let Bn (neN0)* and Un (neN0) denote respectively the
amount and the arrival time of the nth claim. Put Ao = Bo = Uo = 0 and define
An = Un - Un-\ (n eNo). We suppose that the An and Bn are random variables
denned on a complete probability space (Cl, si, P); the variables An (n eiV0) are
a.s. positive. Let now /„ (n eN) be random variables defined on (Cl, si, P) and
taking their values in / = { l , . . . ,m} (me No). Suppose finally that
{(/„, An, Bn);n eN} is a Markov chain with transition probabilities defined by a
bivariate semi-Markov kernel:

[ n + i i , n + 1 , n + 1 \ k , k , k ; , , ] Q j j ( , ) a . s .

( /e / , f3=0, xeR, neN)

where C?J/(JC, •) and Qtl(',t) are right continuous nondecreasing functions
satisfying:

I Qiy(oo,oo) = l (ieJ)

Qjy(-oo,oo) = 0 (i,jeJ

* NO = {1,2,3,...}; N = {0,1,2,3,...}.
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Such processes, called (J-Y-X) processes, were studied by JANSSEN and REIN-

HARD (1982) and REINHARD (1982). In the particular case where

(1.2) Qy(x,t) = a-e-")Qv(x), A>0,

the processes {An} and {(/„, Bn)} being independent, JANSSEN (1980) interpreted
the variables /„ as the types of the successive claims. The next section will show
that another subclass of semi-Markov kernels appears if we assume that the risk
depends on an environment process.

2. RISK PROCESSES IN A MARKOVIAN ENVIRONMENT

Suppose that the claim frequency and amounts depend on the external environ-
ment (economic situation . . .) and that the external environment may be charac-
terized at any time by one of the m states 1 , . . . , m (m eN0). Let Io denote the
state of the environment at time t = 0 and let /„, n = 1 , . . . , be the state of the
environment after its nth transition. Put To = 0 and let Tn (n eN0) be the time
at which occurs the nth transition of the environment process. We suppose that
/„ and Tn (n eN) are random variables defined on (H, si, P) and taking their
values in / and R+ respectively. Define now Yn = Tn- Tn-\ (n eNo), Yo = 0 and
assume that

(2.1) P[In+x=j, Yn+1^t\(Ik, Yk),k=0,..., n,In = i] = hij(l-e~k>')

(i,jeJ; t^O; neN)

where the A, are strictly positive real numbers and H = (n,y) is a transition matrix:

h,,»0, I hik = l (i,jeJ).
k = \

{/„, neN} is then a Markov chain with a matrix of transition probabilities

(2.2) htl=P[In+i =/|/» = a

Define Ne(t) = sup {n: Tn =£ t} and I{t) = INe(t) (t 3= 0). The process {/(f), 15= 0} is
a finite-state Markov process; it is known that the number of transitions of the
environment process {/(f)} in any finite interval (s,t], i.e., Ne(t)-Ne(s), is a.s.
finite.

Denote now by /„ the state of the environment process at the arrival of the
nth claim:

(2.3) /»=/(£/») («eJV).

We will suppose that the following assumptions are satisfied:
(HI) The sequences of random variables (An) and (Bn) are conditionally

independent given the variables /„.
(H2) The distribution of a claim depends uniquely on the state of the environ-

ment at the time of arrival of that claim. Let

(2.4) F,(x) = P[Bn*zx\Jn=i] (ieJ, neN, xeR)
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(H3) Let N(t) be the number of claims occurring in (0, t]. If /(«) = i for all
« in some interval {t, t + h], then the number of claims occurring in that interval,
i.e., N{t + h)-N(t), has a Poisson distribution with parameter a, (a,>0); we
assume further that given the process {I(t)} the process {iV(f)} has independent
increments. So

(2.5) P[N(t + h) = n + l\N(t) = n,I(u) = i for t <u *st + h] = ath +o(h).

The process {N(t);t^0} appears thus as a Poisson process with parameter
modified by the transitions of the environment process.

Under the above assumptions it may be shown that {(/„, An, Bn), n eN} is a
(J-Y-X) process with semi-Markov kernel Si defined by (1.1). {(/„, An), n<=N}
is a Markov renewal process [see PYKE (1961)]; we denote its kernel by
r = (V#(-)):
(2.6) Vij{t)=P[Jn+1=j,An^t\(Jk,Ak),k=0, . . . , « ; / „ = * ]

(/,/€/, neN, t&O).

Moreover it follows from the assumptions that

(2.7) Qq(x,t)=Vu(t)Fi(x) (i,/€/, t&O, xeR).

{/„, n e N} is a Markov chain with matrix P of transition probabilities defined by

(2.8) Pii = P[Jn + l = j\Jn = 1] = O«(00, 00) = Vy(00) (i, j g / ) .

In the next section it will be shown how the semi-Markov kernel 2. (or
equivalently V) can be deduced from the instantaneous rates a,, the transition
matrix H, the constants A, and the distributions Ft( •).

3. COMPUTATION OF THE KERNEL

Let us first introduce some notations: for any mass function (i.e., right continuous
and non-decreasing) G{t) defined on R+ let

G(s)=\ e-s'G(t)dt, g(s)=f e~st

Jo Jo-
dG(t)

provided the above integrals converge.
The following system of integral equations may be easily deduced from the

hypothesis

(3.1) «,(0 = fi«-5r(l-e-(o'+A<)') + A, I hik\'e-(a^')uVki(t-u)du
Oii+\i k = l Jo

The first term in the right side of (3.1) corresponds to the case where a claim
occurs before the environment changes, the second term to the case where the
environment changes before a claim occurs.

For s 2= 0, define now the following matrices:

L(s) = (hu\,/(a,+s +A,)), E(s) = (fi«a,/(a, + 5 +A,)).
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By taking the Laplace transforms of both sides in (3.1) we obtain

(3.2) V ^ ) ^ , *' .+ *' I **?

(i,/6/; s>0),

or, in matrix notation,

(3.3) [/-L(s)]V(s) = (l/5)E(*) (s>0)

(we will always use the same symbol for a matrix and its elements whenever
this causes no ambiguity). As for any s 5» 0

L,(s)ZLv(s) \ <1,

is regular for s & 0 and consequently (3.3) has as unique solution

(3.4) V(s) = (l/s)[I-L(s)1

or equivalently

(3.5) v(s) = [I~L(s)T1E(s)

As pi; = V)y(oo) = linij^o Vy(s), the matrix P of the transition probabilities of the
chain {/„} can be directly deduced from (3.5):

(3.6) P = [I-L(0)T1E(0).

Notice that the semi-Markov kernel V is solution of a first order linear
differential system: by deriving (3.1) with respect to t we obtain

(3.7) V'ii(t) = aiSii+ I [A,A*-(o,+A,)5tt]Viy(0 ( / , /€/ ; t»0).
it=i

4. SOME RESULTS ABOUT QUANTITIES RELATED TO THE RISK PROCESS

In this section we derive some explicit expressions or equations related to the
semi-Markov risk-process defined in the preceding sections.

4.1. Stationary Probabilities of the Chain {/„}

From now on we suppose that the chain {/„} is irreducible. As m is finite there
exists a unique probability distribution rj = {rji,..., r/m) such that

(4.1) TJ,->0 ( /€/) ,

1 = 1

https://doi.org/10.1017/S0515036100004785 Published online by Cambridge University Press

https://doi.org/10.1017/S0515036100004785


A CLASS OF SERMI-MARKOV RISK MODELS 27

We have then:

THEOREM 1

The Markov chain {/„; n e N} is irreducible and aperiodic (thus ergodic as m < oo).
Its stationary probabilities are given by

(4.2) ^Sp f fSp ] (l-6/).

Proof

Let / , /e J. As the chain {/„} is irreducible, there exists n eiV such that h™ >0.
It may be easily seen that this implies (L"(0))ff>0. Now we obtain from (3.6):

(4.3) P i i = I ( L " 5
B=0

The probabilities py are thus strictly positive for all ijej.
It remains to show that %P = #. Define the diagonal matrices

We have then L(0) = DH, E(0) -1 -D, it = X̂ fjA (where K is the norming factor
in the right side of (4.2)), AD = I -D; (3.6) may be written as follows:

(4.5) P = I-D+DHP.

Now

TTP = # - 77-D + itDHP = 7f - K[rj (I -D) - n (I -D)HP].

As rjH = ij, we obtain

(4.6) #i> = 7f

the last equality resulting from (4.5).
Note that (4.2) has an immediate intuitive interpretation: TJ( is the asymptotic

probability of finding the chain {/„; n eN} in state i; (A,)'1 is the mean time
spent by the process {I{t)\ t^O} in state i before its next transition; «f is the
mean number of claims occurring per time unit when the process {/(?); t =sO}
sojourns in state /; m appears thus well as the asymptotic average number of
claims occurring in environment i.

4.2. Number of Claims Occurring in (0, t)

The equations obtained here could be derived from the general theory of
semi-Markov processes. It is, however, interesting to restate them directly as
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the semi-Markov kernel V is itself expressed as the solution of the differential
system (3.7)

Define

(4.7, W

10 if N(t) = 0,

where as previously N(t) is the number of claims occurring in (0, t). Nj{t) is
clearly the number of claims occurring in environment / before t. Let

and

o = i]= I Mv(t)
7 = 1

The following system of integral equations is easily obtained:

kfafi + f A,c^'ufv.« +1 hikMki(t-u)] du
Jo I k J

or

(4.8) V*, + I A

A ; fc = l

Taking the derivatives of both sides with respect to t we obtain

(4.9) A/;/(r) = aA/-AiAiiy(0 + AI- £

and after summation over /

(4.10) M'i(t) = ai-\iMi(t)+\i f
fc=i

(4.9) with the boundary condition My(0) = 0 (/, y e / ) has a unique solution.

4.3. Further Properties of the Claim Arrival Process

We extend first to the (J-Y-X) processes a well known property of Markov
chains and (J-X) processes.

THEOREM 2

Let {(/„, An, Bn); n e N} be a (J-Y-X) process with state space JxR+xR and
kernel 3, defined by (1.1). Suppose that the Markov chain {/„} is irreducible (and
thus positive recurrent as m is finite). Let Z,,(x, t), i,jeJ, be real measurable
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functions defined on R x R + such that the integrals

f f |Z(,(x,r)|O(,(£fcc,
J-oo Jo

are finite. Let

zi = I Ziy(x, t)Qi,(dx, dt) =
j = l J-oo Jo

Define then nifi = 0, «,-,* = inf {n > n;,fc-i: /„ = /} for keN0 (recurrence indices of
state t) and let

'l ZJk_lJk(Bk,Ak))
= n,r+l /

ieJ, reN).

The random variables &,„ r = 1, 2 , . . . , are i.i.d. and we have

I (/(4.11)

where the TT; are the stationary probabilities of the chain {/„}.

Proof
Define

iP^ =P[Jn =j,Jk 5*' for fc = 1 , . . . , « — l | / 0 = i] (i,jeJ; neN0).

We have then

£(&,r) = 1 1 jpS'zfc +2,- (i 6 /, re No).

(4.11) follows since we know from Markov chain theory that £"=i jp^1 =

Mean Recurrence Time of Claims Occurring in a Given Environment

We return now to the risk model. Define

(4.12) Git

Gij(-) is the distribution function of the first time at which a claim occurs in
environment / given that the initial environment is i. Let

(4.13) y«,= [ tdG.it) (/,/€/).
Jo-

We could obtain a system of integral equations for the distributions Gy(-) and
derive from it after passage to the Laplace-Stieltjes transforms a linear system
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for the ytj. We may, however, proceed more directly as follows:

(4.14) y«,=<r«,f e'^^Aaf + A,- I hik(t + ykj)] dt
Jo L fc = i J

f
Jo

we thus get a linear system:

The diagonal elements y« (mean recurrence time of claims occurring in state i)
may be explicitly expressed by using Theorem 2. Define Zti(x, t) = t; then zf =
E(Al\j0 = i). We have

Hence

or, if f = (ZL . . . , zm)' and y = (aT1, • • • ,a^)',

f = (/-L(0))-1E(0)y=Py;

we have thus

m 1

i)Z (

1 A- m

+—rr I
a+A

(4.16) z , ( 1 \ 0 ) Z Pu
7 = 1 « /

and consequently

m m l

(4.17) I 7 r ,z i=£ i r (A1)=I 7T,-.

Using finally theorem 2 we have:
THEOREM 3

For any ieJ:

1 m 1
(4.18) y « = - l 7 > 7 - .

TTf 7 = 1 « 7

Renewal Theorem—Stationary Probabilities

Given that / 0 = /, the times at which claims occur in environment / form a pure
renewal process if i=j and a delayed renewal process if ii*j. We have the
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classical renewal equations:

(4.19) Mii{t)=\[\+Mii(t-u)-\dGii(.u) (i,/eJ; t*0).
Jo

As the distribution functions (?#(•) are clearly not arithmetic, the expected
number of claims occurring in environment / within (t, t + h) tends to /I(YU) *
when t -»oo whatever the initial environment i, i.e.,

(4.20) \im{My{t + h)-Mu(t)] = — (i,/eJ; h^O).

[see FELLER (1971), Chapt. XI]. From (4.20) it follows that

(4.21) l i m ^ ^ = — (i,jeJ).
«-» t ytj

Define now

(4.22) Ftf(0 = (p#rV«,(/)

fljk («, 0 = P[ /N«) = /, JNW+I = fc, Umt)+i*£ f + K | /0 = / ] ;
the last quantity is thus the probability, given that Jo = i, that the last claim
before t occurred in environment / and that the next claim will occur in environ-
ment k before time t + u. We deduce immediately from Theorem 7.1 of PYKE
(1961b) that

(4.23) lim R%{u, t)=pik- f " [1 -Fik(y)] dy,(-°° yu Jo

which limit is independent of i; we denote it by R%{u). Let now

and define a chain {(/„, An, Bn);neN}as follows:

) = BQ = 0 a.s.

(4.24) <|' L{? = / > A 1 *"'**-^X '^- ^- ;^-= '-1 =

= 0 = V W / ( x )
(I,/G/; ueR+, xeR, n^2).

where zf is defined by (4.16).
We define for that chain the same quantities and adopt the same notations as

for the chain {(/„, An, Bn)\ n eN}. The risk processes associated with the two
chains are identical except that for the second one the time of occurrence of the
first claim is distributed according to the semi-Markov kernel (V*(-)) instead
of {Vij(-)). Suppose now that

(4.25) at "r7 - - - 1 - 2 '
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Then [see PYKE (1961b)]:

(4.26) P[Jft(t) =/,/iv(,)+i =*, Ufn,)+i

5. PREMIUM INCOME—RUIN PROBABILITIES

We assume that the company managing the risk receives premiums at a constant
rate ct > 0 during any time interval the environment process remains in state i.
The premium income process is thus characterized by a vector {cx,..., cm) with
positive entries. Denote by Ac{t) the aggregate premium received during (0, t):

Af«(O

(5.1) Ac(t) = I cIk^(Tk-Tk-.r) + clNJt-TNAt))
fc=i

and by B(t) the aggregate amount of the claims occurring in (0, t):
N(t)

(5.2) B(t) = I Bk (t*0).
k=0

Assume now that the initial amount of free assets of the company is u ̂  0. The
amount of free assets at time t is then

(5.3) Zu(t) = u+S(t)

where

(5.4) S(t)=Ae(t)-B(t).

Define then

(5.5) R,(u, t) = P[Zu(v)^0 for 0«e«f|/o = i] ( ie/ ; «,/s»0),

(5.6) R,(u) = Rt(u, oo) = P[Zu(v)^0toT all vs*0\ J0 = /] (/g/, M>0).

We will refer to the probabilities (5.5) as to the finite time non-ruin probabilities
and to the probabilities (5.6) as to the asymptotic non-ruin probabilities.

5.1. Random Walk of the Free Assets

Denote by Ac
n the premium received between the occurrences of the (n - l)th

and nth claims (n s= 1). Define then

(5.7) Xk=Ac
k-Bk (* = 1,2,...); *o = O a.s.,

(5.8) Sn=lXk (neN).
k=0

Clearly the chain {(Jk, Xk); k S.N} is a (J-X) process, {Sn} is a random walk
defined on the finite Markov chain {/„} [see JANSSEN (1970); MILLER (1962);
NEWBOULD (1973)]. The amount of free assets just after the occurrence of the
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nth claim is given by

ZU(AO+---+An) = u+Sn

and clearly

(5.9) /?,(«) =

From now on we assume that the d.f. Ft(') has a finite expectation fii (i 'e/).
We get then

(5.10) b, = E[Bk |/fc_! = i] = £ Pi

and

| f fax)f « £ M<*
Jo

so that, concluding as to obtain (4.16),
m .

(5.11) zci=IPir
y=i «/

If the premium rates are constant whatever the state of the environment, i.e.,
if c = (c , . . . , c), we obtain naturally z\ = czt. We conclude from (5.10) and (5.11)
that

m
i^ 1 r>\ y — c r v \ T — i~\ — v
(J.IZ.) t,i — E[A.k \Jk — l — IJ — 2*

/-I

Notice that we would obtain the same result for a semi-Markov risk model with
kernel 3. * defined by

(5.13) Ofi(x, t) = pii(l-e-ait)Fi(x).

Define now

Di,r= I Xk (/e/, re No)

where the n,,r are the recurrence indices of claims occurring in environment / as
defined in section 4.3; for / fixed the variables Dt,r (r = 1, 2,. . .) are i.i.d.; DtJ

is clearly the variation of the free assets between the rth and (r + l)th claims
occurring in environment i. We obtain from theorem 2

(5.14) * 1

As the variables Ac
k are absolutely continuous and conditionally (given the Jk)

independent of the variables Bk, the process {(/„, Sn);n eiV} is not degenerate
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[see NEWBOULD (1973)], i.e., there exist no constants tvi , . . . , wm such that
P[Xn = Wj — Wi\Jn-i = i,Jn=j]=l, or equivalently there exists no / such that
£>,,r = 0 a.s. (NEWBOULD (1973), lemma 2). Using Proposition 3A of JANSSEN
(1970) we obtain then

THEOREM 4

Let

(5.15) «* = _£-

Then (i) If d>0, the random walk {£„} drifts to +00, i.e. limn-.oo5n =00 a.s.;
Ri(u)>0, V M ^ O , ieJ. (ii) If d<0, the random walk {Sn} drifts to -00, i.e.
limn̂ oo Sn = -00 a.s.: /?,(«) = 0, VM 3= 0, ieJ. (iii) If d = 0, the random walk {Sn}
is oscillating, i.e. lim sup Sn = +00 a.s. and lim inf Sn = -00 a.s.; /?, (M ) = 0, Vu s= 0,
is/.

Notice that when m = 1 theorem 4 reduces evidently to the classical result for
the Poisson model.

5.2. Distribution of the Aggregate Net Pay-out in (0, 0

From now on we suppose that the claim amounts are a.s. positive:

(5.16) Fi(0-) = 0, Ff(0)<l V/e/ .

Recall that Ac(t) and B(t) denote respectively the aggregate premium received
and the aggregate amount of claims occurred during (0, /)• Then denote by C(t)
the net pay-out of the company in (0, t):

C(t) = B(t)-Ac(t) = -

Let then

(5.17) Ww(x,0

Define now

Co = max {c;; i e / } , Jo = {i e / : cf = c0}.

It is easy to prove the following

LEMMA

(i) Wij(x, f) = 0 for i, jeJ and x < -cot;
(ii) Wu(x,t)>0 for i, jeJ and x > -c0t;

(iii) Wn(—Cot, t) > 0 if /,; e Jo and either i =j or there exist reN0 and I'I, . . . , / r e / 0

such that ftfi, Ai,̂  • • • hy > 0; W^-Cot, 0 = 0 otherwise.
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Let now

J-c0<

(s,t)=\ e-xdxW

<P,(5)= f e-"dFt(x)

The following theorem gives an explicit expression for the transform matrix
W(s, t).

THEOREM 5

For s > 0 and t s* 0,

(5.18) W(s,t) = l/sexp{-T(s)t}

where

(5.19) T^s) = «w(oj +A, -a,<Pi(s) -efi) - A,%

For x 5* -co', 155 0 and h > 0 we obtain easily

(5.20) Wub,t + h) = (l- (a, + A,)/i) W^x + ch, i)

+ ath f WJ, (x + Cih -y,t) dFt (y)
Jo-

Dividing (5.20) by /t and letting h tend to 0, we get

(5.21) %-Wy(x,t)-ci-£-Wll(x,t) = -{
at ox

° Wii(x-y,t)dFi(y)[
o-

hikWki{x,t)
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We multiply now each term in (5.21) by e~sx and integrate from -cQt to oo. We
obtain so

(5.22) ?-Wii{s,t)+ I [5flk(a,+A(-aff,(5)-ctf)-Aifcflk]W't/(*,r)
at /t = i

= (co-Ci) e^'Wui-Cot, t) (s >0, t &0).

According to the above lemma the right side of (5.22) is always zero. In matrix
notation, the solution of (5.22) is then easily seen to be

(5.23) W(s,t) = exp{-T(s)t}K

where

K = W(s, 0) = (l/s)w(s, 0) = (1/s)/ (s >0).

The proof is complete.
Notice that when m = 1 (5.18) reduces to the known result for the classical

Poisson model.

5.3. Seal's Integral Equation for the Finite Time non-ruin Probabilities

We show in this subsection that the SEAL'S integral equation (1974) may be
extended to the here considered semi-Markov model. We still assume that the
claim amounts are a.s. positive.

Define for u, t s= 0 and /, jeJ

(5.24) Rij(u, t) = P[Zu(v) 3*0 for 0« v *s t, I(t) =/|/(0) = /];

we have clearly

Ri(u,t)= I Rij(u,t) (ieJ; u,t^0).

Define further for s > 0 and 12= 0

Riiis, t) = f e~suR^u, t) du; R(s, t) = (R^s, t)),
Jo

f°° -
r,j(s, u)=\ e s" duRij(u, t) = sR^s, t); r(s, t) = (ri;(s, t)).

Jo-

We obtain easily for «, 15» 0 and h > 0

(5.25) /M

^(M+cft-y, t)dF,(y)
o-

ic=i
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Dividing (5.25) by h and letting h tend to 0, we find

(5.26) ^-Riiiu, fi-cj-Rqiu, 0 = -{at+k,)Rv(u, t)
at aU

t \ Ru(u-y,t)dF,(y)
Jo

+ A; I hikRkj(u,t) (i

Taking the Laplace transform of each term ir (5.26), we obtain

(5.27) ^£,(5,0+ I [8,k(ai+\i-cis-a1<ri(s))-lihik]Rki(s,t)
at k = i

+ CiRit(0,t) = 0 (s>0,

The solution of the differential system (5.27) is easily seen to be

f'
(5.28) R(s,t) = ejip{-T(s)t}K-\ exp{-T(s)(t-u)}CR(O,u)du

Jo

(s>0, t2*0)

where C = (Sifii); the constant matrix K is determined by the boundary condition
r(s, 0) = sR(s, 0) = si. Thus K = s"1/. Using finally (5.18), (5.28) may be written
as follows

™ r'
(5.29)^(5,0 = ^(5,0-5 I Wik(s,t-u)ckRkj(0,u)du (s>0, f^0).

(c = l Jo

Suppose now that the distributions Ft(-) are absolutely continuous and denote
their densities by/f (•). The mass functions Wti•{ •, t) are then absolutely continuous
too; we denote their densities by W'ij{-,t) (f=*0). Taking the inverse Laplace
transforms in (5.29) we obtain then

(5.30) Rii(x,t)=Wii(x,t)-J1ck\W'ik(x,u)Rki(0,t~u)du (x,ti
fc = l Jo

= 0).

The unknown constants (with respect to x) Rki(0, u) are solutions of the Volterra
type integral system obtained by putting x = 0 in (5.30):

.31) ^ (0 ,0 = 1^(0,0- I ck \ W'ik(0,u)Rki(0,t-u)du
«c = l J o

(5

Define now

S^x, t) = P[B(t)^x, 7(0 =/|/(0) = /] (x,t*0)

and denote the corresponding densities by S'uix, t). In the particular case where
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c, = c (ieJ) we have clearly Wti{x, t) = Si,(x +ct, t); (5.30) and (5.31) become then

(5.32) Rii(x,t) = Sij(x+ct,t)-c I S'ik(x+cu,u)Rki(0,t-u)du (
fc = l Jo

(5.33) Rii(0,t) = Sii(ct,t)-c £ f 5ik(c«,«)/Jw(0,r-a)rf« (r*0).
fc = l Jo

When m = 1 (5.32) and (5.33) reduce exactly to Seal's system.

5.4. Asymptotic Non-ruin Probabilities

We suppose here that the number d defined by (5.15) is strictly positive; then
for all ieJ and u 5sO, / ? , (M)>0 and Ri(-) is a probability distribution. After
summation over / (5.26) gives for t = oo:

(5.34) cii??(«) = (ai+Ai)/?i(«)-aif Rt(u -y)dFi(y)-\i £ hikRk(u)
J
f
o -

(/€/; M>0).

It can be shown that (5.34) has a unique solution such that Rt(oo) = 1, V/e/ .
Integrating (5.34) from 0 to f we get

(5.35) cA(0 f '/?,(f-y)[l
Jo

Jo L k=i

For m = 1 (5.35) is the well known defective renewal equation from which the
famous Cramer estimate may be derived (see FELLER, Chapter XI). For m > 1,
(5.35) is unfortunately not more a renewal type equation. Letting t tend to oo
in (5.35) does not give an explicit value for the probabilities /?,(0) as is the case
when m = 1:

(5.36) R,(0) = 1 -2**!-*! f \R,(U)- £ hikRk(u)] du.
Ct Ct Jo L it=i J

However, when the claim amounts distributions are exponential,

FM^l-e^'^ (x^O),

a further differentiation of both sides of (5.34) shows that the asymptotic non-ruin
probabilities are solution of the differential system

(5.37) RUU)=p^--W«)-^ £ M;(«O+

- — £
Crfi, /
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with the boundary conditions

(5.38) *((oo) = l; R',(0) = *L^iRM--l
C; Ci j

39

Assume that

(6.1) m— 2,

6. EXAMPLE

— hn — 1, / i n —/t22 —0;

there are thus two possible states for the environment, the sojourn times in each
state being exponentially distributed.

The solution of system (3.7) is then

(6.2)

. „

where rt and r2 are the solutions (always distinct and negative as a,, A, > 0) of

(6.3)

The stationary probabilities for the chain {/„} are given by (4.2) which becomes
here

(6.4) 7T2 =

Expectations of the number of claims occurring in environment i (/ = 1,2)
before t are obtained by solving system (4.9) with the boundary conditions

(6.5)

M22U) and M2i(0 are obtained by replacing in the expressions of Mn(t) and
Afa2(0 respectively ai(2) by a2 a ) and A1(2) by A2(i).
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The mean recurrence time of claims occurring in environment i (i = 1,2) is
given by (4.18):

(6.0) 711=

We obtain then from (4.15)

(6.7) y12 =

722 =

ai+Aj+A2
y 2 i =

The characteristic number d defined by (5.15) takes the following form:

(6 8) d = A2^Cl

From now on we assume that d > 0 and that the claim amount distributions F;( •
are exponential, i.e.,

(6.9) ; / = 1,2).

From (5.37) and (5.38) we obtain that the asymptotic non-ruin probabilities are
solution of the following differential system

(6.10)

- — ) R ' 2 ( U ) + — R2(U)~ — R1{U)-X2R[(U)
&2' U.7. «2

with the boundary conditions

(6.11)

Define

(6.12) pt=

and assume without restriction that pt ^p 2 .
The condition d > 0 is then equivalent to the following

(6.13) p2>0.
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As pi>p2 , then p\ is clearly strictly positive. We obtain then that the general
solution of (6.10) takes the form

(6.14)

where

(6.15)

R\(u) = Ao+Ai e lU+A2e
 2"+A3e

 3",

-D(k3)A3e
k*u,

+(c2-a2{j.2-A.2n2)ki-A.2

and where ku k2, k3 are the roots of the characteristic equation

(6.16) P(k) = k3 + (Pl+p2-—-^
\ Ci C2

P2)=0.
CijLli /

From (6.13) we see that kik2k3>0. It is easily verified that

( p i ) ^ ( P i P 2 ) 0 ; / ( p 2 ) ( P 2 P i ) 0 ;
C\ C2

P(0)<0.

From this we may deduce that P(k) has a negative root, say k2, between ~pi
and -p2. As the product of the three roots is positive we deduce further that
the two other roots, ki and k3, are real (if ki and k3 were complex conjugate
roots, their product would be positive; we would then have k\k2k3<0). As
P(+oo) = +oo and P(-<x>) = -oo, we conclude finally that when pi >p2 one of the
roots, say ku is strictly less than -pi and that the other, k3, is positive. When
Pi =P2 -p (we have then k2 = -p) , we obtain the same conclusions by verifying
that P'(-p)<0. We summarize this as follows:

i p { , -p2}, k3>0 ifpi>p2,
(6.17)

kk
From the boundary conditions (6.11) we obtain that

(6.18) A 0 = l , A3 = 0
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and that A x and A2 are the solutions of

or, which is equivalent in view of (6.15),

(6.19)
D(k2)

Ax+—T—-A2=\.

We can obtain a lower bound for kx. Verify first that JP(M71) <0 if Mi ** M
that />(/i2

1)<Oif/i2
;Siu,i. We can then easily conclude that

(6.20) -minfon , / t 2 r 1 <*i .

We summarize the above results in

THEOREM 6

If m = 2, Ai2 = h2\ = 1, rf > 0 and if the claim amount distributions are exponen-
tial, the asymptotic non-ruin probabilities are given by

R2(u) = 1 -D(k1)A1 ek*u -D(k2)A2

where fci and k2 are the two negative roots of (6.16), where the constants D{ki)
are given by (6.15) and where Ai and A2 are solutions of (6.19).

When ai = a2 = a, /Lii = /t2 = jLi, Ci = c2 = c and if A i and A2 are arbitrary positive
numbers, then k2 = —p and k\ is the negative root of

(6.21) * 2

C I Cfl

When obtain thenD(k2) = -l,D(Jfci) = A2/Ai and the solution of (6.19) is Ai = 0,
A2 = -an/c. As expected the ruin probabilities Ri(u) and R2(u) are in this case
identical and equal to the ruin probabilities obtained for the classical Poisson
model with exponentially distributed claim amounts:

(6.22) Rl{u) = R2{u) = \-^e-pu.
c
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