ON A CLASS OF SEMI-MARKOV RISK MODELS OBTAINED AS CLASSICAL RISK MODELS IN A MARKOVIAN ENVIRONMENT

Jean-Marie Reinhard
Groupe AG, Brussels, Belgium

Abstract

We consider a risk model in which the claim inter-arrivals and amounts depend on a markovian environment process. Semi-Markov risk models are so introduced in a quite natural way. We derive some quantities of interest for the risk process and obtain a necessary and sufficient condition for the fairness of the risk (positive asymptotic non-ruin probabilities). These probabilities are explicitly calculated in a particular case (two possible states for the environment, exponential claim amounts distributions).

Keywords
Semi-Markov processes, ruin theory.

1. INTRODUCTION

Several authors have used the semi-Markov processes in Queuing Theory and in Risk Theory [e.g., Cinlar (1967), Neuts (1966), Neuts and Shun-Zer Chen (1972), Purdue (1974), Janssen (1980), Reinhard (1981)]. Besides, some duality results lead to nice connections betweer the two theories [FELLER (1971), Janssen and Reinhard (1982)].

Semi-Markov risk models may be defined as follows. Consider a risk model in continuous time; let $B_{n}\left(n \in N_{0}\right)^{*}$ and $U_{n}\left(n \in N_{0}\right)$ denote respectively the amount and the arrival time of the nth claim. Put $A_{0}=B_{0}=U_{0}=0$ and define $A_{n}=U_{n}-U_{n-1}\left(n \in N_{0}\right)$. We suppose that the A_{n} and B_{n} are random variables defined on a complete probability space ($\Omega, \mathscr{A}, P)$; the variables $A_{n}\left(n \in N_{0}\right)$ are a.s. positive. Let now $J_{n}(n \in N)$ be random variables defined on (Ω, \mathscr{A}, P) and taking their values in $J=\{1, \ldots, m\} \quad\left(m \in N_{0}\right)$. Suppose finally that $\left\{\left(J_{n}, A_{n}, B_{n}\right) ; n \in N\right\}$ is a Markov chain with transition probabilities defined by a bivariate semi-Markov kernel:

$$
\begin{gather*}
P\left[J_{n+1}=j, A_{n+1} \leqslant t, B_{n+1} \leqslant x \mid J_{k}, A_{k}, B_{k} ; k=0, \ldots, n\right]=Q_{J_{n i}}(x, t) \quad \text { a.s. } \tag{1.1}\\
(j \in J, \quad t \geqslant 0, \quad x \in R, \quad n \in N)
\end{gather*}
$$

where $Q_{i j}(x, \cdot)$ and $Q_{i j}(\cdot, t)$ are right continuous nondecreasing functions satisfying:

$$
\begin{array}{ll}
Q_{i j}(x, t) \geqslant 0, \quad Q_{i j}(\infty, 0)=0 & (i, j \in J ; t \geqslant 0) \\
\sum_{i=1}^{m} Q_{i j}(\infty, \infty)=1 & (i \in J) \\
Q_{i j}(-\infty, \infty)=0 & (i, j \in J)
\end{array}
$$

$$
{ }^{*} N_{0}=\{1,2,3, \ldots\} ; N=\{0,1,2,3, \ldots\} .
$$

Such processes, called ($J-Y-X$) processes, were studied by Janssen and ReinHARD (1982) and REInhard (1982). In the particular case where

$$
\begin{equation*}
Q_{i j}(x, t)=\left(1-e^{-\lambda t}\right) Q_{i j}(x), \quad \lambda>0 \tag{1.2}
\end{equation*}
$$

the processes $\left\{A_{n}\right\}$ and $\left\{\left(J_{n}, B_{n}\right)\right\}$ being independent, JANSSEN (1980) interpreted the variables J_{n} as the types of the successive claims. The next section will show that another subclass of semi-Markov kernels appears if we assume that the risk depends on an environment process.

2. RISK processes in a markovian environment

Suppose that the claim frequency and amounts depend on the external environment (economic situation . .) and that the external environment may be characterized at any time by one of the m states $1, \ldots, m$ ($m \in N_{0}$). Let I_{0} denote the state of the environment at time $t=0$ and let $I_{n}, n=1, \ldots$, be the state of the environment after its nth transition. Put $T_{0}=0$ and let $T_{n}\left(n \in N_{0}\right)$ be the time at which occurs the nth transition of the environment process. We suppose that I_{n} and $T_{n}(n \in N)$ are random variables defined on (Ω, \mathscr{A}, P) and taking their values in J and R^{+}respectively. Define now $Y_{n}=T_{n}-T_{n-1}\left(n \in N_{0}\right), Y_{0}=0$ and assume that

$$
\begin{gather*}
P\left[I_{n+1}=j, Y_{n+1} \leqslant t \mid\left(I_{k}, Y_{k}\right), k=0, \ldots, n, I_{n}=i\right]=h_{i j}\left(1-e^{-\lambda_{i} t}\right) \tag{2.1}\\
(i, j \in J ; \quad t \geqslant 0 ; \quad n \in N)
\end{gather*}
$$

where the λ_{i} are strictly positive real numbers and $H=\left(h_{i j}\right)$ is a transition matrix:

$$
h_{i j} \geqslant 0, \quad \sum_{k=1}^{m} h_{i k}=1 \quad(i, j \in J) .
$$

$\left\{I_{n}, n \in N\right\}$ is then a Markov chain with a matrix of transition probabilities $H=\left(h_{i j}\right)$:

$$
\begin{equation*}
h_{i j}=P\left[I_{n+1}=j \mid I_{n}=i\right] \tag{2.2}
\end{equation*}
$$

Define $N_{e}(t)=\sup \left\{n: T_{n} \leqslant t\right\}$ and $I(t)=I_{N_{e}(t)}(t \geqslant 0)$. The process $\{I(t), t \geqslant 0\}$ is a finite-state Markov process; it is known that the number of transitions of the environment process $\{I(t)\}$ in any finite interval (s,t], i.e., $N_{e}(t)-N_{e}(s)$, is a.s. finite.

Denote now by J_{n} the state of the environment process at the arrival of the nth claim:

$$
\begin{equation*}
J_{n}=I\left(U_{n}\right) \quad(n \in N) \tag{2.3}
\end{equation*}
$$

We will suppose that the following assumptions are satisfied:
(H1) The sequences of random variables $\left(A_{n}\right)$ and (B_{n}) are conditionally independent given the variables J_{n}.
(H2) The distribution of a claim depends uniquely on the state of the environment at the time of arrival of that claim. Let

$$
\begin{equation*}
F_{i}(x)=P\left[B_{n} \leqslant x \mid J_{n}=i\right] \quad(i \in J, \quad n \in N, \quad x \in R) \tag{2.4}
\end{equation*}
$$

(H3) Let $N(t)$ be the number of claims occurring in (0, t. If $I(u)=i$ for all u in some interval $(t, t+h]$, then the number of claims occurring in that interval, i.e., $N(t+h)-N(t)$, has a Poisson distribution with parameter $\alpha_{i}\left(\alpha_{i}>0\right)$; we assume further that given the process $\{I(t)\}$ the process $\{N(t)\}$ has independent increments. So

$$
\begin{equation*}
P[N(t+h)=n+1 \mid N(t)=n, I(u)=i \text { for } t<u \leqslant t+h]=\alpha_{i} h+o(h) . \tag{2.5}
\end{equation*}
$$

The process $\{N(t) ; t \geqslant 0\}$ appears thus as a Poisson process with parameter modified by the transitions of the environment process.

Under the above assumptions it may be shown that $\left\{\left(J_{n}, A_{n}, B_{n}\right), n \in N\right\}$ is a ($J-Y-X$) process with semi-Markov kernel 2 defined by (1.1). $\left\{\left(J_{n}, A_{n}\right), n \in N\right\}$ is a Markov renewal process [see Pyke (1961)]; we denote its kernel by $\mathscr{V}=\left(V_{i j}(\cdot)\right)$:

$$
\begin{gather*}
V_{i j}(t)=P\left[J_{n+1}=j, A_{n} \leqslant t \mid\left(J_{k}, A_{k}\right), k=0, \ldots, n ; J_{n}=i\right] \tag{2.6}\\
(i, j \in J, \quad n \in N, \quad t \geqslant 0) .
\end{gather*}
$$

Moreover it follows from the assumptions that

$$
\begin{equation*}
Q_{i j}(x, t)=V_{i j}(t) F_{j}(x) \quad(i, j \in J, \quad t \geqslant 0, \quad x \in R) \tag{2.7}
\end{equation*}
$$

$\left\{J_{n}, n \in N\right\}$ is a Markov chain with matrix P of transition probabilities defined by

$$
\begin{equation*}
P_{i j}=P\left[J_{n+1}=j \mid J_{n}=i\right]=Q_{i j}(\infty, \infty)=V_{i j}(\infty) \quad(i, j \in J) \tag{2.8}
\end{equation*}
$$

In the next section it will be shown how the semi-Markov kernel 2 (or equivalently \mathscr{V}) can be deduced from the instantaneous rates α_{i}, the transition matrix H, the constants λ_{i} and the distributions $F_{i}(\cdot)$.

3. COMPUTATION OF THE KERNEL

Let us first introduce some notations: for any mass function (i.e., right continuous and non-decreasing) $G(t)$ defined on R^{+}let

$$
\tilde{G}(s)=\int_{0}^{\infty} e^{-s t} G(t) d t, \quad g(s)=\int_{0-}^{\infty} e^{-s t} d G(t)
$$

provided the above integrals converge.
The following system of integral equations may be easily deduced from the hypothesis

$$
\begin{gather*}
V_{i j}(t)=\delta_{i j} \frac{\alpha_{i}}{\alpha_{i}+\lambda_{i}}\left(1-e^{-\left(\alpha_{i}+\lambda_{i}\right) t}\right)+\lambda_{i} \sum_{k=1}^{m} h_{i k} \int_{0}^{t} e^{-\left(\alpha_{i}+\lambda_{i}\right) u} V_{k j}(t-u) d u \tag{3.1}\\
(i, j \in J ; \quad t \geqslant 0) .
\end{gather*}
$$

The first term in the right side of (3.1) corresponds to the case where a claim occurs before the environment changes, the second term to the case where the environment changes before a claim occurs.

For $s \geqslant 0$, define now the following matrices:

$$
L(s)=\left(h_{i j} \lambda_{i} /\left(\alpha_{i}+s+\lambda_{i}\right)\right), \quad E(s)=\left(\delta_{i j} \alpha_{i} /\left(\alpha_{i}+s+\lambda_{i}\right)\right) .
$$

By taking the Laplace transforms of both sides in (3.1) we obtain

$$
\begin{gather*}
\tilde{V}_{i j}(s)=\delta_{i j} \frac{\alpha_{i}}{s\left(\alpha_{i}+\lambda_{i}+s\right)}+\frac{\lambda_{i}}{\alpha_{i}+\lambda_{i}+s} \sum_{k=1}^{m} h_{i k} \tilde{V}_{k j}(s) \tag{3.2}\\
(i, j \in J ; \quad s>0)
\end{gather*}
$$

or, in matrix notation,

$$
\begin{equation*}
[I-L(s)] \tilde{V}(s)=(1 / s) E(s) \quad(s>0) \tag{3.3}
\end{equation*}
$$

(we will always use the same symbol for a matrix and its elements whenever this causes no ambiguity). As for any $s \geqslant 0$

$$
L_{i}(s)=\sum_{j=1}^{m} L_{i j}(s)=\frac{\lambda_{i}}{\alpha_{i}+\lambda_{i}+s}<1
$$

$I-L(s)$ is regular for $s \geqslant 0$ and consequently (3.3) has as unique solution

$$
\begin{equation*}
\tilde{V}(s)=(1 / s)[I-L(s)]^{-1} E(s) \quad(s>0) \tag{3.4}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
v(s)=[I-L(s)]^{-1} E(s) \quad(s>0) . \tag{3.5}
\end{equation*}
$$

As $p_{i j}=V_{i j}(\infty)=\lim _{s \succ 0} v_{i j}(s)$, the matrix P of the transition probabilities of the chain $\left\{J_{n}\right\}$ can be directly deduced from (3.5):

$$
\begin{equation*}
P=[I-L(0)]^{-1} E(0) \tag{3.6}
\end{equation*}
$$

Notice that the semi-Markov kernel \mathscr{V} is solution of a first order linear differential system: by deriving (3.1) with respect to t we obtain

$$
\begin{equation*}
V_{i j}^{\prime}(t)=\alpha_{i} \delta_{i j}+\sum_{k=1}^{m}\left[\lambda_{i} h_{i k}-\left(\alpha_{i}+\lambda_{i}\right) \delta_{i k}\right] V_{k j}(t) \quad(i, j \in J ; \quad t \geqslant 0) \tag{3.7}
\end{equation*}
$$

4. SOME RESULTS AbOUT QUANTITIES RELATED TO THE RISK PROCESS

In this section we derive some explicit expressions or equations related to the semi-Markov risk-process defined in the preceding sections.

4.1. Stationary Probabilities of the Chain $\left\{J_{n}\right\}$

From now on we suppose that the chain $\left\{J_{n}\right\}$ is irreducible. As m is finite there exists a unique probability distribution $\bar{\eta}=\left(\eta_{1}, \ldots, \eta_{m}\right)$ such that

$$
\begin{array}{cc}
\eta_{i}>0 & (i \in J) \tag{4.1}\\
\sum_{i=1}^{m} \eta_{i} h_{i j}=\eta_{j} & (j \in J)
\end{array}
$$

We have then:

Theorem 1

The Markov chain $\left\{J_{n} ; n \in N\right\}$ is irreducible and aperiodic (thus ergodic as $m<\infty$). Its stationary probabilities are given by

$$
\begin{equation*}
\pi_{i}=\frac{\alpha_{i} \eta_{i}}{\lambda_{i}}\left\{\sum_{j=1}^{m} \frac{\alpha_{j} \eta_{j}}{\lambda_{j}}\right\}^{-1} \quad(i \in J) \tag{4.2}
\end{equation*}
$$

Proof

Let $i, j \in J$. As the chain $\left\{I_{n}\right\}$ is irreducible, there exists $n \in N$ such that $h_{i j}^{(n)}>0$. It may be easily seen that this implies $\left(L^{n}(0)\right)_{i j}>0$. Now we obtain from (3.6):

$$
\begin{equation*}
p_{i j}=\sum_{n=0}^{\infty}\left(L^{n}(0)\right)_{i j} \frac{\alpha_{j}}{\alpha_{j}+\lambda_{i}} . \tag{4.3}
\end{equation*}
$$

The probabilities $p_{i j}$ are thus strictly positive for all $i, j \in J$.
It remains to show that $\bar{\pi} P=\bar{\pi}$. Define the diagonal matrices

$$
\begin{equation*}
D=\left\langle\delta_{i j} \frac{\lambda_{i}}{\alpha_{i}+\lambda_{i}}\right), \quad A=\left(\delta_{i j} \frac{\alpha_{i}}{\lambda_{i}}\right) . \tag{4.4}
\end{equation*}
$$

We have then $L(0)=D H, E(0)=I-D, \bar{\pi}=K \bar{\eta} A$ (where K is the norming factor in the right side of (4.2)), $A D=I-D$; (3.6) may be written as follows:

$$
\begin{equation*}
P=I-D+D H P \tag{4.5}
\end{equation*}
$$

Now

$$
\bar{\pi} P=\bar{\pi}-\bar{\pi} D+\bar{\pi} D H P=\bar{\pi}-K[\bar{\eta}(I-D)-\bar{\eta}(I-D) H P] .
$$

As $\bar{\eta} H=\bar{\eta}$, we obtain

$$
\begin{equation*}
\bar{\pi} P=\bar{\pi}-K \bar{\eta}[(I-D)-(I-D H) P]=\bar{\pi} \tag{4.6}
\end{equation*}
$$

the last equality resulting from (4.5).
Note that (4.2) has an immediate intuitive interpretation: η_{i} is the asymptotic probability of finding the chain $\left\{I_{n} ; n \in N\right\}$ in state $i ;\left(\lambda_{i}\right)^{-1}$ is the mean time spent by the process $\{I(t) ; t \geqslant 0\}$ in state i before its next transition; α_{i} is the mean number of claims occurring per time unit when the process $\{I(t) ; t \geqslant 0\}$ sojourns in state $i ; \pi_{i}$ appears thus well as the asymptotic average number of claims occurring in environment i.

4.2. Number of Claims Occurring in $(0, t)$

The equations obtained here could be derived from the general theory of semi-Markov processes. It is, however, interesting to restate them directly as
the semi-Markov kernel \mathscr{V} is itself expressed as the solution of the differential system (3.7)

Define

$$
N_{i}(t)= \begin{cases}\sum_{k=1}^{N(t)} 1_{\left[J_{k}=j\right]} & \text { if } N(t)>0 \tag{4.7}\\ 0 & \text { if } N(t)=0\end{cases}
$$

where as previously $N(t)$ is the number of claims occurring in $(0, t) . N_{i}(t)$ is clearly the number of claims occurring in environment j before t. Let

$$
M_{i j}(t)=E\left[N_{i}(t) \mid J_{0}=i\right]
$$

and

$$
M_{i}(t)=E\left[N(t) \mid J_{0}=i\right]=\sum_{j=1}^{m} M_{i j}(t) \quad(t \geqslant 0)
$$

The following system of integral equations is easily obtained:

$$
M_{i j}(t)=\delta_{i j} e^{-\lambda_{i} t} \alpha_{i} t+\int_{0}^{t} \lambda_{i} e^{-\lambda_{i} u}\left[\delta_{i j} \alpha_{i} u+\sum_{k} h_{i k} M_{k j}(t-u)\right] d u
$$

or

$$
\begin{equation*}
M_{i j}(t)=\delta_{i j} \alpha_{i} \frac{1-e^{-\lambda_{i} t}}{\lambda_{i}}+\sum_{k=1}^{m} \lambda_{i} h_{i k} \int_{0}^{t} e^{-\lambda_{i} u} M_{k j}(t-u) d u \quad(t \geqslant 0) \tag{4.8}
\end{equation*}
$$

Taking the derivatives of both sides with respect to t we obtain

$$
\begin{equation*}
M_{i j}^{\prime}(t)=\alpha_{i} \delta_{i j}-\lambda_{i} M_{i j}(t)+\lambda_{i} \sum_{k=1}^{m} h_{i k} M_{k j}(t) \quad(t \geqslant 0) \tag{4.9}
\end{equation*}
$$

and after summation over j

$$
\begin{equation*}
M_{i}^{\prime}(t)=\alpha_{i}-\lambda_{i} M_{i}(t)+\lambda_{i} \sum_{k=1}^{m} h_{i k} M_{k}(t) \quad(t \geqslant 0) \tag{4.10}
\end{equation*}
$$

(4.9) with the boundary condition $M_{i j}(0)=0(i, j \in J)$ has a unique solution.

4.3. Further Properties of the Claim Arrival Process

We extend first to the ($J-Y-X$) processes a well known property of Markov chains and ($J-X$) processes.

Theorem 2

Let $\left\{\left(J_{n}, A_{n}, B_{n}\right) ; n \in N\right\}$ be a $(J-Y-X)$ process with state space $J \times R^{+} \times R$ and kernel \mathscr{Q} defined by (1.1). Suppose that the Markov chain $\left\{J_{n}\right\}$ is irreducible (and thus positive recurrent as m is finite). Let $Z_{i j}(x, t), i, j \in J$, be real measurable
functions defined on $R \times R^{+}$such that the integrals

$$
\int_{-\infty}^{\infty} \int_{0}^{\infty}\left|Z_{i j}(x, t)\right| Q_{i j}(d x, d t) \quad(i, j \in J)
$$

are finite. Let

$$
z_{i}=\sum_{j=1}^{m} \int_{-\infty}^{\infty} \int_{0}^{\infty} Z_{i j}(x, t) Q_{i j}(d x, d t)=E\left(Z_{J_{n-1} J_{n}}\left(B_{n}, A_{n}\right) \mid J_{n-1}=i\right) .
$$

Define then $n_{i, 0}=0, n_{i, k}=\inf \left\{n>n_{i, k-1}: J_{n}=i\right\}$ for $k \in N_{0}$ (recurrence indices of state i) and let

$$
\zeta_{i, r}=E\left({ }_{k=n_{k, r+1}}^{n_{i r+1}} Z_{J_{k-1} J_{k}}\left(B_{k}, A_{k}\right)\right) \quad(i \in J, \quad r \in N) .
$$

The random variables $\zeta_{i, r}, r=1,2, \ldots$, are i.i.d. and we have

$$
\begin{equation*}
E\left(\zeta_{i, r}\right)=\frac{1}{\pi_{i}} \sum_{j=1}^{m} \pi_{j} z_{j} \quad\left(i \in J, \quad r \in N_{0}\right) \tag{4.11}
\end{equation*}
$$

where the π_{i} are the stationary probabilities of the chain $\left\{J_{n}\right\}$.

Proof

Define

$$
{ }_{i} p_{i j}^{(n)}=P\left[J_{n}=j, J_{k} \neq i \text { for } k=1, \ldots, n-1 \mid J_{0}=i\right] \quad\left(i, j \in J ; \quad n \in N_{0}\right) .
$$

We have then

$$
E\left(\zeta_{i, r}\right)=\sum_{k \neq i} \sum_{n=1}^{\infty} i p_{i k}^{(n)} z_{k}+z_{i} \quad\left(i \in J, \quad r \in N_{0}\right) .
$$

(4.11) follows since we know from Markov chain theory that $\sum_{n=1 i}^{\infty} p_{i k}^{(n)}=\pi_{k} / \pi_{i}$.

Mean Recurrence Time of Claims Occurring in a Given Environment

 We return now to the risk model. Define$$
\begin{equation*}
G_{i j}(t)=P\left[N_{i}(t)>0 \mid J_{0}=i\right] \quad(i, j \in J ; \quad t \geqslant 0) . \tag{4.12}
\end{equation*}
$$

$G_{i j}(\cdot)$ is the distribution function of the first time at which a claim occurs in environment j given that the initial environment is i. Let

$$
\begin{equation*}
\gamma_{i j}=\int_{0-}^{\infty} t d G_{i j}(t) \quad(i, j \in J) . \tag{4.13}
\end{equation*}
$$

We could obtain a system of integral equations for the distributions $G_{i j}(\cdot)$ and derive from it after passage to the Laplace-Stieltjes transforms a linear system
for the $\gamma_{i j}$. We may, however, proceed more directly as follows:

$$
\begin{align*}
\gamma_{i j}= & \sigma_{i j} \int_{0}^{\infty} e^{-\left(\alpha_{i}+\lambda_{i}\right) t}\left[\alpha_{i} t+\lambda_{i} \sum_{k=1}^{m} h_{i k}\left(t+\gamma_{k j}\right)\right] d t \tag{4.14}\\
& +\left(1-\delta_{i j}\right) \int_{0}^{\infty} e^{-\left(\alpha_{i}+\lambda_{i}\right) t}\left[\alpha_{i}\left(t+\gamma_{i j}\right)+\lambda_{i} \sum_{k=1}^{m} h_{i k}\left(t+\gamma_{k j}\right)\right] d t
\end{align*}
$$

we thus get a linear system:

$$
\begin{equation*}
\frac{\lambda_{i}+\delta_{i j} \alpha_{i}}{\alpha_{i}+\lambda_{i}} \gamma_{i j}=\frac{1}{\alpha_{i}+\lambda_{i}}+\frac{\lambda_{i}}{\alpha_{i}+\lambda_{i}} \sum_{k=1}^{m} h_{i j} \gamma_{k j} \quad(i, j \in J) . \tag{4.15}
\end{equation*}
$$

The diagonal elements $\gamma_{i i}$ (mean recurrence time of claims occurring in state i) may be explicitly expressed by using Theorem 2 . Define $Z_{i j}(x, t)=t$; then $z_{i}=$ $E\left(A_{1} \mid J_{0}=i\right)$. We have

$$
z_{i}=\int_{0}^{\infty} e^{-\left(\alpha_{i}+\lambda_{i}\right) t}\left[\alpha_{i} t+\lambda_{i} \sum_{i=1}^{m} h_{i j}\left(t+z_{j}\right)\right] d t \quad(i \in J)
$$

Hence

$$
z_{i}=\frac{1}{\alpha_{i}+\lambda_{i}}+\frac{\lambda_{i}}{\alpha_{i}+\lambda_{i}} \sum_{j=1}^{m} h_{i j} z_{j} \quad(i \in J),
$$

or, if $\bar{z}=\left(z_{1}, \ldots, z_{m}\right)^{t}$ and $\bar{y}=\left(\alpha_{1}^{-1}, \ldots, \alpha_{m}^{-1}\right)^{t}$,

$$
\bar{z}=(I-L(0))^{-1} E(0) \bar{y}=P \bar{y} ;
$$

we have thus

$$
\begin{equation*}
z_{i}=E\left(A_{1} \mid J_{0}=i\right)=\sum_{j=1}^{m} p_{i j} \frac{1}{\alpha_{j}} \quad(i \in J) \tag{4.16}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\sum_{i=1}^{m} \pi_{i} z_{i}=E_{\pi}\left(A_{1}\right)=\sum_{j=1}^{m} \pi_{j} \frac{1}{\alpha_{j}} \tag{4.17}
\end{equation*}
$$

Using finally theorem 2 we have:

Theorem 3

For any $i \in J$:

$$
\begin{equation*}
\gamma_{i i}=\frac{1}{\pi_{i}} \sum_{j=1}^{m} \pi_{j} \frac{1}{\alpha_{j}} \tag{4.18}
\end{equation*}
$$

Renewal Theorem—Stationary Probabilities

Given that $J_{0}=i$, the times at which claims occur in environment j form a pure renewal process if $i=j$ and a delayed renewal process if $i \neq j$. We have the
classical renewal equations:

$$
\begin{equation*}
M_{i j}(t)=\int_{0}^{t}\left[1+M_{i j}(t-u)\right] d \dot{G}_{i j}(u) \quad(i, j \in J ; \quad t \geqslant 0) \tag{4.19}
\end{equation*}
$$

As the distribution functions $G_{i j}(\cdot)$ are clearly not arithmetic, the expected number of claims occurring in environment j within $(t, t+h)$ tends to $h\left(\gamma_{i j}\right)^{-1}$ when $t \rightarrow \infty$ whatever the initial environment i, i.e.,

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left[M_{i j}(t+h)-M_{i j}(t)\right]=\frac{h}{\gamma_{i j}} \quad(i, j \in J ; \quad h \geqslant 0) \tag{4.20}
\end{equation*}
$$

[see Feller (1971), Chapt. XI]. From (4.20) it follows that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{M_{i j}(t)}{t}=\frac{1}{\gamma_{i j}} \quad(i, j \in J) . \tag{4.21}
\end{equation*}
$$

Define now

$$
\begin{gather*}
F_{i j}(t)=\left(p_{i j}\right)^{-1} V_{i j}(t) \tag{4.22}\\
R_{j k}^{(i)}(u, t)=P\left[J_{N(t)}=j, J_{N(t)+1}=k, U_{N(t)+1} \leqslant t+u \mid J_{0}=i\right] ;
\end{gather*}
$$

the last quantity is thus the probability, given that $J_{0}=i$, that the last claim before t occurred in environment j and that the next claim will occur in environment k before time $t+u$. We deduce immediately from Theorem 7.1 of Pyke (1961b) that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} R_{j k}^{(i)}(u, t)=p_{j k} \frac{1}{\gamma_{j j}} \int_{0}^{u}\left[1-F_{j k}(y)\right] d y \tag{4.23}
\end{equation*}
$$

which limit is independent of i; we denote it by $R_{j k}^{0}(u)$. Let now

$$
V_{i j}^{*}(u)=\gamma_{i i} z_{i}^{-1} R_{i j}^{0}(u)
$$

and define a chain $\left\{\left(\bar{J}_{n}, \bar{A}_{n}, \bar{B}_{n}\right) ; n \in N\right\}$ as follows:

$$
\left\{\begin{array}{l}
\begin{array}{l}
\bar{A}_{0}=\bar{B}_{0}=0 \quad \text { a.s. } \\
P\left[\bar{J}_{1}=j, \bar{A}_{1} \leqslant u, \bar{B}_{1} \leqslant x \mid \bar{A}_{0}, \bar{B}_{0} ; \bar{J}_{0}=i\right]=V_{i j}^{*}(u) F_{j}(x) \\
P\left[\bar{J}_{n}=j, \bar{A}_{n} \leqslant u, \bar{B}_{n} \leqslant x \mid \bar{A}_{k}, \bar{B}_{k}, \bar{J}_{k}(k=0, \ldots, n-1) ; \bar{J}_{n-1}\right. \\
=i]=V_{i j}(u) F_{j}(x)
\end{array} \tag{4.24}\\
\quad\left(i, j \in J ; \quad u \in R^{+}, \quad x \in R, \quad n \geqslant 2\right) .
\end{array}\right.
$$

where z_{i} is defined by (4.16).
We define for that chain the same quantities and adopt the same notations as for the chain $\left\{\left(J_{n}, A_{n}, B_{n}\right) ; n \in N\right\}$. The risk processes associated with the two chains are identical except that for the second one the time of occurrence of the first claim is distributed according to the semi-Markov kernel $\left(V_{i j}^{*}(\cdot)\right)$ instead of $\left(V_{i j}(\cdot)\right)$. Suppose now that

$$
\begin{equation*}
a_{i}=P\left[\tilde{J}_{0}=i\right]=\frac{z_{i}}{\gamma_{i i}} \quad(i \in J) \tag{4.25}
\end{equation*}
$$

Then [see Pyke (1961b)]:

$$
\begin{equation*}
P\left[\bar{J}_{\bar{N}(t)}=j, \bar{J}_{\bar{N}(t)+1}=k, \bar{U}_{\bar{N}(t)+1} \leqslant t+u\right]=R_{j k}^{0}(u) . \tag{4.26}
\end{equation*}
$$

5. PREMIUM INCOME--RUIN PROBABILITIES

We assume that the company managing the risk receives premiums at a constant rate $c_{i}>0$ during any time interval the environment process remains in state i. The premium income process is thus characterized by a vector $\left(c_{1}, \ldots, c_{m}\right)$ with positive entries. Denote by $A^{c}(t)$ the aggregate premium received during $(0, t)$:

$$
\begin{equation*}
A^{c}(t)=\sum_{k=1}^{N_{e}(t)} c_{I_{k-1}}\left(T_{k}-T_{k-1}\right)+c_{I_{N_{e}(t)}}\left(t-T_{N_{c}(t)}\right) \tag{5.1}
\end{equation*}
$$

and by $B(t)$ the aggregate amount of the claims occurring in $(0, t)$:

$$
\begin{equation*}
B(t)=\sum_{k=0}^{N(t)} B_{k} \quad(t \geqslant 0) \tag{5.2}
\end{equation*}
$$

Assume now that the initial amount of free assets of the company is $u \geqslant 0$. The amount of free assets at time t is then

$$
\begin{equation*}
Z_{u}(t)=u+S(t) \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
S(t)=A^{c}(t)-B(t) \tag{5.4}
\end{equation*}
$$

Define then

$$
\begin{equation*}
R_{i}(u, t)=P\left[Z_{u}(v) \geqslant 0 \text { for } 0 \leqslant v \leqslant t \mid J_{0}=i\right] \quad(i \in J ; \quad u, t \geqslant 0) \tag{5.5}
\end{equation*}
$$

$$
\begin{equation*}
R_{i}(u)=R_{i}(u, \infty)=P\left[Z_{u}(v) \geqslant 0 \text { for all } v \geqslant 0 \mid J_{0}=i\right] \quad(i \in J, \quad u \geqslant 0) \tag{5.6}
\end{equation*}
$$

We will refer to the probabilities (5.5) as to the finite time non-ruin probabilities and to the probabilities (5.6) as to the asymptotic non-ruin probabilities.

5.1. Random Walk of the Free Assets

Denote by \boldsymbol{A}_{n}^{c} the premium received between the occurrences of the $(n-1)$ th and nth claims $(n \geqslant 1)$. Define then

$$
\begin{gather*}
X_{k}=A_{k}^{c}-B_{k} \quad(k=1,2, \ldots) ; \quad X_{0}=0 \quad \text { a.s. } \tag{5.7}\\
S_{n}=\sum_{k=0}^{n} X_{k} \quad(n \in N) \tag{5.8}
\end{gather*}
$$

Clearly the chain $\left\{\left(J_{k}, X_{k}\right) ; k \in N\right\}$ is a ($J-X$) process, $\left\{S_{n}\right\}$ is a random walk defined on the finite Markov chain $\left\{J_{n}\right\}$ [see Janssen (1970); Miller (1962); Newbould (1973)]. The amount of free assets just after the occurrence of the
nth claim is given by

$$
Z_{u}\left(A_{0}+\cdots+A_{n}\right)=u+S_{n}
$$

and clearly

$$
\begin{equation*}
R_{i}(u)=P\left[\inf _{k} S_{k} \geqslant-u \mid J_{0}=i\right] . \tag{5.9}
\end{equation*}
$$

From now on we assume that the d.f. $F_{i}(\cdot)$ has a finite expectation $\mu_{i}(i \in J)$. We get then

$$
\begin{equation*}
b_{i}=E\left[B_{k} \mid J_{k-1}=i\right]=\sum_{j=1}^{m} p_{i j} \mu_{j} \tag{5.10}
\end{equation*}
$$

and

$$
z_{i}^{c}=E\left[A_{k}^{c} \mid J_{k-1}=i\right]=\int_{0}^{\infty} e^{-\left(\alpha_{i}+\lambda_{i}\right) r}\left[\alpha_{i} c_{i} t+\lambda_{i} \sum_{j=1}^{m} h_{i j}\left(c_{i} t+z_{j}^{c}\right)\right] d t
$$

so that, concluding as to obtain (4.16),

$$
\begin{equation*}
z_{i}^{c}=\sum_{j=1}^{m} p_{i j} \frac{c_{j}}{\alpha_{j}} \quad(i \in J) \tag{5.11}
\end{equation*}
$$

If the premium rates are constant whatever the state of the environment, i.e., if $\bar{c}=(c, \ldots, c)$, we obtain naturally $z_{i}^{c}=c z_{i}$. We conclude from (5.10) and (5.11) that

$$
\begin{equation*}
\zeta_{i}=E\left[X_{k} \mid J_{k-1}=i\right]=\sum_{i=1}^{m} p_{i j}\left(\frac{c_{j}}{\alpha_{j}}-\mu_{i}\right) \tag{5.12}
\end{equation*}
$$

Notice that we would obtain the same result for a semi-Markov risk model with kernel \mathscr{Q}^{*} defined by

$$
\begin{equation*}
Q_{i j}^{*}(x, t)=p_{i j}\left(1-e^{-\alpha_{i} t}\right) F_{j}(x) \tag{5.13}
\end{equation*}
$$

Define now

$$
D_{i, r}=\sum_{k=n_{i, r}+1}^{n_{i, k+1}} X_{k} \quad\left(i \in J, \quad r \in N_{0}\right)
$$

where the $n_{i, r}$ are the recurrence indices of claims occurring in environment i as defined in section 4.3; for i fixed the variables $D_{i, r}(r=1,2, \ldots)$ are i.i.d.; $D_{i, r}$ is clearly the variation of the free assets between the r th and $(r+1)$ th claims occurring in environment i. We obtain from theorem 2

$$
\begin{equation*}
E\left(D_{i, r}\right)=\frac{1}{\pi_{i}} \sum_{j=1}^{m} \pi_{j}\left(\frac{c_{j}}{\alpha_{j}}-\mu_{j}\right) \quad\left(i \in J, \quad r \in N_{0}\right) \tag{5.14}
\end{equation*}
$$

As the variables A_{k}^{c} are absolutely continuous and conditionally (given the J_{k}) independent of the variables B_{k}, the process $\left\{\left(J_{n}, S_{n}\right) ; n \in N\right\}$ is not degenerate
[see Newbould (1973)], i.e., there exist no constants w_{1}, \ldots, w_{m} such that $P\left[X_{n}=w_{j}-w_{i} \mid J_{n-1}=i, J_{n}=j\right]=1$, or equivalently there exists no i such that $D_{i, r}=0$ a.s. (Newbould (1973), lemma 2). Using Proposition 3A of Janssen (1970) we obtain then

Theorem 4

Let

$$
\begin{equation*}
d=\sum_{j=1}^{m} \pi_{j}\left(\frac{c_{j}}{\alpha_{j}}-\mu_{j}\right) \tag{5.15}
\end{equation*}
$$

Then (i) If $d>0$, the random walk $\left\{S_{n}\right\}$ drifts to $+\infty$, i.e. $\lim _{n \rightarrow \infty} S_{n}=\infty$ a.s.; $R_{i}(u)>0, \forall u \geqslant 0, i \in J$. (ii) If $d<0$, the random walk $\left\{S_{n}\right\}$ drifts to $-\infty$, i.e. $\lim _{n \rightarrow \infty} S_{n}=-\infty$ a.s.: $R_{i}(u)=0, \forall u \geqslant 0, i \in J$. (iii) If $d=0$, the random walk $\left\{S_{n}\right\}$ is oscillating, i.e. $\lim \sup S_{n}=+\infty$ a.s. and $\lim \inf S_{n}=-\infty$ a.s.; $\boldsymbol{R}_{i}(u)=0, \forall u \geqslant 0$, $i \in J$.

Notice that when $m=1$ theorem 4 reduces evidently to the classical result for the Poisson model.

5.2. Distribution of the Aggregate Net Pay-out in ($0, t$)

From now on we suppose that the claim amounts are a.s. positive:

$$
\begin{equation*}
F_{i}(0-)=0, \quad F_{i}(0)<1 \quad \forall i \in J . \tag{5.16}
\end{equation*}
$$

Recall that $A^{c}(t)$ and $B(t)$ denote respectively the aggregate premium received and the aggregate amount of claims occurred during ($0, t$). Then denote by $C(t)$ the net pay-out of the company in $(0, t)$:

$$
C(t)=B(t)-A^{c}(t)=-S(t) \quad(t \geqslant 0)
$$

Let then

$$
\begin{equation*}
W_{i j}(x, t)=P[C(t) \leqslant x, I(t)=j \mid I(0)=i] \quad(i, j \in J ; \quad t \geqslant 0) \tag{5.17}
\end{equation*}
$$

Define now

$$
c_{0}=\max \left\{c_{i} ; i \in J\right\}, \quad J_{0}=\left\{i \in J: c_{i}=c_{0}\right\}
$$

It is easy to prove the following

Lemma

(i) $W_{i j}(x, t)=0$ for $i, j \in J$ and $x<-c_{0} t$;
(ii) $W_{i j}(x, t)>0$ for $i, j \in J$ and $x>-c_{0} t$;
(iii) $W_{i j}\left(-c_{0} t, t\right)>0$ if $i, j \in J_{0}$ and either $i=j$ or there exist $r \in N_{0}$ and $i_{1}, \ldots, i_{r} \in J_{0}$ such that $h_{i i_{1}} h_{i_{1} i_{2}} \ldots h_{i, j}>0 ; W_{i j}\left(-c_{0} t, t\right)=0$ otherwise.

Let now

$$
\begin{aligned}
\tilde{W}_{i j}(s, t) & =\int_{-c_{0} t}^{\infty} e^{-s x} W_{i j}(x, t) d x ; \quad \tilde{W}(s, t)=\left(\tilde{W}_{i j}(s, t)\right) \quad(s>0) \\
w_{i j}(s, t) & =\int_{-c_{0} t-}^{\infty} e^{-s x} d_{x} W_{i j}(x, t)=s \tilde{W}_{i j}(s, t) ; \quad w(s, t)=\left(w_{i j}(s, t)\right) \quad(s>0), \\
\varphi_{i}(s) & =\int_{0-}^{\infty} e^{-s x} d F_{i}(x) \quad(s \geqslant 0)
\end{aligned}
$$

The following theorem gives an explicit expression for the transform matrix $\tilde{W}(s, t)$.

Theorem 5

For $s>0$ and $t \geqslant 0$,

$$
\begin{equation*}
\tilde{W}(s, t)=1 / s \exp \{-T(s) t\} \tag{5.18}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{i j}(s)=\delta_{i j}\left(\alpha_{i}+\lambda_{i}-\alpha_{i} \varphi_{i}(s)-c_{i} s\right)-\lambda_{i} h_{i j} \tag{5.19}
\end{equation*}
$$

Proof
For $x \geqslant-c_{0} t, t \geqslant 0$ and $h>0$ we obtain easily

$$
\begin{align*}
W_{i j}(x, t+h)= & \left(1-\left(\alpha_{i}+\lambda_{i}\right) h\right) W_{i j}\left(x+c_{i} h, t\right) \tag{5.20}\\
& +\alpha_{i} h \int_{0-}^{x+c_{i} h+c_{0} t} W_{i j}\left(x+c_{i} h-y, t\right) d F_{i}(y) \\
& +\lambda_{i} h \sum_{k=1}^{m} h_{i k} W_{k j}\left(x+c_{i} h, t\right)+o(h)
\end{align*}
$$

Dividing (5.20) by h and letting h tend to 0 , we get

$$
\begin{align*}
\frac{\partial}{\partial t} W_{i j}(x, t)-c_{i} \frac{\partial}{\partial x} W_{i j}(x, t)= & -\left(\alpha_{i}+\lambda_{i}\right) W_{i j}(x, t) \tag{5.21}\\
& +\alpha_{i} \int_{0-}^{x+c_{0} t} W_{i j}(x-y, t) d F_{i}(y) \\
& +\lambda_{i} \sum_{k=1}^{m} h_{i k} W_{k j}(x, t) \\
& \left(x \geqslant-c_{0} t, t \geqslant 0\right)
\end{align*}
$$

We multiply now each term in (5.21) by $e^{-s x}$ and integrate from $-c_{0} t$ to ∞. We obtain so

$$
\begin{gather*}
\frac{\partial}{\partial t} \tilde{W}_{i j}(s, t)+\sum_{k=1}^{m}\left[\delta_{i k}\left(\alpha_{i}+\lambda_{i}-\alpha_{i} \varphi_{i}(s)-c_{i} s\right)-\lambda_{i} h_{i k}\right] \tilde{W}_{k j}(s, t) \tag{5.22}\\
=\left(c_{0}-c_{i}\right) e^{s c_{0} t} W_{i j}\left(-c_{0} t, t\right) \quad(s>0, t \geqslant 0)
\end{gather*}
$$

According to the above lemma the right side of (5.22) is always zero. In matrix notation, the solution of (5.22) is then easily seen to be

$$
\begin{equation*}
\tilde{W}(s, t)=\exp \{-T(s) t\} K \tag{5.23}
\end{equation*}
$$

where

$$
K=\tilde{W}(s, 0)=(1 / s) w(s, 0)=(1 / s) I \quad(s>0)
$$

The proof is complete.
Notice that when $m=1$ (5.18) reduces to the known result for the classical Poisson model.

5.3. Seal's Integral Equation for the Finite Time non-ruin Probabilities

We show in this subsection that the Seal's integral equation (1974) may be extended to the here considered semi-Markov model. We still assume that the claim amounts are a.s. positive.

Define for $u, t \geqslant 0$ and $i, j \in J$

$$
\begin{equation*}
R_{i j}(u, t)=P\left[Z_{u}(v) \geqslant 0 \text { for } 0 \leqslant v \leqslant t, I(t)=j \mid I(0)=i\right] ; \tag{5.24}
\end{equation*}
$$

we have clearly

$$
R_{i}(u, t)=\sum_{j=1}^{m} R_{i j}(u, t) \quad(i \in J ; \quad u, t \geqslant 0) .
$$

Define further for $s>0$ and $t \geqslant 0$

$$
\begin{gathered}
\tilde{R}_{i j}(s, t)=\int_{0}^{\infty} e^{-s u} R_{i j}(u, t) d u ; \quad \tilde{R}(s, t)=\left(\tilde{R}_{i j}(s, t)\right), \\
r_{i j}(s, u)=\int_{0-}^{\infty} e^{-s u} d_{u} R_{i j}(u, t)=s \tilde{R}_{i j}(s, t) ; \quad r(s, t)=\left(r_{i j}(s, t)\right) .
\end{gathered}
$$

We obtain easily for $u, t \geqslant 0$ and $h>0$

$$
\begin{align*}
R_{i j}(u, t+h)= & {\left[1-\left(\alpha_{i}+\lambda_{i}\right) h\right] R_{i j}\left(u+c_{i} h, t\right) } \tag{5.25}\\
& +\alpha_{i} h \int_{0-}^{u+c_{i} h} R_{i j}\left(u+c_{i} h-y, t\right) d F_{i}(y) \\
& +\lambda_{i} h \sum_{k=1}^{m} h_{i k} R_{k j}\left(u+c_{i} h, t\right)+o(h)
\end{align*}
$$

Dividing (5.25) by h and letting h tend to 0 , we find

$$
\begin{align*}
\frac{\partial}{\partial t} R_{i j}(u, t)-c_{i} \frac{\partial}{\partial u} R_{i j}(u, t)= & -\left(\alpha_{i}+\lambda_{i}\right) R_{i j}(u, t) \tag{5.26}\\
& +\alpha_{i} \int_{0}^{u} R_{i j}(u-y, t) d F_{i}(y) \\
& +\lambda_{i} \sum_{k=1}^{m} h_{i k} R_{k j}(u, t) \quad(u, t \geqslant 0) .
\end{align*}
$$

Taking the Laplace transform of each term ir (5.26), we obtain

$$
\begin{gather*}
\frac{\partial}{\partial t} \tilde{R}_{i j}(s, t)+\sum_{k=1}^{m}\left[\delta_{i k}\left(\alpha_{i}+\lambda_{i}-c_{i} s-\alpha_{; 4_{i}}(s)\right)-\lambda_{i} h_{i k}\right] \tilde{R}_{k j}(s, t) \tag{5.27}\\
+c_{i} R_{i j}(0, t)=0 \quad(s>0, \quad t \geqslant 0)
\end{gather*}
$$

The solution of the differential system (5.27) is easily seen to be

$$
\begin{gather*}
\tilde{R}(s, t)=\exp \{-T(s) t\} K-\int_{0}^{t} \exp \{-T(s)(t-u)\} C R(0, u) d u \tag{5.28}\\
(s>0, \quad t \geqslant 0)
\end{gather*}
$$

where $C=\left(\delta_{i} c_{i}\right)$; the constant matrix K is determined by the boundary condition $r(s, 0)=s \tilde{R}(s, 0)=s I$. Thus $K=s^{-1} I$. Using finally (5.18), (5.28) may be written as follows
(5.29) $\tilde{R}_{i j}(s, t)=\tilde{W}_{i j}(s, t)-s \sum_{k=1}^{m} \int_{0}^{t} \tilde{W}_{i k}(s, t-u) c_{k} R_{k j}(0, u) d u \quad(s>0, \quad t \geqslant 0)$.

Suppose now that the distributions $F_{i}(\cdot)$ are absolutely continuous and denote their densities by $f_{i}(\cdot)$. The mass functions $W_{i j}(\cdot, t)$ are then absolutely continuous too; we denote their densities by $W_{i j}^{\prime}(\cdot, t)(t \geqslant 0)$. Taking the inverse Laplace transforms in (5.29) we obtain then

$$
\begin{equation*}
R_{i j}(x, t)=W_{i j}(x, t)-\sum_{k=1}^{m} c_{k} \int_{0}^{t} W_{i k}^{\prime}(x, u) R_{k j}(0, t-u) d u \quad(x, t \geqslant 0) \tag{5.30}
\end{equation*}
$$

The unknown constants (with respect to $x) R_{k j}(0, u)$ are solutions of the Volterra type integral system obtained by putting $x=0$ in (5.30):

$$
\begin{equation*}
R_{i j}(0, t)=W_{i j}(0, t)-\sum_{k=1}^{m} c_{k} \int_{0}^{t} W_{i k}^{\prime}(0, u) R_{k j}(0, t-u) d u \quad(t \geqslant 0) \tag{5.31}
\end{equation*}
$$

Define now

$$
S_{i j}(x, t)=P[B(t) \leqslant x, I(t)=j \mid I(0)=i] \quad(x, t \geqslant 0)
$$

and denote the corresponding densities by $S_{i j}^{\prime}(x, t)$. In the particular case where
$c_{i}=c(i \in J)$ we have clearly $W_{i j}(x, t)=S_{i j}(x+c t, t) ;(5.30)$ and (5.31) become then

$$
\begin{equation*}
R_{i j}(x, t)=S_{i j}(x+c t, t)-c \sum_{k=1}^{m} \int_{0}^{t} S_{i k}^{\prime}(x+c u, u) R_{k j}(0, t-u) d u \quad(x, t \geqslant 0) \tag{5.32}
\end{equation*}
$$

$$
\begin{equation*}
R_{i j}(0, t)=S_{i j}(c t, t)-c \sum_{k=1}^{m} \int_{0}^{t} S_{i k}^{\prime}(c u, u) R_{k j}(0, t-u) d u \quad(t \geqslant 0) \tag{5.33}
\end{equation*}
$$

When $m=1$ (5.32) and (5.33) reduce exactly to Seal's system.

5.4. Asymptotic Non-ruin Probabilities

We suppose here that the number d defined by (5.15) is strictly positive; then for all $i \in J$ and $u \geqslant 0, R_{i}(u)>0$ and $R_{i}(\cdot)$ is a probability distribution. After summation over j (5.26) gives for $t=\infty$:

$$
\begin{gather*}
c_{i} R_{i}^{\prime}(u)=\left(\alpha_{i}+\lambda_{i}\right) R_{i}(u)-\alpha_{i} \int_{0-}^{u} R_{i}(u-y) d F_{i}(y)-\lambda_{i} \sum_{k=1}^{m} h_{i k} R_{k}(u) \tag{5.34}\\
(i \in J ; \quad u \geqslant 0)
\end{gather*}
$$

It can be shown that (5.34) has a unique solution such that $R_{i}(\infty)=1, \forall i \in J$. Integrating (5.34) from 0 to t we get

$$
\begin{align*}
c_{i} R_{i}(t)= & c_{i} R_{i}(0)+\alpha_{i} \int_{0}^{t} R_{i}(t-y)\left[1-F_{i}(y)\right] d y \tag{5.35}\\
& +\lambda_{i} \int_{0}^{t}\left[R_{i}(u)-\sum_{k=1}^{m} h_{i k} R_{k}(u)\right] d u \quad(i \in J, \quad t \geqslant 0) .
\end{align*}
$$

For $m=1$ (5.35) is the well known defective renewal equation from which the famous Cramer estimate may be derived (see Feller, Chapter XI). For $m>1$, (5.35) is unfortunately not more a renewal type equation. Letting t tend to ∞ in (5.35) does not give an explicit value for the probabilities $R_{i}(0)$ as is the case when $m=1$:

$$
\begin{equation*}
R_{i}(0)=1-\frac{\alpha_{i} \mu_{i}}{c_{i}}-\frac{\lambda_{i}}{c_{i}} \int_{0}^{\infty}\left[R_{i}(u)-\sum_{k=1}^{m} h_{i k} R_{k}(u)\right] d u \tag{5.36}
\end{equation*}
$$

However, when the claim amounts distributions are exponential,

$$
F_{i}(x)=1-e^{-x / \mu_{i}} \quad(x \geqslant 0)
$$

a further differentiation of both sides of (5.34) shows that the asymptotic non-ruin probabilities are solution of the differential system

$$
\begin{align*}
R_{i}^{\prime \prime}(u)= & \left(\frac{\alpha_{i}+\lambda_{i}}{c_{i}}-\frac{1}{\mu_{i}}\right) R_{i}^{\prime}(u)-\frac{\lambda_{i}}{c_{i}} \sum_{j=1}^{m} h_{i j} R_{j}^{\prime}(u)+\frac{\lambda_{i}}{c_{i} \mu_{i}} R_{i}(u) \tag{5.37}\\
& -\frac{\lambda_{i}}{c_{i} \mu_{i}} \sum_{j=1}^{m} h_{i j} R_{j}(u) \quad(i \in J, \quad u \geqslant 0)
\end{align*}
$$

with the boundary conditions

$$
\begin{equation*}
R_{i}(\infty)=1 ; \quad R_{i}^{\prime}(0)=\frac{\alpha_{i}+\lambda_{i}}{c_{i}} R_{i}(0)-\frac{\lambda_{i}}{c_{i}} \sum_{j=1}^{m} h_{i j} R_{j}(0) \quad(i \in J) \tag{5.38}
\end{equation*}
$$

6. EXAMPLE

Assume that

$$
\begin{equation*}
m=2, \quad h_{12}=h_{21}=1, \quad h_{11}=h_{22}=0 ; \tag{6.1}
\end{equation*}
$$

there are thus two possible states for the environment, the sojourn times in each state being exponentially distributed.

The solution of system (3.7) is then

$$
\left\{\begin{array}{l}
V_{11}(t)=-\frac{\alpha_{1}\left(\alpha_{1}+\lambda_{2}+r_{1}\right)}{r_{1}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{1} t}\right)+\frac{\alpha_{1}\left(\alpha_{2}+\lambda_{2}+r_{2}\right)}{r_{2}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{2} t}\right), \\
V_{12}(t)=-\frac{\lambda_{1} \alpha_{2}}{r_{1}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{1} t}\right)+\frac{\lambda_{1} \alpha_{2}}{r_{2}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{2} t}\right), \tag{6.2}\\
V_{22}(t)=-\frac{\alpha_{2}\left(\alpha_{1}+\lambda_{1}+r_{1}\right)}{r_{1}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{1} t}\right)+\frac{\alpha_{2}\left(\alpha_{1}+\lambda_{1}+r_{2}\right)}{r_{2}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{2} t}\right), \\
V_{21}(t)=-\frac{\lambda_{2} \alpha_{1}}{r_{1}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{1} t}\right)+\frac{\lambda_{2} \alpha_{1}}{r_{2}\left(r_{1}-r_{2}\right)}\left(1-e^{r_{2} t}\right) \quad(t \geqslant 0),
\end{array}\right.
$$

where r_{1} and r_{2} are the solutions (always distinct and negative as $\alpha_{i}, \lambda_{i}>0$) of

$$
\begin{equation*}
\left(\alpha_{1}+\lambda_{1}+r\right)\left(\alpha_{2}+\lambda_{2}+r\right)=\lambda_{1} \lambda_{2} \tag{6.3}
\end{equation*}
$$

The stationary probabilities for the chain $\left\{J_{n}\right\}$ are given by (4.2) which becomes here

$$
\begin{equation*}
\pi_{1}=\frac{\alpha_{1} \lambda_{2}}{\alpha_{1} \lambda_{2}+\alpha_{2} \lambda_{1}}, \quad \pi_{2}=\frac{\alpha_{2} \lambda_{1}}{\alpha_{1} \lambda_{2}+\alpha_{2} \lambda_{1}} \tag{6.4}
\end{equation*}
$$

Expectations of the number of claims occurring in environment $i(i=1,2)$ before t are obtained by solving system (4.9) with the boundary conditions $M_{i j}(0)=0$:

$$
\begin{align*}
& M_{11}(t)=\frac{\alpha_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}} t+\frac{\alpha_{1} \lambda_{1}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}\left(1-e^{-\left(\lambda_{1}+\lambda_{2}\right) t}\right), \tag{6.5}\\
& M_{12}(t)=\frac{\alpha_{2} \lambda_{1}}{\lambda_{1}+\lambda_{2}} t-\frac{\alpha_{2} \lambda_{1}}{\left(\lambda_{1}+\lambda_{2}\right)^{2}}\left(1-e^{-\left(\lambda_{1}+\lambda_{2}\right) t}\right)
\end{align*}
$$

$M_{22}(t)$ and $M_{21}(t)$ are obtained by replacing in the expressions of $M_{11}(t)$ and $M_{12}(t)$ respectively $\alpha_{1(2)}$ by $\alpha_{2(1)}$ and $\lambda_{1(2)}$ by $\lambda_{2(1)}$.

The mean recurrence time of claims occurring in environment $i(i=1,2)$ is given by (4.18):

$$
\begin{equation*}
\gamma_{11}=\frac{\lambda_{1}+\lambda_{2}}{\alpha_{1} \lambda_{2}}, \quad \gamma_{22}=\frac{\lambda_{1}+\lambda_{2}}{\alpha_{2} \lambda_{1}} \tag{6.6}
\end{equation*}
$$

We obtain then from (4.15)

$$
\begin{equation*}
\gamma_{12}=\frac{\alpha_{2}+\lambda_{1}+\lambda_{2}}{\alpha_{2} \lambda_{1}}, \quad \gamma_{21}=\frac{\alpha_{1}+\lambda_{1}+\lambda_{2}}{\alpha_{1} \lambda_{2}} \tag{6.7}
\end{equation*}
$$

The characteristic number d defined by (5.15) takes the following form:

$$
\begin{equation*}
d=\frac{\lambda_{2}\left(c_{1}-\alpha_{1} \mu_{1}\right)+\lambda_{1}\left(c_{2}-\alpha_{2} \mu_{2}\right)}{\alpha_{1} \lambda_{2}+\alpha_{2} \lambda_{1}} \tag{6.8}
\end{equation*}
$$

From now on we assume that $d>0$ and that the claim amount distributions $F_{i}(\cdot)$ are exponential, i.e.,

$$
\begin{equation*}
F_{i}(x)=1-e^{-x / \mu_{i}} \quad(x \geqslant 0 ; \quad i=1,2) \tag{6.9}
\end{equation*}
$$

From (5.37) and (5.38) we obtain that the asymptotic non-ruin probabilities are solution of the following differential system

$$
\left\{\begin{array}{c}
c_{1} R_{1}^{\prime \prime}(u)=\left(\alpha_{1}+\lambda_{1}-\frac{c_{1}}{\mu_{1}}\right) R_{1}^{\prime}(u)+\frac{\lambda_{1}}{\mu_{1}} R_{1}(u)-\frac{\lambda_{1}}{\mu_{1}} R_{2}(u)-\lambda_{1} R_{2}^{\prime}(u) \tag{6.10}\\
c_{2} R_{2}^{\prime \prime}(u)=\left(\alpha_{2}+\lambda_{2}-\frac{c_{2}}{\mu_{2}}\right) R_{2}^{\prime}(u)+\frac{\lambda_{2}}{\mu_{2}} R_{2}(u)-\frac{\lambda_{2}}{\mu_{2}} R_{1}(u)-\lambda_{2} R_{1}^{\prime}(u) \\
(u \geqslant 0)
\end{array}\right.
$$

with the boundary conditions

$$
\left\{\begin{array}{l}
R_{1}(\infty)=R_{2}(\infty)=1 \tag{6.11}\\
c_{1} R_{1}^{\prime}(0)-\left(\alpha_{1}+\lambda_{1}\right) R_{1}(0)+\lambda_{1} R_{2}(0)=c_{2} R_{2}^{\prime}(0) \\
-\left(\alpha_{2}+\lambda_{2}\right) R_{2}(0)+\lambda_{2} R_{1}(0)=0
\end{array}\right.
$$

Define

$$
\begin{equation*}
\rho_{i}=\frac{1}{\mu_{i}}-\frac{\alpha_{i}}{c_{i}} \quad(i=1,2) \tag{6.12}
\end{equation*}
$$

and assume without restriction that $\rho_{1} \geqslant \rho_{2}$.
The condition $d>0$ is then equivalent to the following

$$
\begin{equation*}
\frac{\lambda_{2}}{c_{2} \mu_{2}} \rho_{1}+\frac{\lambda_{1}}{c_{1} \mu_{1}} \rho_{2}>0 \tag{6.13}
\end{equation*}
$$

As $\rho_{1} \geqslant \rho_{2}$, then ρ_{1} is clearly strictly positive. We obtain then that the general solution of (6.10) takes the form

$$
\left\{\begin{align*}
R_{1}(u)= & A_{0}+A_{1} e^{k_{1} u}+A_{2} e^{k_{2} u}+A_{3} e^{k_{3} u} \tag{6.14}\\
R_{2}(u)= & A_{0}-D\left(k_{1}\right) A_{1} e^{k_{1} u}-D\left(k_{2}\right) A_{2} e^{k_{2} u} \\
& -D\left(k_{3}\right) A_{3} e^{k_{3} u}
\end{align*}\right.
$$

where

$$
\begin{align*}
D\left(k_{i}\right) & =\frac{c_{1} \mu_{1} k_{i}^{2}+\left(c_{1}-\alpha_{1} \mu_{1}-\lambda_{1} \mu_{1}\right) k_{i}-\lambda_{1}}{\lambda_{1} \mu_{1} k_{i}+\lambda_{1}} \tag{6.15}\\
& =\frac{\lambda_{2} \mu_{2} k_{i}+\lambda_{2}}{c_{2} \mu_{2} k_{i}^{2}+\left(c_{2}-\alpha_{2} \mu_{2}-\lambda_{2} \mu_{2}\right) k_{i}-\lambda_{2}}
\end{align*}
$$

and where k_{1}, k_{2}, k_{3} are the roots of the characteristic equation

$$
\begin{align*}
P(k)= & k^{3}+\left(\rho_{1}+\rho_{2}-\frac{\lambda_{1}}{c_{1}}-\frac{\lambda_{2}}{c_{2}}\right) k^{2} \tag{6.16}\\
& +\left[\left(\rho_{1}-\frac{\lambda_{1}}{c_{1}}\right)\left(\rho_{2}-\frac{\lambda_{2}}{c_{2}}\right)-\frac{\lambda_{2}}{c_{2} \mu_{2}}-\frac{\lambda_{1}}{c_{1} \mu_{1}}-\frac{\lambda_{1} \lambda_{2}}{c_{1} c_{2}}\right] k \\
& -\left(\frac{\lambda_{2}}{c_{2} \mu_{2}} \rho_{1}+\frac{\lambda_{1}}{c_{1} \mu_{1}} \rho_{2}\right)=0 .
\end{align*}
$$

From (6.13) we see that $k_{1} k_{2} k_{3}>0$. It is easily verified that

$$
\begin{gathered}
P\left(-\rho_{1}\right)=\frac{\alpha_{1} \lambda_{1}}{c_{1}^{2}}\left(\rho_{1}-\rho_{2}\right) \geqslant 0 ; \quad P\left(-\rho_{2}\right)=\frac{\alpha_{2} \lambda_{2}}{c_{2}^{2}}\left(\rho_{2}-\rho_{1}\right) \leqslant 0 \\
P(0)<0
\end{gathered}
$$

From this we may deduce that $P(k)$ has a negative root, say k_{2}, between $-\rho_{1}$ and $-\rho_{2}$. As the product of the three roots is positive we deduce further that the two other roots, k_{1} and k_{3}, are real (if k_{1} and k_{3} were complex conjugate roots, their product would be positive; we would then have $k_{1} k_{2} k_{3}<0$). As $P(+\infty)=+\infty$ and $P(-\infty)=-\infty$, we conclude finally that when $\rho_{1}>\rho_{2}$ one of the roots, say k_{1}, is strictly less than $-\rho_{1}$ and that the other, k_{3}, is positive. When $\rho_{1}=\rho_{2}=\rho$ (we have then $k_{2}=-\rho$), we obtain the same conclusions by verifying that $P^{\prime}(-\rho)<0$. We summarize this as follows:

$$
\begin{array}{lll}
k_{1}<-\rho_{1}<k_{2}<\min \left\{0,-\rho_{2}\right\}, & k_{3}>0 & \text { if } \rho_{1}>\rho_{2} \\
k_{1}<k_{2}=-\rho<0<k_{3} & & \text { if } \rho_{1}=\rho_{2}=\rho \tag{6.17}
\end{array}
$$

From the boundary conditions (6.11) we obtain that

$$
\begin{equation*}
A_{0}=1, \quad A_{3}=0 \tag{6.18}
\end{equation*}
$$

and that A_{1} and \boldsymbol{A}_{2} are the solutions of

$$
\begin{aligned}
& {\left[c_{1} k_{1}-\alpha_{1}-\lambda_{1}-\lambda_{1} D\left(k_{1}\right)\right] A_{1}+\left[c_{1} k_{2}-\alpha_{1}-\lambda_{1}-\lambda_{1} D\left(k_{2}\right)\right] A_{2}=\alpha_{1}} \\
& {\left[\left(-c_{2} k_{1}+\alpha_{2}+\lambda_{2}\right) D\left(k_{1}\right)+\lambda_{2}\right] A_{1}+\left[\left(-c_{2} k_{2}+\alpha_{2}+\lambda_{2}\right) D\left(k_{2}\right)+\lambda_{2}\right] A_{2}=\alpha_{2}}
\end{aligned}
$$

or, which is equivalent in view of (6.15),

$$
\left\{\begin{array}{l}
\frac{A_{1}}{\mu_{1} k_{1}+1}+\frac{A_{2}}{\mu_{1} k_{2}+1}=-1 \tag{6.19}\\
\frac{D\left(k_{1}\right)}{\mu_{2} k_{1}+1} A_{1}+\frac{D\left(k_{2}\right)}{\mu_{2} k_{2}+1} A_{2}=1
\end{array}\right.
$$

We can obtain a lower bound for k_{1}. Verify first that $P\left(\mu_{1}^{-1}\right)<0$ if $\mu_{1} \leqslant \mu_{2}$ and that $P\left(\mu_{2}^{-1}\right)<0$ if $\mu_{2} \leqslant \mu_{1}$. We can then easily conclude that

$$
\begin{equation*}
-\min \left\{\mu_{1}, \mu_{2}\right\}^{-1}<k_{1} \tag{6.20}
\end{equation*}
$$

We summarize the above results in

Theorem 6

If $m=2, h_{12}=h_{21}=1, d>0$ and if the claim amount distributions are exponential, the asymptotic non-ruin probabilities are given by

$$
\begin{aligned}
& R_{1}(u)=1+A_{1} e^{k_{1} u}+A_{2} e^{k_{2} u} \\
& R_{2}(u)=1-D\left(k_{1}\right) A_{1} e^{k_{1} u}-D\left(k_{2}\right) A_{2} e^{k_{2} u} \quad(u \geqslant 0)
\end{aligned}
$$

where k_{1} and k_{2} are the two negative roots of (6.16), where the constants $D\left(k_{i}\right)$ are given by (6.15) and where A_{1} and A_{2} are solutions of (6.19).

When $\alpha_{1}=\alpha_{2}=\alpha, \mu_{1}=\mu_{2}=\mu, c_{1}=c_{2}=c$ and if λ_{1} and λ_{2} are arbitrary positive numbers, then $k_{2}=-\rho$ and k_{1} is the negative root of

$$
\begin{equation*}
k^{2}+\left(\rho-\frac{\lambda_{1}+\lambda_{2}}{c}\right) k-\frac{\lambda_{1}+\lambda_{2}}{c \mu}=0 \tag{6.21}
\end{equation*}
$$

When obtain then $D\left(k_{2}\right)=-1, D\left(k_{1}\right)=\lambda_{2} / \lambda_{1}$ and the solution of (6.19) is $A_{1}=0$, $A_{2}=-\alpha \mu / c$. As expected the ruin probabilities $R_{1}(u)$ and $R_{2}(u)$ are in this case identical and equal to the ruin probabilities obtained for the classical Poisson model with exponentially distributed claim amounts:

$$
\begin{equation*}
R_{1}(u)=R_{2}(u)=1-\frac{\alpha \mu}{c} e^{-\rho u} \tag{6.22}
\end{equation*}
$$

REFERENCES

Cinlar, E. (1967). Time dependance of queues with semi-markovian services. J. Appl. Prob., 4, 356-364. Queues with semi-markovian arrivals. Ibid., 365-379.
FELLER, W. (1971). An introduction to probability theory and its applications, Vol. II. Wiley: New York.

JANSSEN, J. (1970). Sur une généralisation du concept de promenade aléatoire sur la droite réelle. Ann. Inst. H. Poincaré, B, VI, 249-269).
JANSSEN, J. (1980). Some transient results on the M/SM/1 special semi-Markov model in risk and queuing theories. Astin Bull., 11, 41-51.
Janssen, J. and Reinhard, J. M. (1982). Some duality results for a class of multivariate semiMarkov processes. J. Appl. Prob., March 1982.
Miller, H. D. (1962). A matrix factorization problem in the theory of random variables defined on a finite Markov chain. Proc. Camb. Phil. Soc., 58, 268-285. Absorption probabilities for sums of random variables defined on a finite Markov chain. Ibid., 286-298.
Neuts, M. F. (1966). The single server queue with Poisson input and semi-Markov service times. J. Appl. Prob., 3, 202-230.

Neuts, M. F. and Shun-Zer Chen (1972). The infinite-server queue with Poisson arrivals and semi-Markov service times. J. Op. Res., 20, 425-433.
Newbould, M. (1973). A classification of a random walk defined on a finite Markov chain. \boldsymbol{Z}. Wahrsch. verw. Geb., 26, 95-104.
Pyke, R. (1961a). Markov renewal processes: definitions and preliminary properties. Ann. Math. Stat., 32, 1231-1242.
PYKE, R. (1961b). Markov renewal processes with finitely many states. Ibid., 1243-1259.
Purdue, P. (1974). The M/M/1 queue in a markovian environment. J. Op. Res., 22, 562-569.
Reinhard, J. M. (1981). A semi-markovian game of economic survival. Scand. Act. J., 1981, 23-38.
Reinhard, J. M. (1982). Identités du type Baxter-Spitzer pour une classe de promenades aléatoires semi-markoviennes. To appear in Ann. Inst. H. Poincaré.
SEAL, H. L. (1974). The numerical calculation of $U(w, t)$, the probability of non-ruin in interval (0, t). Scand. Act. J., 1974, 121-139.

