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Abstract. The Livshitz theorem reported in 1971 asserts that any C1 function having
zero integrals over all periodic orbits of a topologically transitive Anosov flow is a
derivative of another C1 function in the direction of the flow. Similar results for
functions of higher differentiability have also appeared since. In this paper we prove
a 'finite version' of the Livshitz theorem for a certain class of Anosov flows on
3-dimensional manifolds which include geodesic flows on negatively curved surfaces
as a special case.

1. Notations and statement of the main result
Let X be a compact 3-manifold. A flow (f}((eR) on X is called contact if it
preserves a contact form fl, i.e. a differential 1-form such that il A dil # 0. In this
paper we will be concerned with C°° contact Anosov flows. A primary example of
such a flow is a geodesic flow on SM, the unit tangent bundle to a compact
surface M provided with a Riemannian metric of negative curvature. We shall intro-
duce some notations and list basic facts about contact Anosov flows.

Fl . A flow {if/1} is Anosov, if there exists a continuous Difi'-invariant splitting of
the tangent bundle to X

TX = E°®ES®E",

where E°, Es and E" are one-dimensional distributions spanned by unit vector
fields f°, €s and £", and for any Riemannian metric4here exist constants a,, bx,
a > 0 such that for all x e X and any positive real number t

Here D denotes the differential of the flow, and the norm of a tangent vector is
defined by the Riemannian metric on X. We shall also need the estimates on the
other side which hold for any smooth flow: there exist constants a2, b2, 5>0 such
that for all x e X and any positive real number t

(x)\\^a2e;

t Supported in part by NSF Postdoctoral Fellowship.
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368 S. Katok

Let us denote

X'(x, t) = ||D<m*)ll; xu(x, t) =
Let -A(x, t) and fi(x, t) be the logarithmic derivatives of the functions x*(x, 0
x
u(x, t), i.e.

at

We have

The integral curves of E° are the orbits of the flow {«//}. The integral curves of
the distribution Es (£") form the stable {unstable) foliation which is denoted by
<TS (cr"). We denote the distance on X by d, and the distance along the leaves of
the foliations crs and cr" by ds and d" respectively.

F2. A contact Anosov flow {i//} preserves the measure on X denned by the volume
element Cl A dil, which is sometimes called the Liouville measure. We assume that
a Riemannian metric on X is chosen in such a way that the Riemannian volume
on X coincides with the Liouville measure.

F3. A contact Anosov flow {if*1} is topologically transitive, and each leaf of the
foliations crs and cr" is uniformly dense, i.e. for any p > 0 there exists N>0 such
that for any xeX, any M>N and /e{s, w} D'M(x) = {z€ o-'(x)|d'(x, z)<M) is
p-dense in X, i.e. intersects every ball in X of radius p [1].

FA. The distributions E" and E" (and therefore foliations as and a-") are of class
C2~e for any e > 0 [6]. In fact, we only use that they are C\ The latter fact for
geodesic flows was known already to Hopf [4, § 14], [5, § 7]. It follows that A(x),
M(x)eC\X).

We denote the operators of differentiation in the directions of f, £s and fj" by
2 = 2>0, ®s and 2U respectively. Let a0, as and a" be differential 1-forms dual to
the vector fields f, ? and f :

a / ( ^ ) = % fori,;€{0,5,w}.

Hereafter C and Kwith various subscripts will denote positive constants which
may depend on the manifold X. The dependence on a parameter, if any, will be
specified.

THEOREM 1.1. (Finite Livshitz Theorem.) Let X be a compact 3-manifold, {</»'} be a
contact Anosov flow on X, and T>0. Then for any A, 0<A <a/S there exists a
constant C(A) such that iffe C2(X), \[f\\c

2= 1, and ][o]fdt = 0 for all periodic orbits
[o] of {ij/'} of length < T, then there exist F, he C1+A(X) such thatf= 2F + h, and
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Approximate solutions of cohomological equations 369

Remarks. 1. Notice that a weak form of Theorem 1.1 (without an explicit estimate
of how ||/i He1 tends to 0 as 7*-*oo) follows immediately from the Livshitzt theorem
[7] and the fact that the unit sphere in C2 is comptact in^C1 (the Ascoli-Arzela
Theorem).

2. For results similar to the Livshitz theorem for functions of higher differentia-
bility see [3], [8] and [6].

2. Construction of a Holder continuous differential form on X
Let us fix a Riemannian metric on X as in (F2), and define the following functions

k°(x) =f(x), ks(x) = - [ 2J(+'x)X
s(x, t) dt, k"(x) = - f 2>J(*'x)xu(x, t) dt.

Jo Jo
It follows from (1.1) and (1.2) that these integrals converge. We define a differential
1-form wf = <o associated to the function / by the formula w = a>° + ws + <ou, where
<o0 = k°(x)a°, <DS = k*(x)as, u>" = ku(x)au. For notational simplicity in most cases
we will suppress the dependence <of o n / The following theorem holds for all contact
Anosov flows.

THEOREM 2.1. The differential form caf satisfies a Holder condition of order X for any
A,O<A<1 .

Proof. In view of (F4), it is sufficient to prove that each form <o°, a>s and o>" satisfy
a Holder condition, i.e. that for any A, 0<A < 1 , there exists Co(A)>0 such that
for i,je{0,s,u} and x'etr'(x) \k'(x)-ki(.x')\^C0(X)dJ(x,x')\ We shall make
calculations for i = s and leave the other cases to the reader. Let dJ(x,x') = d. If
7 = 0, 5 we choose T = T(x) such that

X
s(x,T(x)) = d. . (2.1)

If j = u we choose T=T(x) such that

</"(<frT;x,*V) = l. (2.2)
Let us parametrize the piece of the leaf o-"(x) between x and x' by a parameter u
as follows: u(x) = 0, u(x") = d"(x,x"), x"e[x,x'], x"eo-u(x), and let l(u,t) =
d-Wx^'x").

It follows from (1.1) and (1.2) that

a2 e-s<r-'> < d'W'x, <l*'x") < a, e -< T ->.

It follows from (1.3) that for any x"e [x, x']

-A(x",T)dT. (2.3)
>0

Therefore

<\x", t) [' f
= exp (A (x, T) - A (JC", T)) dr < exp Cx du{tyTx, ^Tx") dr.

X \x, t) Jo Jo

X_
X'

For our choice of T, (2.2), we have for 0 < f < T:

\:Jo

and therefore xs(x"> t)/xs(x, <)< C3. The same argument shows that
t A phoenetic transliteration of his name, Liviic, appears in the translations of his papers from Russian
into English.
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x'(x,t)/X'{x".t)*C3. Hence

(2.4)

for 0 < f < T and any x" € [x, x']. Since the flow { '̂} preserves the Liouville measure
(F2), we have C71 ==x

s(x", t)x"(x", t) a C4) and therefore

We have dl(u(x"), t)/du = ||D*'f"(*")ll = *"(*", 0, and

= j —(u,T)du<C6dX
u(x,T) = C7

which implies

We have

\k*(x)-ks(x')\ = t)-(2s(f(fx'))xs(x', t)) dtf-oi
Jo

-=: f"
~Jo

f°°
Jo

rT

Jo

+ [ \2,(f(4>'x))-a>.(A4>'x'))\x'(x, 0 A
JT
Too

+ |®,(/(^V))| • l*s(x, t)~Xs(x', 01 A
JT

s f T |3.(/(^r'x)) - 3,(/(*'x'))k'(x, 0 dt
Jo
r

+ ®s(/(^ *'))l • l̂ 5(x, O-^^x', 01 A
Jo
/"oo /»oo

JT ' JT
roc

+ l®s(/(1/' x'))\x'(x', t) dt.
JT

(2.5)

(2.6)

We claim that xJ(x', T)<C9d. For j = u this was proved above (2.6). For j
this follows from the choice of T, (2.1), and the inequalities

= 0, s

(2.7)
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and

\X
s(x, T)-X

s(x', T)\<Cnd
J(*Tx,4,Tx')<C12d.

It follows from (1.1) that in both cases

T<C1 3|lnd|. (2.8)

Thus, (1.3), (2.4), (2.6) and | | / | | c
2 = 1 imply that each of the last three integrals is

estimated from above by C14 J^ #*(*> t) dt<C1$x
s(x, T)<Cl6d.

We estimate now the first two integrals. There exists 6(t) e [x, x'~\ such that

i: dt

•i= \2&j<JW0(t)))\dJWx, <l>'x')xs(x, t) dt.

Let j ' = 0, s. The inequalities (1.1) and (1.2) imply that

i:Xs(x, t)dt<Ci7,

and using (2.7) we estimate the first integral from above by Clgd. The second integral
in this case is estimated as follows:

| \2>s(f(>l>'x'))\-\xs(x,t)-xs(x',t)\dt<Ci9\
Jo Jo

for any A, 0 < A < 1. The last two inequalities follow from (2.8) and the fact that for
any A, 0 < A < 1 there exists C22(A) such that d • |ln d\ < C22(A ) d \ Now let j = u. A
calculation similar to (2.5) gives us

where xoe[x,x'], xoeau(x). This equality, together with (2.4) and (2.8), implies
that the first integral in this case is estimated from above by

t) dt^ ^ C25d- C26(A)dA

for any A, 0 < A < 1. The second integral is estimated from above by C27 J j \xs(x, 0 ~
x\x\ t)\ dt. We use (1.3) and (2.3) to estimate the integrand

r)dr

,(x,T)-X(x',r))dr

exp - A (x, T) dr - exp I - A ( * ' ,
Jo

= fexp | -A(x,T)dTj- l - e x p | (;

C28*s(x, t) • | | (A(x, T ) - A ( X \ T)) dr

d-(xs(x,r))-'dr
Jo
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Thus the second integral is estimated by C32 dT< C33d • |ln d\ < C34(A)dk for any
A, 0< A < 1, and the theorem follows. •

3. Construction of an e-dense orbit for the flow {ip'}
THEOREM 3.1. Given e > 0 sufficiently small, there exists an e-dense piece of orbit of
the flow {t/f1} of length T:

€ = {xeX,x = tl/'xo,0< t< T}
with T = C In e~'/e2 where the constant C > 0 depends only on the Riemannian metric
on the manifold X and the flow {</»'}.
Proof. We prove first that any two points x, yeX can be 'e-joined' by a piece of
orbit of length C, In e"1, i.e. there exist x', y'eX and a constant C,>0 such that
d(x, x') < e, d(y, y') < e, and y' = t/»V for T = C, In e~l. Let p be a sufficiently small
number which will be specified below. We assume that e<p . By (F3) one can
choose a constant N > 0 such that any piece of the leaf of the foliation a" of size
M > N is p/2-dense. For Ty = a~1ln(N/b1e) the piece of the leaf <\i\D"y) =
D"M(,fiiTxy) is of size M> N, and therefore is p/2-dense. Let T0 = 2a~* In (a,p/e),
and xo= ij/~Tox. For small enough p there exist yoe Du

M{ij>Tiy) and z = \fi'y0 with
11\ < p such that z £ Dp(x0). We also have d(ipT°z, ifiT<>x0) = d{^T«z, x) < axp e~aT" < e.
Thus we obtained two points x' = ̂ /T°z and y' = il>~Tlyo such that d(x, x')<e,
d(y,y')<e, and y'=il/Tx'. If e<min(l/a1p,bl/N,e~p,p) then for some constant
C,>0 T = T o + T 1 + d(>'o ,z)<C1lne"1.

For each point xoeX we define the following cylinder sets:
Cp(x0) = {x = (z,t)\zeSp(x0),-p<t<p}, (3.1)

where Sp(x0) is a 2-dimensional smooth local cross-section transversal to the flow
{t^'} passing through x0, and x = if>'z. To complete the proof of the theorem we
choose a cover of X by a finite number of cylinders Cp(x,), i = 0,1,2,..., N. Let
us choose a smooth coordinate system in each local cross-section Sp(x,). Then it
makes sense to talk about square lattices in Sp(x/) relative to this coordinate system.

Definition. We call a set of points in SP(XJ) e-regular if it is an e2-perturbation of
some square lattice in 5p(x,) of size e/2.

For each i = 0 ,1 ,2 , . . . , N we choose an e-regular set Et c Sp(Xj), and let A, =
{xe Cp(x,)|ze £,}. The number of pieces inUj=0 A- is C2/e2. Wecan'e2-join'them
together using the estimate in the beginning of the proof. An application of the
Bowen specification theorem [2] gives us a desired e-dense piece of orbit of length
C In e"Ve2 which we denote by 6. •

Remark. By the Bowen specification theorem [2] for each i = 0 , 1 , . . . , N, 0 contains
a subset A,- consisting of a number of pieces approximating pieces of orbits con-
stituting A,. Let if = Ujlo A\- Notice that Sfn Sp(x,) is also an e-regular set for each
i = 0,...,N.

4. The proof of Theorem 1.1
Definition. Let r be the injectivity radius of X. We say that a function F defined on
%, a subset of X, is of class C'K

+A(0 < A < 1, K > 0) if there exists a family of linear
functions lx(v) for xe X, v e TXX such that for any x, y € £, d(x, y) < r,

F(x) - lx(vxy)\ ^
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where vxy e TXX is a tangent vector to the geodesic from x to y (on X) of length
d(x,y).

LEMMA 4.1. Let 0 be a piece of orbit of the flow {tj/'} of length T, andfe C2(X) is
such that ||/||c2 = l and $[o]fdt = 0 for all periodic orbits [o] of {<]/'} of length <T.
We define the following function on 6: for x = f x o , 0 ^ ( < r

"I b) ds. (4.1)
ô

Then for any A, 0< A < a/8 there exists K0(X) such that F(x) is of class C^U) on &
Proof. We shall show that the role of the linear function lx is played by the differential
form ay introduced in § 2. For j = s, u we define orOJ(x) = {y = ifi'z, -oo < t < oo, for
some ze aJ(x)}; they are called leaves of the weak stable (for j = s) and the weak
unstable (for j = u) foliations. Let dOj denote the distance on o-0J, p be as in § 3,
and D°p

J(x) = {ye <TOJ(X) \ dOJ(x, y) < p}. Suppose x0 = x, y0 = y e 6, y0 = i/,T'x0, T <
T, d(xo,yo) = d<r. Let zo= z = DP(.x0)nD°p

u(y0), and yoo = ^T°xo, \T0-T'\<d,
_Voo € D"(z0). We denote the arc of crs(x) between x and z by cr*(x, z), the arc of
<ru(y<>o) between y^ and z by o-u(_v0o, z), and the piece of orbit € between y and
yoo by tf(j, >-oo)- Notice that

f W/
Ji7'(v)

| W /= I (f(tk'yOo)-f('l>'z))dt, (4.2)
•"""(yoo.z) Jo

f fT.-T
»/=

JO(y,yoo) JoO(y,yoo)

The fact that wy satisfies a Holder condition of order A (Theorem 2.1) and (4.2)
imply that Lemma 4.1 follows from the following statement: given A, 0<A <a/8,
there exists a constant K(\) such that for any x, y e 6, y = ifiT°x, To< T, d(x, y) = d < r
with the property that Ds

p(x0)n £>p(yo) ̂  0 , there exists a constant X(A) such that
(oTDp(x0)nDu

p(y0) = z

A+ J
<K(\)d(x,y)1+\

We notice that it is sufficient to prove the above statement for sufficiently small d.
Without loss of generality we may assume that x = x0 and therefore F(x) = 0. We
construct five sequences of points {xj}, {yj}, {y^}, {z,} and {uj, and a sequence of
numbers {7}} (j = 0,1,2, . . .) inductively as follows:

•*o — •*» / o — y<&~y~v -*o> z o — z — i ' p ( . -*o /1 1 ^-'p yyott

yooeD'p'izo), uoeDp(xo), i/»T«u0 = z0,

r ^ D J ^ J n D j ' " ^ ) , yM = i/f T x̂,,
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Let x e X , Sp(x) be as in § 3, and <p:Sp(x)-» Sp(x) be a return map for the flow
{i/f1}. For any y e Sp(x) we let PJ

p(y) = o-0j(y) n Sp(x) for j = s, M. The local foliations
P-j, are stable and unstable foliations for the return map <p. They inherit the
smoothness of the weak foliations <rOj which is not less than the smoothness of
foliations tr'. Let V be the distance on the leaves of the local foliation Pj

p (j = s,u).
We assume that p is chosen such that there exists a constant Cv > 1 such that for
any x, ye PJ

P

Thus it follows from (F4) that there exists a constant C2>1 such that for any
'quadrangle' [x,, x2, x3, x4] such that

x2e Pu
p(Xl), x3€ PP(x2), x4e P"p(x3), x, e PP(x4), (4.4)

the following inequalities hold:

^dg^ c-^d^ (4.5)
d(x4,x3) d(x,,x4)

Let IT : Cp(x0) ^ Sp(x0) be defined by the formula ir{z,t) = z, and Sj =
To+- • -+7}_i. By properties (1.1) and (1.2), for some constants C3, C4, C5, C6>0,
and j = 0 , 1 , . . . we have

C3 e-ss>d < d(7rx,, 77%) < C4 e~aS>d,

d(77-x,, x0) < Csd, d(7^, x0) < C5, (4.6)

|7}-ro|<c6<i

Therefore the sequences {TTX,}, {iryj}, {•?%}, {TTẐ } and {TTM;} converge in Sp(x0) to
a fixed point of the continuous map <p:Sp(x)->Sp(x). The orbit of the flow {«//}
passing through this point is a periodic orbit. This completes a well-known proof
of the Anosov closing lemma. For our purposes, however, we have to look closely
at the rate of convergence of this process. Let k be an integer, /c>l (it will be
chosen later, in (4.7)). We have

F(y)= P /^ ' x ) dt = *£ ( f \f(*%)-/(*%)) dt+ f T°(/(*'z,)-/(*Vi)) dt)
Jo j=o \Jo Jo IrJo

On the other hand,

f (fit'x) -A+'z)) dt = I1 f 1+l Wx) -f(t'z)) dt+ f (A*'x) -A*'*))
Jo j=O JSj JSk

and

= J] I (/(</* 2)— fwy)) dt+ I
j=oj-s, J-sk
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An easy calculation gives us the following estimate:

375

where

*I [ ̂
i=\ Jo

I ' [ T>

J=O Jo

V I
>=o J T0

-fWzj)) ~ (fbl>s>+'x) -f(tps>+lz)) dt

dt

/ , = dt = I J
l ' I '

j=o J r0

\J-Sk

It follows from (4.3) that for j

'*'y e PP(irZj), TT^~S^Z e

) , and

'+'y e

Therefore the two 'quadrangles' Q,(f) = [mA'xy, wi/»'z,, TTI(IS'+'Z, 7TI/»SJ+'X] and Q2(r) =
[iril/'zj, nilf'Xj+i, ITII/'~S'*1Z, irtl/'~si+1y] satisfy (4.4), and we obtain the following
estimates for the lengths of their sides:

Xj, injisi^Tix) < C8 e
ss>d < C8 e

S5*-'e,

'Xj, mlt'zj) < C9d(irXj, vZj) < CI0 e""s>d,

nl/'~si-»y) < Cnd(irZj, -7nl>~s^y)^C12 eis>d < C,2 ess '- 'd,

and

d(inp'zj, inl/'xj+i)sCnd(iTipT'Zj, inlfT'Xj+1)<Cl4d(<pirZj, ( p « j + , ) < C l s e"aS>d.

If d is sufficiently small, we can choose k > 1 satisfying the following inequalities

(max Cl2, Csy
lp e"85* < </ < e-

S5*-'p(max C12) Cg)"1, (4.7)

it will follow that <?,(<), <?2(')c Sp(x), and therefore (4.5) applies. We have e S k l <
C16d ~v* , ^ C17ln d~\ Thus, for some point 6(t)e Q,(t) we have

7 = 1 Jo

i=\ I Jo

C20d
a/sd- In d " ' s C21(A)dI+A.
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and therefore 2,< C22(A)d1+A for any A, 0<A<a/6\ Similarly we obtain the
estimate 22< C23(A)d1+A for any A, 0< A < a/8.

In order to estimate Ix we let

0(xk) = {x € X, x = *%, 0< t < To}.

By the Anosov closing lemma, using the fact that d(xk, i)/Tkxk) = d(xk,ykk)<
Cx e~aSkd, and that the integral of f(x) over any closed orbit of length < T is equal
to zero, we obtain the following estimate:

HI:
The last inequality follows from (4.7). Following the previous argument we conclude
that

'Hi: sC26 [
Js, a

Similarly,

HI: es'dt
-sk

Using (4.6) we obtain the following estimates for 23 and

2 ,= * C32d
j=o

This concludes the proof of Lemma 4.1. n
COROLLARY. F(X) is of class

0<A<a/S.
on t/ie set if (cf., Remark in § 3), for any A,

LEMMA 4.2. For any A, 0< A <a/8 there exist constants K,(A), K2(\), K3(\) such
that the function F(x) can be extended from y to X as a function of class C£A

A) in
such a way thatQiF(x) e C£A

A)(X), andforh(x) = 3)F{x) -f{x) we have \\h(x)\\c> s
K3(\)e\

Proof. First, we show how to extend F(x) from y n Sp(x0) to Sp(x0) as a function
of class Cj^A

A). y r\ Sp(x0) is a discrete e-regular set. It is sufficient to extend F(x)
to a 'generating' quadrangle of 5^nSp(x0) which is a e2-perturbation of a square.
We denote its vertices by A, B, C and D, and the directions AB and AD by x and
y respectively. We may assume that F is a real-valued function since the following
argument is valid for Re F and Im F. We extend F(x) to the interval [A, B] knowing
F(A), F(B) and F'X(A) = U(vAB) = aA, F'x(B) = -lB(vBA) = aB. There exist tABe
[A, B] and kAB e R such that

[kABd{w,A) + aA, we[A,tAB]

\-kABd(w,A) + kABd(A,B) + aB, we[tAB,B],
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and \B
A F'x(w) dw = F(B)-F(A). F(x) is of class C£?A). It follows from (4.8) that

kAB satisfies the following quadratic equation

d( A, Bfk\B - 2[2(F(B) - F(A)) - d(A, B)(aA + aB)]kAB -(aA-aB)2 = 0. (4.9)

A direct calculation shows that

Then for w, w'e[A, B]

\F'x(W)-F'x(w')\^\kAB\d(

We define F'y(w) linearly for we[A, B]:

F{w) ( 4 i o )

d(A, B)
Then \F'y(w)-F'y(w')\<K0(\)d(w, w')\ Thus F(x) is extended to [AB], and
analogously to [BC], [CD] and [DA], as a Ci^A)-function. We parametrize each
interval [AB] and [CD] by its normalized length cr. Then we connect points having
the same parameter by an interval of a geodesic, obtaining a family of coordinate
curves, and extend F(x) to each interval by the formulas (4.8) and (4.10) as a
C Q(AA ) - function for some C] (A) > 0. Thus we obtain a function inside the quadrangle
ABCD. In order to prove that thus defined function is of class C^^A) inside ABCD,
we construct a family of curves connecting intervals [BC] and [DA] as follows.
For o-e[0,1], let z^e[AB] and wtTe[CD] be the points parametrized by a, and
/„. e [za, wa], ta = <z<T,»,̂ as in (4.8). We parametrize each interval [za, ta] and [/„., wv]
by its normalized length such that T(ZO.) = 0, T ( O = | , T(WO.) = 1, and T = const, gives
us the second family of coordinate curves. Let P = (<rl, T,) and Q = (o-2, T2), and
R = (o-2, T,). There exist C2(A), C3(A), Kl{\)>0 such that for i = cr, r

\F'i{Q)-F'i(P)\^\Fl
i(Q)-F'i(R)\ + \

We use (4.8), (4.9) and (4.10) to obtain the second inequality. The last inequality
follows from the regularity of the quadrangle ABCD and the fact that the function
dx is concave down for any A, 0< A < 1.

Let us choose a finite cover of X by cylinders Cp(x,), i = 0 , . . . , TV introduced in
§ 3. We extend F{x) by the formula

=[
Jo

-p<t<p

to a C£*A)-function on each Cp(x,). Thus for i = 0 , . . . , N we obtain a function
F,(x) defined on Cp(x,) and such that Fi(x) = F(x) for x e A,. Let {A0(x),..., AN(x)},
Z,=o ̂ i(x) = 1 be a C°° partition of unity corresponding to the cover {Cp(x,)}, and
F(x)=l^=0\i(x)Fi(x). For

xe fl Cp(xik), 2F(x)= I 2>
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By construction, on each Cp(xik) we have 3)Fik(x) =/(x) and A,(x) = 0 if i # ik. Thus

2F(x) = I 3)\ik(x)Fik(x)+f(x),
fc=i

and therefore 2>F(x) is of class C ^ A ) for some X2(A)>0.
Now we estimate the C'-norm of h(x) = 2)F(x)-f(x). Let x e f l ^ i Cp(xik). If

M = l, F(x) = Ffl(x), hence 2F(x)=f(x) and /i(x) = 0 in some neighborhood of
the point x. Therefore, in the open set X\{JJfli Cp(x,) ||/i(x)||c' = 0. Suppose M > 1.
We notice that ££1, ®A,t(x) = 0, and therefore h(x) = l" = 2 3>\ik(x)(Fik(x)-Fit(x)).
Since the functions \ik are of class C°°, we have in f l ^ i Cp(xik)

There exists a constant C5>0 and two points ye A,k, zeA,, such that d(x,y)^e,
d(x, z) < e, d(y, z) < C5e. In the following estimate we use that the functions F,k(x),
Fh(x) and F(x) are of class C\ and that Fik(y) = F(y), Fit(z) = F(z).

For j = 0, s, u the functions 2jFik(x) and 3>jFit(x) satisfy a Holder condition of
order A and a constant ^i(A) for any A, 0< A < 1. By construction (Lemma 4.1) we
have 3>jFik(y) = kJ(y), QfjF^z) = kJ(z) (see notations of § 2), and using Theorem 2.1
we obtain the following estimate:

\2>jFik(x) - %F,,(x)| < \2jFlk(x) - ®jFik{y)\

+ \a>jFh(z) - aijF^x)] + \3jFik(y) - %Fh(z)\

<C7(A)e\

Thus, for some constant ^ (A) we have ||/i(x)||c'< K3(\)e
x, and the lemma

follows. •

Now we can finish the proof of Theorem 1.1. For any A, 0 < A < 1 there exists a
constant C8(A)>0 such that for any e>01n e"'< C8(A)ex"1. Given T>0, let

where C is from Theorem 3.1. We apply Theorem 3.1 to construct an e-dense piece
of orbit € of length C In e"1/'«2< T. Defining the function F(x) on € by formula
(4.1) and applying Lemmas 4.1 and 4.2 we obtain a function h(x) with the following
estimate on its C'-norm:

<3-A). •
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