
Glasgow Math. J. 51 (2009) 55–70. C© 2008 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089508004539. Printed in the United Kingdom

ON LITTLEWOOD-PALEY FUNCTIONS ASSOCIATED WITH
BESSEL OPERATORS

J. J. BETANCOR
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Abstract. In this paper, we study Lp-boundedness properties for higher order
Littlewood-Paley g-functions in the Bessel setting. We use the Calderón-Zygmund
theory in a homogeneous-type space (in the sense of Coifman and Weiss)
((0,∞), d, γα), where d represents the usual metric on (0,∞) and γα denotes the
doubling measure on (0,∞) with respect to d defined by dγα(x) = x2α+1dx, with
α > −1/2.

2000 Mathematics Subject Classification. 42C05 (primary), 42C15 (secondary).

1. Introduction. In the past years, the Calderón-Zygmund theory has been used
by several authors for the study of operators that occur in harmonic analysis in different
settings (see, for instance, [2–4, 9, 20, 21, 24]). In this paper, we study operators that
appear in the harmonic analysis related to Bessel differential operators viewed as
Calderón-Zygmund integral operators in the spaces ((0,∞), d, γα), where d denotes
the standard Euclidean metric, and for α > −1/2, dγα(x) = x2α+1dx. These spaces are
homogeneous in the sense of Coifman and Weiss [6].

Suppose that (X, ρ, γ ) is a homogeneous-type space, that is, ρ is a quasimetric
on X and γ is a positive measure on X verifying:

(i) γ (B(x, r)) < ∞, x ∈ X and r > 0.
(ii) There exists C > 0 for which γ (B(x, 2r)) ≤ Cγ (B(x, r)), x ∈ X and r > 0,

where B(x, r) = {y ∈ X : ρ(x, y) < r} for every x ∈ X and r > 0.
Let � be a Banach space. We say that a �-valued function K defined on X × X \

DX , where DX = {(x, y) ∈ X × X : x = y} is a standard kernel when there exist ε, C > 0
such that

(i) ‖K(x, y)‖� ≤ C
γ (B(x,ρ(x,y))) , x, y ∈ X, x �= y.
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(ii) ‖K(x, y) − K(z, y)‖� + ‖K(y, x) − K(y, z)‖� ≤ ρ(x,z)
ρ(x,y)

C
γ (B(x,ρ(x,y))) , x, y, z ∈ X,

x �= y, ρ(x, z) ≤ ερ(x, y).
As usual, the integration of �-valued functions is understood in Bochner’s sense.
Definitions and main properties of the Lebesgue spaces of �-valued functions
Lp

�(X, γ ), 1 ≤ p ≤ ∞, can be encountered in [7]. In the sequel, we write Lp(X, γ )
to denote Lp

�(X, γ ). A Calderón-Zygmund operator associated with a standard
�-valued kernel K is a linear operator T that is bounded from L2(X, γ ) into L2

�(X, γ )
and such that for every f ∈ L2(X, γ ),

Tf (x) =
∫

X
K(x, y)f (y)dγ (y), x �∈ supp f. (1.1)

The main results concerning singular integrals on Banach spaces of valued functions
were established in [16]. Function spaces (Lebesgue, Hardy, Lipschitz, etc.) defined on
homogeneous-type spaces (X, ρ, γ ) and operators acting between them were studied
by Macı́as and colleagues [10–12]. The corresponding spaces of �-valued functions
are defined in a natural way, and they are denoted with a subindex � ([16]).

The boundedness properties of our Calderón-Zygmund operators can be stated
as follows. Here, as usual, for every 1 ≤ p < ∞, we denote by Ap(X, ρ, γ ) the
Muckenhoupt class of weights with respect to the measure γ on X endowed with
the quasimetric ρ.

THEOREM 1.1. ([15, Theorem 5] and [16, proposition in Remark 7]) Let (X, ρ, γ )
be a homogeneous-type space and let � be a Banach space. Assume that T is a Calderón-
Zygmund operator associated to a �-valued standard kernel K on X. Then,

(i) for every 1 < p < ∞ and ω ∈ Ap(X, ρ, γ ), T is bounded from Lp(X, ωdγ ) into
Lp

�(X, ωdγ ).
(ii) for every ω ∈ A1(X, ρ, γ ), T is bounded from L1(X, ωdγ ) into L1,∞

� (X, ωdγ ).
(iii) T is bounded from L∞

0 (X, dγ ) into BMO�(X, ρ, dγ ), where L∞
0 (X, dγ ) denotes

the space that consists of all the functions in L∞(X, dγ ) having compact support.
(iv) T is bounded from H1(X, ρ, dγ ) into L1

�(X, dγ ).

When γ (X) = ∞ to replace L∞
0 (X, dγ ) by L∞(X, dγ ) in the property (iii) presented

in Theorem 1.1, it is necessary to give a new definition of the operator T (see
[5, pp. 117 and 118], [8, p. 119] and [22, Proposition 2.1]).

In this paper, we consider the homogeneous-type spaces ((0,∞), d, γα). In this
setting, a suitable estimate for the measure γα(B(x, |x − y|)) of the ball B(x, |x − y|),
where x, y ∈ (0,∞), and the arguments developed by Nowak and Stempak [14] lead
to the following result that it establishes sufficient conditions in order that a �-valued
kernel K is a standard kernel.

THEOREM 1.2. Let � be a Banach space and α > −1/2. Assume that K is a �-valued
function defined on (0,∞) × (0,∞) \ D(0,∞). If K satisfies the following two conditions:

(i) ‖K(x, y)‖� ≤ C
|x − y| max{x2α+1, y2α+1} , x, y ∈ (0,∞), x �= y,

(ii)

∥∥∥∥ ∂

∂x
K(x, y)

∥∥∥∥
�

+
∥∥∥∥ ∂

∂y
K(x, y)

∥∥∥∥
�

≤ C
|x − y|2 max{x2α+1, y2α+1} ,

x, y ∈ (0,∞), x �= y,
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for a certain C > 0, where ‖ · ‖� denotes the norm in �, then K is a standard kernel in
((0,∞), d, γα).

As a consequence of Theorem 1.1 and Theorem 1.2, we study boundedness
properties of operators appearing in the harmonic analysis associated with Bessel
differential operators.

From now on, we assume α > −1/2. The Bessel operator �α is defined by

�α = −x−2α−1Dx2α+1D = −D2 − 2α + 1
x

D,

where D = d/dx. It is not hard to see that

�α = D∗D, (1.2)

where D∗ represents the (formal) adjoint of D in L2((0,∞), dγα). In the Bessel setting,
the Hankel transform hα plays the role of the Fourier transform in the Euclidean one.
The Hankel transform hαf of f ∈ L1((0,∞), dγα) is defined by

hα(f )(y) =
∫ ∞

0
(xy)−αJα(xy) f (x) dγα(x), y ∈ (0,∞),

where Jα denotes the Bessel function of the first kind and order α. The Hankel
transform hα can be extended to an isometry of L2((0,∞), dγα). Moreover, for
every y > 0, the function ϕy(x) = (xy)−αJα(xy), x ∈ (0,∞), is an eigenfunction of
�α associated to the eigenvalue y2.

The harmonic analysis in the Bessel setting was begun by Muckenhoupt and Stein
[13]. They considered the Poisson kernel Pα(t, x, y) given by

Pα(t, x, y) =
∫ ∞

0
e−tz(xz)−αJα(xz)(yz)−αJα(yz) dγα(z), t, x, y ∈ (0,∞).

Weinstein [25] established the following representation formula for the Poisson kernel:

Pα(t, x, y) = 2α + 1
π

t
∫ π

0

sin2α θ

((x − y)2 + t2 + 2xy(1 − cos θ ))α+ 3
2

dθ, t, x, y ∈ (0,∞).

(1.3)
The Poisson integral Pα,t(f ) of f ∈ Lp((0,∞), dγα), 1 ≤ p ≤ ∞, is defined by

Pα,t(f )(x) =
∫ ∞

0
f (y)Pα(t, x, y)dγα(y), t, x ∈ (0,∞). (1.4)

Then, {Pα,t}t>0 is a semigroup of contractions in Lp((0,∞), dγα), 1 ≤ p < ∞.
In [13], a notion of conjugation is introduced. Taking as a starting point a

suitable Cauchy-Riemann-type equations, Muckenhoupt and Stein defined for every
f ∈ Lp((0,∞), dγα), 1 ≤ p < ∞, the α-harmonic-conjugated extension Qα,t(f ) of f by

Qα,t(f )(x) =
∫ ∞

0
f (y)Qα(t, x, y)dγα(y), t, x ∈ (0,∞),

https://doi.org/10.1017/S0017089508004539 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004539


58 J. J. BETANCOR, J. C. FARIÑA AND A. SANABRIA

where

Qα(t, x, y) = −2α + 1
π

∫ π

0

(x − y cos θ ) sin2α θ

((x − y)2 + t2 + 2xy(1 − cos θ ))α+ 3
2

dθ, t, x, y ∈ (0,∞).

The limit Rαf (x) = limt→0+ Qα,t(f )(x) exists for almost every x ∈ (0,∞) and for every
f ∈ Lp((0,∞), dγα), 1 ≤ p < ∞. Weighted inequalities for the operator Rα were
established by Andersen and Kerman [1].

Recently, a conjugacy associated with the Bessel operator Sα = x−α− 1
2

Dx2α+1Dx−α− 1
2 has been studied [2]. The procedure employed in [2] uses the Calderón-

Zygmund theory and it is different from the one followed in [13]. From results in [2], it
can be deduced that

Rαf = D�−1/2
α f,

for every f ∈ Lp((0,∞), dγα), 1 ≤ p < ∞. Thus, according to (1.2), Rα can be seen as
a Riesz transform associated to �α in the sense of Stein [18]. Here, the negative power
�

−1/2
α of �α admits in terms of the Poisson semigroup the representation

�−1/2
α f (x) =

∫ ∞

0
Pα,t(f )(x) dt.

In this paper, we complete the study of the harmonic analysis associated with
�α showing Lp-boundedness properties of the Littlewood-Paley g-functions related to
semigroups in the Bessel setting.

Let (k, m) ∈ � × � \ {(0, 0)}. We define the Littlewood-Paley g-function g(k,m)
α (f )

of f associated with the Poisson semigroup {Pα,t}t>0 as follows:

g(k,m)
α (f )(x) =

(∫ ∞

0

∣∣∣∣tk+m ∂k+m

∂tk∂xm
Pα,t(f )(x)

∣∣∣∣
2 dt

t

) 1
2

.

Stempak [19] proved that the g(k,0)
α -function is bounded on Lp((0,∞), dγα) provided

that 1 < p < ∞. He adapted a well-known pattern (see [18]) to the Bessel setting. We
establish that g(k,m)

α is the �-norm of a Calderón-Zygmund operator associated to a
�-valued standard kernel for the Banach space � = L2((0,∞), t2(m+k)−1dt).

We consider the operator G(k,m)
α defined by

f −→ G(k,m)
α (f )(x) =

(
∂m+k

∂xm∂tk
Pα,t(f )(x)

)
t>0

. (1.5)

Note that g(k,m)
α (f )(x) = ‖G(k,m)

α (f )(x)‖�.
The main achievement of this paper is the following result.

THEOREM 1.3. Let (k, m) ∈ � × � \ {(0, 0)}. The �-valued operator f → G(k,m)
α (f )

defined by (1.5) maps boundedly L2((0,∞), dγα) into L2
�((0,∞), dγα), and it is the

Calderón-Zygmund operator associated, in the sense of (1.1), with the �-valued kernel

K (k,m)
α (x, y) =

(
∂m+k

∂tk∂xm
Pα(t, x, y)

)
t>0

, x, y ∈ (0,∞) (1.6)
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that satisfies

(i)
∥∥K (k,m)

α (x, y)
∥∥

�
≤ C

|x − y| max{x2α+1, y2α+1} , x, y ∈ (0,∞), x �= y

(ii)

∥∥∥∥ ∂

∂x
K (k,m)

α (x, y)

∥∥∥∥
�

+
∥∥∥∥ ∂

∂y
K (k,m)

α (x, y)

∥∥∥∥
�

≤ C
|x − y|2 max{x2α+1, y2α+1} ,

x, y ∈ (0,∞), x �= y. (1.7)

Note that the derivatives in Theorem 1.2 must be understood in the corresponding
Banach space. However, by taking into account the integral Minkowski inequality, to
see that the �-valued kernel K (k,m)

α defined in Theorem 1.3 is a standard kernel, it is
sufficient to prove (i) and (ii) in Theorem 1.3 considering pointwise derivatives.

Theorem 1.3 allows us to obtain, as a consequence of Theorem 1.1, the
boundedness properties for g(k,m)

α that are stated:

THEOREM 1.4. Let (k, m) ∈ � × � \ {(0, 0)}. Then,
(i) for every 1 < p < ∞ and ω ∈ Ap((0,∞), d, dγα), g(k,m)

α is bounded on Lp((0,∞),
ω(x)dγα).

(ii) for every ω ∈ A1((0,∞), d, dγα), g(k,m)
α is bounded from L1((0,∞), ω(x)dγα) into

L1,∞((0,∞), ω(x)dγα).
(iii) g(k,m)

α is bounded from L∞
0 ((0,∞), dγα) into BMO((0,∞), d, dγα).

(iv) g(k,m)
α is bounded from H1((0,∞), d, dγα) into L1((0,∞), dγα).

The arguments developed here also allow us to generalize results given in [13]
by proving Lp-boundedness properties for the higher order Riesz transforms that are
associated with Bessel operators.

Also, a similar procedure can be used to obtain Lp-boundedness properties for
g-functions associated with the heat semigroup for the Bessel operator �α. Although
the results in the Poisson case (Theorem 1.4) can be deduced from the corresponding
ones for the heat case, we prefer to present here the complete proof of Theorem 1.4
because both cases (heat and Poisson) can be proved by analogous procedures, but the
manipulations are much more involved for the heat semigroup.

Throughout this paper, C always denotes a positive constant that is not the same
in each occurrence.

2. Proof of Theorem 1.3. The proof of Theorem 1.3 naturally splits into three
parts: L2-boundedness of G(k,m)

α , association of the kernel K (k,m)
α to the operator G(k,m)

α

and standard estimates of K (k,m)
α (x, y). These three parts are proved as Lemma 2.1,

Lemma 2.3 and Lemma 2.4, respectively. In Lemma 2.2, the most difficult part of
Lemma 2.1 is separated.

Assume that f ∈ L2((0,∞), dγα). According to [19, Lemma 2, p. 23], we can write

Pα,t(f )(x) =
∫ ∞

0
(xy)−α Jα(xy) e−yt hα(f )(y) dγα(y), x ∈ (0,∞).

Since hα(f ) ∈ L2((0,∞), dγα) by using [24, p. 46, (6)], we can see that Pα,t(f )(x) is
infinitely differentiable on (0,∞) × (0,∞).
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LEMMA 2.1. Let (k, m) ∈ � × � \ {(0, 0)}. Then, G(k,m)
α is a bounded operator from

L2((0,∞), dγα) into L2
�((0,∞), dγα).

Proof. According to (1.4), we get

∂m+k

∂xm∂tk
Pα,t(f )(x) =

∫ ∞

0

∂m+k

∂xm∂tk
Pα(t, x, y) f (y) dγα(y), t, x ∈ (0,∞). (2.1)

To establish that G(k,m)
α defines a bounded operator from L2((0,∞), dγα) into

L2
�((0,∞), dγα), we proceed as follows. We split the kernel

∂m+k

∂tk∂xm
Pα(t, x, y) = 1

π
(xy)−α− 1

2
∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)
+ h(t, x, y), t, x, y ∈ (0,∞)

(2.2)
and define the operator

H(f )(x) =
∫ ∞

0
H(x, y)f (y)dγα(y), (2.3)

where H(x, y) = (
∫ ∞

0 |h(t, x, y)|2t2(m+k)−1dt)1/2, x, y ∈ (0,∞). Then, when we show
that H is a bounded operator on L2((0,∞), dγα), the proof of this lemma is complete.

Indeed, assume that this is the case. By using the integral Minkowski inequality,
we can write

∥∥G(k,m)
α (f )

∥∥2
L2

�((0,∞),dγα ) =
∫ ∞

0

∥∥G(k,m)
α (f )(x)

∥∥2
�

dγα(x)

=
∫ ∞

0

∫ ∞

0

∣∣∣∣ ∂m+k

∂tk∂xm
Pα,t(f )(x)

∣∣∣∣
2

t2(m+k)−1dt dγα(x)

≤ C

(∫ ∞

0

∫ ∞

0

∣∣∣∣
∫ ∞

0

∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)
f (y)(xy)−α− 1

2 dγα(y)

∣∣∣∣
2

t2(m+k)−1dt dγα(x)

+
∫ ∞

0

∫ ∞

0

∣∣∣∣
∫ ∞

0
h(t, x, y)f (y)dγα(y)

∣∣∣∣
2

t2(m+k)−1dt dγα(x)

)

≤ C

(∫ ∞

0

∫ ∞

0

∣∣∣∣
∫ ∞

0

∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)
yα+ 1

2 f (y)dy
∣∣∣∣
2

t2(m+k)−1dt dx

+
∫ ∞

0

(∫ ∞

0
|f (y)|

(∫ ∞

0
|h(t, x, y)|2t2(m+k)−1dt

)1/2

dγα(y)

)2

dγα(x)

⎞
⎠

≤ C
(∫ ∞

0

∣∣g(k,m)(f (y)yα+ 1
2
)
(x)

∣∣2dx +
∫ ∞

0
|H(f )(x)|2dγα(x)

)
,

where g(k,m) denotes the Euclidean g-function restricted to (0,∞), that is,

g(k,m)(F)(x) =
(∫ ∞

0

∣∣∣∣ ∂m+k

∂tk∂xm

∫ ∞

0

t
(x − y)2 + t2

F(y)dy
∣∣∣∣
2

t2(m+k)−1dt

) 1
2

.
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It is well known that g(k,m) is bounded on L2(�, dx) [17, p. 86]. Then, the claim of
Lemma 2.1 follows by using the result of Lemma 2.2. �

LEMMA 2.2. The operator H defined by (2.3) is bounded on L2((0,∞), dγα).

Proof. Firstly, a few words about the strategy of the proof. We split the function h
defined by (2.2) as follows:

h = h1 + h2,

where

h1(t, x, y) = ∂m+k

∂tk∂xm
Pα(t, x, y) − 1

π
χ{x/b<y<bx}(y)(xy)−α− 1

2
∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)
,

with t, x, y ∈ (0,∞), for a certain b > 1 that is specified later. It is then sufficient to
prove that the operators

Hi(f )(x) =
∫ ∞

0
Hi(x, y)f (y)dγα(y),

where

Hi(x, y) =
(∫ ∞

0
|hi(t, x, y)|2t2(m+k)−1dt

)1/2

, x, y ∈ (0,∞), i = 1, 2,

are bounded on L2((0,∞), dγα). This is obtained by pointwise estimates of the
kernels H1 and H2. The operator H1 is further decomposed as H1 = H1,1 + H1,2 +
H1,3 according to the splitting of H1(x, y) as H1 = χ{0<y<x/b}H1 + χ{x/b<y<bx}H1 +
χ{bx<y<∞}H1. The L2((0,∞), dγα)-boundedness of the operators H1,1 and H1,3 is
deduced from the corresponding boundedness properties of certain Hardy-type
operators. We prove that the operator H1,2 is controlled by a positive operator that is
bounded in L2((0,∞), dγα).

Treatment of H2 is similar but much easier since for every t > 0, h2(t, x, y) has
support in the region {(x, y) : x

b < y < bx}c. This property allows to obtain relevant
estimates of H2(x, y) on 0 < y < x/b and bx < y < ∞, and again Hardy’s inequalities
are applied to obtain the claim.

We start with analysing H1. By using (1.3) and induction on k + n, it may be easily
checked that for every t, x, y ∈ (0,∞),

∂k+m

∂tk∂xm
Pα(t, x, y) =

m∑
j=[ m+1

2 ]

2j−m∑
l=0

k∑
β=[ k

2 ]

aj,l,βSj,l,β(t, x, y), (2.4)

where aj,l,β ∈ � and

Sj,l,β(t, x, y) = t2β−k+1(x − y)ly2j−m−l
∫ π

0

sin2α θ (1 − cos θ )2j−m−l

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +j+β

dθ.

We write Sj,l,β = S1
j,l,β + S2

j,l,β , where S1
j,l,β and S2

j,l,β are defined as Sj,l,β but taking the
integral in θ ∈ (0, π

2 ) and θ ∈ (π
2 , π ), respectively.
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Firstly, we study S2
j,l,β . If 0 < x

b < y < bx, then

(∫ ∞

0

∣∣S2
j,l,β(t, x, y)

∣∣2t2k+2m−1dt
) 1

2

≤ C|x − y|ly2j−m−l
((∫ y

0
+

∫ ∞

y

)
t2m+4β+1

(t2 + (x − y)2 + 2xy)2α+3+2j+2β
dt

) 1
2

≤ C|x − y|ly2j−m−l
(

y2m+4β+2

(xy)2α+3+2j+2β
+ y−2(2α+2+2j−m)

) 1
2

≤ C
y2α+2

.

On the other hand, to analyse Si
j,l,β , i = 1, 2 when 0 < y ≤ x/b or y ≥ bx, we can

write

(∫ ∞

0

∣∣S2
j,l,β (t, x, y)

∣∣2
t2k+2m−1dt

) 1
2

≤ C|x − y|ly2j−m−l
(∫ ∞

0

t2m+4β+1

(t2 + (x − y)2)2α+3+2j+2β
dt

) 1
2

≤ C|x − y|2j−m
(∫ ∞

0

t2m+4β+1

(t2 + (x − y)2)2α+3+2j+2β
dt

) 1
2

≤ C
(∫ ∞

0

t
(t2 + (x − y)2)2α+3

dt
) 1

2

≤ C
|x − y|2α+2

;

the same estimate holds when S2
j,l,β is replaced by S1

j,l,β .
Hence, we conclude that for i = 1, 2

(∫ ∞

0

∣∣Si
j,l,β(t, x, y)

∣∣2t2k+2m−1dt
) 1

2

≤ C
{

x−2α−2, y < x
b

y−2α−2, y > bx
. (2.5)

Then, at this moment, we have proved that if 0 < x/b < y < bx, then

(∫ ∞

0

∣∣∣∣ ∂m+k

∂tk∂xm

∫ π

π/2

(sin θ )2α

((x − y)2 + t2 + 2xy(1 − cos θ ))α+3/2
dθ

∣∣∣∣ t2k+2m−1dt
) 1

2

≤ C
1

y2α+2

(2.6)
and

(∫ ∞

0

∣∣∣∣ ∂m+k

∂tk∂xm
Pα(t, x, y)

∣∣∣∣ t2k+2m−1dt
) 1

2

≤ C
{

x−2α−2, y < x
b

y−2α−2, y > bx
. (2.7)

Now, we complete the study of S1
j,l,β . Assume in the sequel that x

b < y < bx and t > 0.

Since sin θ ∼ θ and 1 − cos θ ∼ θ2

2 , for θ ∈ [0, π
2 ], using the mean value theorem, we

get

∣∣∣∣∣S1
j,l,β (t, x, y) − t2β−k+1

22j−m−l
(x − y)ly2j−m−l

∫ π
2

0

θ2α+2(2j−m−l)

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +j+β

dθ

∣∣∣∣∣
≤ C t2β−k+1|x − y|ly2j−m−l

∫ π
2

0

θ2α+2(2j−m−l)+2

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ
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≤ C t2β−k+1 |x − y|ly2j−m−l

(t2 + (x − y)2)m+l−j+β
(xy)−α−2j+m+l− 3

2

∫ π
2

√√√√ xy
(x − y)2 + t2

0

z2(α+2j−m−l+1)

(1 + z2)α+ 3
2 +j+β

dz

≤ C
t2β−k+1|x − y|ly2j−m−l

(t2 + (x − y)2)m+l−j+β
(xy)−α−2j+m+l− 3

2

( √
xy

√
xy +

√
(x − y)2 + t2

)2(α+2j−m−l+1)+1

provided that (j, l, β) �= (m, 0, 0). In the last inequality, we have used the estimation
established at the bottom of [13, p. 60].

Moreover,

∣∣∣∣∣S1
m,0,0(t, x, y) − t1−k

22m
ym

∫ π
2

0

θ2α+2m

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +m

dθ

∣∣∣∣∣
≤ C t1−kym

∫ π
2

0

θ2α+2m+2

(t2 + (x − y)2 + xyθ2)α+ 3
2 +m

dθ

≤ C t1−kym
∫ π

2

0

θ

(x − y)2 + xyθ2

θ2α+2m+1

(xyθ2)α+ 1
2 + m

2 (t2)
m
2

dθ

≤ C t1−k−my−2α−1
∫ π

2

0

θ

(x − y)2 + xyθ2
dθ

≤ C t1−k−my−2α−3 log
(

1 + π2

4
xy

(x − y)2

)
.

We take δ > 0. We have specified the value of δ later. We have that

∫ δy

0

∣∣∣∣∣S1
j,l,β(t, x, y) − t2β−k+1

22j−m−l
(x − y)ly2j−m−l

×
∫ π

2

0

θ2α+2(2j−m−l)

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +j+β

dθ

∣∣∣∣∣
2

t2k+2m−1dt

≤ C
∫ δy

0

(
t2β−k+1|x − y|ly2j−m−l

(t2 + (x − y)2)m+l−j+β(xy)α+1+j− m
2 − l

2 (t2 + (x − y)2)j− m
2 − l

2 + 1
2

)2

t2k+2m−1dt

≤ C
y4(α+1)

∫ δy

0

t2m+1

((x − y)2 + t2)m+1
dt ≤ C

y4(α+1)
log

(
1 + δ2xy

(x − y)2

)
, (j, l, β) �= (m, 0, 0)

and

∫ δy

0

∣∣∣∣∣S1
m,0,0(t, x, y) − t1−k

22m
ym

∫ π
2

0

θ2α+2m

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +m

dθ

∣∣∣∣∣
2

t2k+2m−1dt

≤ C
y2(2α+3)

(
log

(
1 + π2

4
xy

(x − y)2

))2 ∫ δy

0
t dt ≤ C

y4(α+1)

(
log

(
1 + π2

4
xy

(x − y)2

))2

.
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Using the mean value theorem and proceeding as in the previous estimation, we obtain

∫ δy

0

∣∣∣∣∣t2β−k+1
( ∫ π

2

0

θ2α+2(2j−m−l)

(t2 + (x − y)2 + 2xy(1 − cos θ ))α+ 3
2 +j+β

dθ

−
∫ π

2

0

θ2α+2(2j−m−l)

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ

)
(x − y)ly2j−m−l

∣∣∣∣∣
2

t2k+2m−1dt

≤ C
∫ δy

0

∣∣∣∣∣t2β−k+1(x − y)ly2j−m−l
∫ π

2

0

θ2α+2(2j−m−l)+4

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ

∣∣∣∣∣
2

t2k+2m−1dt

≤ C
y4(α+1)

⎧⎨
⎩

1, (i, l, β) �= (m, 0, 0)(
log

(
1 + π2

4
xy

(x − y)2

))2

, (i, l, β) = (m, 0, 0).

By performing differentiation with respect to x and t as in (2.4), we obtain

m∑
j=[ m+1

2 ]

2j−m∑
l=0

k∑
β=[ k

2 ]

t2β−m+1 aj,l,β

22j−m−l
(x − y)ly2j−m−l

∫ π
2

0

θ2α+2(2j−m−l)

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ

= 2α + 1
π

∂m+k

∂tk∂xm

(
t
∫ π

2

0

θ2α

(t2 + (x − y)2 + xyθ2)α+ 3
2

dθ

)

= 2α + 1
π

∂m+k

∂tk∂xm

(
t

(∫ ∞

0
−

∫ ∞

π
2

)
θ2α

(t2 + (x − y)2 + xyθ2)α+ 3
2

dθ

)

= 2α + 1
π

∂m+k

∂tk∂xm

(
t(xy)−α− 1

2

(x − y)2 + t2

∫ ∞

0

z2α

(1 + z2)α+ 3
2

dz − t
∫ ∞

π
2

θ2α

(t2 + (x − y)2 + xyθ2)α+ 3
2

dθ

)

= 1
π

∂m+k

∂tk∂xm

(
t(xy)−α− 1

2

(x − y)2 + t2

)
− 2α + 1

π

∂m+k

∂tk∂xm

(
t
∫ ∞

π
2

θ2α

(t2 + (x − y)2 + xyθ2)α+ 3
2

dθ

)
.

Here aj,l,β , β = [ k
2 ], . . . , k, j = [ m+1

2 ], . . . , m, l = 0, . . . , 2j − m, are as in (2.4).
Differentiating again as in (2.4), we get

2α + 1
π

∂m+k

∂tk∂xm

(
t
∫ ∞

π
2

θ2α

(t2 + (x − y)2 + xyθ2)α+ 3
2

dθ

)

=
m∑

j=[ m+1
2 ]

2j−m∑
l=0

k∑
β=[ k

2 ]

εj,l,βt2β−k+1
∫ ∞

π
2

θ2α+2(2j−m−l)

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ (x − y)ly2j−m−l,

where εj,l,β ∈ � and

1
π

∂m+k

∂tk∂xm

(
t

(xy)−α− 1
2

(x − y)2 + t2

)
= 1

π
(xy)−α− 1

2
∂m+k

∂tk∂xm

t
(x − y)2 + t2

+
m−1∑
l=0

l∑
s=[ l+1

2 ]

k∑
β=[ k

2 ]

αl,s,βy−α− 1
2 x−α− 1

2 −m+l(x − y)2s−l t2β−k+1

((x − y)2 + t2)1+s+β

being αl,s,β ∈ �.
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We can find δ > 0 and b > 1 such that

gj,l,β(z) ≤ gj,l,β

(
π

2

√
xy

(x − y)2 + t2

)
, 0 < t < δy and

x
b

< y < bx,

where gj,l,β (z) = z2(α+2j−m−l)

(1+z2)α+ 1
2 +j+β

, z ∈ (0,∞), with j = [ m+1
2 ], . . . , m, l = 0, . . . , 2j − m, β =

[ k
2 ], . . . , k. In the sequel, δ and b are fixed in this way. Then, we can write

∫ δy

0

∣∣∣∣t2β−k+1
∫ ∞

π
2

θ2(α+2j−m−l)

(t2 + (x − y)2 + xyθ2)α+ 3
2 +j+β

dθ

∣∣∣∣
2

t2(m+k)−1dt |x − y|2ly2(2j−m−l)

≤ C
∫ δy

0

∣∣∣∣t2β−k+1 (xy)−α−2j+m+l− 1
2

((x − y)2 + t2)m+l−j+β+1
(x − y)ly2j−m−l

×
∫ ∞

π
2

√
xy

(x−y)2+t2

z2(α+2j−m−l)

(1 + z2)α+ 3
2 +j+β

dz
∣∣∣∣
2

t2(m+k)−1dt

≤ C
y4(α+1)

∫ δy

0

t
(x − y)2 + t2

dt ≤ C
y4(α+1)

log
(

1 + δ2xy
(x − y)2

)
.

Also, using the estimate at the top of [13, p. 61], we obtain

∫ δy
|x−y|

0

z2(l+2β)+3

(1 + z2)2(1+s+β)
dz ≤ C

(
δy

δy + |x − y|
)2(l+2β+2)(

1 + log
(

1 + δy
|x − y|

))
,

and proceeding as above, we get

∫ δy

0

∣∣∣∣ t2β−k+1y−α− 1
2 x−α− 1

2 −m+l(x − y)2s−l

((x − y)2 + t2)1+s+β

∣∣∣∣
2

t2(m+k)−1dt

≤ Cy−2α−1x−2α−1+2(l−m) 1
|x − y|2(1+l−m)

∫ δy
|x−y|

0

z2(m+2β)+1

(1 + z2)2(1+s+β)
dz

≤ C
y−2α−1x−2α−1+2(l−m)

|x − y|2(1+l−m)

(
y

|x − y|
)2(m−l−1) ∫ δy

|x−y|

0

z2(l+2β)+3

(1 + z2)2(1+s+β)
dz

≤ C
y−2α−1x−2α−1+2(l−m)

|x − y|2(1+l−m)

(
y

|x − y|
)2(m−l−1)(

δy
δy + |x − y|

)2(l+2β+2)

≤
(

1 + log
(

1 + δy
|x − y|

))
≤ C

y4(α+1)

(
1 + log

(
1 + δ

√
xy

|x − y|
))

.

By combining the estimates that we have just proved and (2.6), it follows
that

(∫ δy

0
|h1(t, x, y)|2t2(m+k)−1dt

) 1
2

≤ C
y2(α+1)

(
1 + log

(
1 + xy

|x − y|2
))

. (2.8)
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Finally, we deduce

∫ ∞

δy

∣∣S1
j,l,β(t, x, y)

∣∣2t2(m+k)−1dt

≤ C
∫ ∞

δy

∣∣∣∣∣t2β−k+1
∫ π

2

0

θ2α+2(2j−m−l)

((x − y)2 + t2 + xyθ2)α+ 3
2 +j+β

dθ (x − y)ly2j−m−l

∣∣∣∣∣
2

t2(m+k)−1dt

≤ C
∫ ∞

δy

∣∣∣∣∣ (xy)−α−2j+m+l− 1
2

(t2 + (x − y)2)m+l−j+β+1

∫ π
2

√
xy

(x−y)2+t2

0

z2(α+2j−m−l)

(1 + z2)α+ 3
2 +j+β

dz

∣∣∣∣∣
2

× |x − y|2ly2(2j−m−l)t2(m+k)−1dt

≤ C
y4α+2

∫ ∞

δy

1
t3

t2(m+2β+2)|x − y|2l

(t2 + (x − y)2)2(m+l−j+β+1)

( √
xy

√
xy +

√
(x − y)2 + t2

)4(α+2j−m−l)+2

dt

≤ C
y4(α+1)

,

where the third inequality is proved by using the estimate at the bottom of [13, p. 60].
Also, by differentiation as in (2.4), it follows that

(xy)−(2α+1)
∫ ∞

δy

∣∣∣∣ ∂m+k

∂tk∂xm

t
(x − y)2 + t2

∣∣∣∣
2

t2(m+k)−1dt

≤ C(xy)−(2α+1)
m∑

j=[ m+1
2 ]

k∑
β=[ k

2 ]

|x − y|2(2j−m)
∫ ∞

δy

t4β+2m+1

(|x − y|2 + t2)2j+2β+2
dt

≤ C(xy)−(2α+1)
m∑

j=[ m+1
2 ]

k∑
β=[ k

2 ]

∫ ∞

δy
t−3dt ≤ C

y4(α+1)
.

Thus, by using (2.6), we prove that

(∫ ∞

δy
|h1(t, x, y)|2t2(m+k)−1dt

) 1
2

≤ C
y2(α+1)

. (2.9)

From (2.8) and (2.9), we conclude that

( ∫ ∞

0
|h1(t, x, y)|2t2(m+k)−1dt

) 1
2

≤ C
y2(α+1)

(
1 + log

(
1 + xy

|x − y|2
))

, 0 < x/2 < y < 2x. (2.10)

Now, (2.7) and (2.10) lead to

( ∫ ∞

0
|h1(t, x, y)|2t2(m+k)−1dt

) 1
2

≤ C

⎧⎨
⎩

x−2α−2, 0 < y < x
b

y−2α−2 r(x, y), x
b < y < bx

y−2α−2, bx < y < ∞
(2.11)
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where r(x, y) = 1 + log(1 + xy
(x−y)2 ). Hence, according to [17, p. 272], the operators

H1,1(f )(x) = ∫ x/b
0 H1(x, y)f (y)dγα(y) and H1,3(f )(x) = ∫ ∞

bx H1(x, y)f (y)dγα(y) are
bounded in L2((0,∞), dγα).

Also, the operator H1,2(f )(x) = ∫ bx
x/b H1(x, y)f (y)dγα(y) is bounded in

L2((0,∞), dγα). Indeed, note that

∫ bx

x/b
y−2α−2r(x, y)dγα(y) =

∫ b

1/b

1
u

(
1 + log

(
1 + u

|1 − u|2
))

du �= 0, x ∈ (0,∞).

Then, Jensen’s inequality leads to

‖H1,2(f )‖2
L2((0,∞),dγα ) =

∫ ∞

0

∣∣∣∣
∫ bx

x/b
H1(x, y)f (y)dγα(y)

∣∣∣∣
2

dγα(x)

≤ C
∫ ∞

0

(∫ bx

x/b
|f (y)|y−2α−2r(x, y)dγα(y)

)2

dγα(x)

≤ C
∫ ∞

0

∫ bx

x/b
|f (y)|2y−2α−2r(x, y)dγα(y)dγα(x)

≤ C
∫ ∞

0
|f (y)|2

∫ by

y/b
x−2α−2r(x, y)dγα(x)dγα(y)

≤ C‖f ‖2
L2((0,∞),dγα )

for every f ∈ L2((0,∞), dγα).
This finishes the proof of boundedness of H1 in L2((0,∞), dγα).
To treat H2 since h2(t, x, y) = − 1

π
χ{ x

b <y<bx}c (y)(xy)−α−1/2 ∂m+k

∂tk∂xm ( t
(x−y)2+t2 ), we write

as in (2.4)

h2(t, x, y) = −χ{ x
b <y<bx}c (y)(xy)−α− 1

2

m∑
j=[ m+1

2 ]

k∑
β=[ k

2 ]

cj,βt2β−k+1 (x − y)2j−m

(t2 + (x − y)2)j+β+1
,

t, x, y ∈ (0,∞),

where cj,β ∈ �.
Then,

H2(x, y) =
( ∫ ∞

0
|h2(t, x, y)|2t2(k+m)−1dt

) 1
2

≤ Cχ{ x
b <y<bx}c (y)(xy)−α− 1

2

m∑
j=[ m+1

2 ]

k∑
β=[ k

2 ]

(∫ ∞

0

t2m+4β+1|x − y|4j−2m

(t2 + (x − y)2)2j+2β+2
dt

) 1
2

≤ Cχ{ x
b <y<bx}c (y)(xy)−α− 1

2

(∫ ∞

0
(t + |x − y|)−3dt

) 1
2

≤ C(xy)−α− 1
2

{
1/x, y < x

b
1/y, y > bx .
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Then, according to [17, p. 272], we can deduce that the operator H2(f )(x) =∫ ∞
0 H2(x, y)f (y)dγα(y) is bounded on L2((0,∞), dγα). By combining these results, we

prove that the operator H is bounded on L2((0,∞), dγα). �

LEMMA 2.3. Suppose that f ∈ L2((0,∞), dγα). Then,

G(k,m)
α (f )(x) =

∫ ∞

0
K (k,m)

α (x, y)f (y)dγα(y), a.e. x /∈ supp f,

where K (k,m)
α is given by (1.6).

Proof. Denote by A = supp f . Let g ∈ L2((0,∞), dγα), and assume that g ∈
L2

�(Ac, dγα) is smooth and has compact support contained in Ac. Our objective is
to show that

〈
G(k,m)

α (f ), g
〉
L2

�(Ac,dγα ) =
〈∫ ∞

0
K (k,m)

α (x, y)f (y)dγα(y), g(x)
〉

L2
�(Ac,dγα )

. (2.12)

To see (2.12), we note that

〈
G(k,m)

α (f ), g
〉
L2

�(Ac,dγα ) =
∫

Ac

〈
G(k,m)

α (f ), g(x, ·)〉L2((0,∞),t2(m+k)−1dt)dγα(x)

=
∫

Ac

∫ ∞

0

∂m+k

∂xm∂tk
Pα,t(f )(x)g(x, t)t2(m+k)−1dtdγα(x)

=
∫

Ac

∫ ∞

0

∫ ∞

0

∂m+k

∂xm∂tk
Pα(t, x, y)f (y)dγα(y)g(x, t)

× t2(m+k)−1dtdγα(x)

=
〈∫ ∞

0
K (k,m)

α (x, y)f (y)dγα(y), g(x)
〉

L2
�(Ac,dγα )

,

provided that the differentiation under integral sign is justified. This differentiation
can be made because, according to (2.4), for every x /∈ A and t ∈ (0,∞), there exists
C > 0 depending only on the distance d(x, A) of x to A and on t ∈ (0,∞) for which

∫ ∞

0

∣∣∣∣ ∂m+k

∂xm∂tk
Pα(t, x, y)

∥∥∥∥ |f (y)|dγα(y)

≤
{∫

A

∣∣∣∣ ∂m+k

∂xm∂tk
Pα(t, x, y)

∣∣∣∣
2

dγα(y)

} 1
2 {∫ ∞

0
|f (y)|2dγα(y)

} 1
2

≤ C‖f ‖L2((0,∞),dγα ). �

LEMMA 2.4. If K (k,m)
α is given by (1.6), then the properties (i) and (ii) in Theorem 1.3

are satisfied.

Proof. Firstly, note that (2.7) implies (i) provided that 0 < y < x
b or x

b < y < ∞.
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Also, by repeating the analysis developed in the proof of Lemma 2.2 without
introducing logarithmic, terms, we get, for 0 < x

b < y < bx,

∥∥∥∥ ∂m+k

∂tk∂xm
Pα(t, x, y) − 1

π
χ{ x

b <y<bx}(y)(xy)−α− 1
2

∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)∥∥∥∥
�

≤ C
|x − y| max{x2α+1, y2α+1} .

Moreover, proceeding as in the estimate of H2 in the proof of Lemma 2.2, we can
obtain ∥∥∥∥ ∂m+k

∂tk∂xm

(
t

(x − y)2 + t2

)∥∥∥∥
�

≤ C
|x − y| , x, y ∈ (0,∞).

Then, for every 0 < x
b < y < bx, (i) holds. Thus, it is established that K (k,m)

α satisfies
condition (i) for every x, y ∈ (0,∞).

To see that K (k,m)
α verifies condition (ii) we can proceed by differentiating as in (2.4)

and by using the arguments presented in the proof of Lemma 2.2. �
Theorem 1.1 implies now that the g-function g(k,m)

α satisfies the boundedness
properties listed in Theorem 1.4.
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