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Strings on the Higgs branches

One common feature of supersymmetric gauge theories is the presence of moduli
spaces – manifolds on which scalar fields can develop arbitrary VEVs without
violating the zero energy condition. If on these vacuum manifolds the gauge group is
broken, either completely or partially, down to a discrete subgroup, these manifolds
are referred to as the Higgs branches.

One may pose a question: what happens with the flux tubes and confinement in
theories with the Higgs branches? The Higgs branch represents an extreme case of
type-I superconductivity, with vanishing Higgs mass. One may ask oneself whether
or not the ANO strings still exist in this case, and if yes, whether they provide
confinement for external heavy sources.

This question was posed and studied first in [102] where the authors concluded
that the vortices do not exist on the Higgs branches due to infrared problems. In
Refs. [211, 212] the N = 1 SQED vortices were further analyzed. It was found that
at a generic point on the Higgs branch strings are unstable. The only vacuum which
supports string solutions is the base point of the Higgs branch where the strings
become BPS-saturated. The so-called “vacuum selection rule” was put forward in
[211, 212] to ensure this property.

On the other hand, in [103, 175] it was shown that infrared problems can be
avoided provided certain infrared regularizations are applied. Say, in [103, 175] the
infrared divergences were regularized through embedding of N = 1 SQED in softly
broken N = 2 SQED. Another alternative is to consider a finite length-L string
instead of an infinitely long string. In this case the impact of the Higgs branch was
shown to “roughen” the string, making it logarithmically “thick.” Still, the string
solutions do exist and produce confinement for heavy trial sources. However, now
the confining potential is not linear in separation; rather it behaves as

V (L) ∼ L

lnL
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7.1 Extreme type-I strings 189

at largeL. Below we will briefly review the string solutions on the Higgs branches,
starting from the simplest case of the flat Higgs branch and then considering a more
common scenario, when the Higgs branch is curved by the FI term.

7.1 Extreme type-I strings

In this section we will review the classical solutions for the ANO vortices (flux
tubes) in the theories with the flat Higgs potential which arises in supersymmetric
settings [103]. Let us start from the Abelian Higgs model,

SAH =
∫
d4x

{
1

4g2
F 2
μv + |∇μq|2 + λ

(
|q|2 − v2

)2
}

, (7.1.1)

for a single complex field q with the quartic coupling λ → 0. Here

∇μ = ∂μ − ineAμ,

where ne is the electric charge of the field q. Following [103], we will first consider
this model with a small but nonvanishing λ and then take the limit λ = 0.

Obviously, the field q develops a VEV, q = v, spontaneously breaking the U(1)
gauge group. The photon acquires the mass

m2
γ = 2n2

eg
2v2, (7.1.2)

while the Higgs particle mass is

m2
q = 4λv2. (7.1.3)

The model (7.1.1) is the standard Abelian Higgs model which supports the ANO
strings [36]. For generic values of λ the Higgs mass differs from that of the photon.
The ratio of the photon mass to the Higgs mass is an important parameter – in
the theory of superconductivity it characterizes the type of the superconductor in
question. Namely, for mq < mγ we have the type-I superconductor in which two
well-separated ANO strings attract each other. On the other hand, for mq > mγ

we have the type-II superconductor in which two well-separated strings repel each
other. This is due to the fact that the scalar field gives rise to attraction between two
vortices, while the electromagnetic field gives rise to repulsion.

Now, let us consider the extreme type-I limit in which

mq � mγ . (7.1.4)

We will assume the weak coupling regime in the model (7.1.1), λ � g2 � 1.
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190 Strings on the Higgs branches

The general guiding idea which will lead us in the search for the string solution
in the extreme type-I limit is a separation of different fields at distinct scales which
are obviously present in the problem at hand due to the “extremality” condition
(7.1.4). This method goes back to the original paper by Abrikosov [36] in which
the tension of the type-II string had been calculated under the conditionmq � mγ .
A similar idea was used in [103] to calculate the tension of the type-I string under
the condition mq � mγ .

To the leading order in lnmγ /mq the vortex solution has the following structure
in the plane orthogonal to the string axis: The electromagnetic field is confined in
a core with the radius

Rg ∼ 1

mγ
ln
mγ

mq
. (7.1.5)

At the same time, the scalar field is close to zero inside the core. Outside the core
the electromagnetic field is vanishingly small, while the scalar field behaves as

q = v

{
1 − K0(mqr)

ln(1/mqRg)

}
eiα , (7.1.6)

where r and α are polar coordinates in the orthogonal plane (Fig. 3.6). Here K0 is
the (imaginary argument) Bessel function1 with the exponential fall-off at infinity
and logarithmic behavior at small arguments,

K0(x) ∼ ln(1/x) at x → 0.

The reason for this behavior is that in the absence of the electromagnetic field
outside the core the scalar field satisfies the free equation of motion, and (7.1.6)
presents the appropriate solution to this equation. From (7.1.6) we see that the scalar
field slowly (logarithmically) approaches its boundary value v.

The tension of this string is [103]

T = 2πv2

ln
(
mγ /mq

) . (7.1.7)

The main contribution to the tension in (7.1.7) comes from the logarithmic “tail”
of the scalar field q. It is given by the kinetic term for the scalar field in (7.1.1).
This term contains a logarithmic integral over r . Other terms in the action are

1 It is also known as the McDonald function.
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suppressed by inverse powers of ln
(
mγ /mq

)
as compared with the contribution

quoted in (7.1.7).
The results in Eqs. (7.1.5) and (7.1.7) imply that if we naively take the limit

mq → 0 the string becomes infinitely thick and its tension tends to zero [103]. This
apparently means that there are no strings in the limit mq = 0. As was mentioned
above, the absence of the ANO strings in the theories with the flat Higgs potential
was first noted in [102].

One might think that the absence of the ANO strings means that there is no
confinement of monopoles in the theories with the Higgs branches.

We hasten to say that this is a wrong conclusion.
As we will see shortly confinement does not disappear [103]. It is the formulation

of the problem that has to be changed a little bit in the case at hand.
So far we considered infinitely long ANO strings. However, an appropriate setup

in the confinement problem is in fact slightly different [103]. We have to consider
a monopole–antimonopole pair at a large but finite separation L. Our aim is to take
the limit mq → 0. This limit will be perfectly smooth provided we consider the
ANO string of a finite length L, such that

1

mγ
� L � 1

mq
. (7.1.8)

Then it turns out [103] that 1/L plays the role of the infrared (IR) cutoff in Eqs.
(7.1.5) and (7.1.7), rather thanmq . The reason for this is that for r � L the problem
is two-dimensional and the solution of the two-dimensional free equation of motion
for the scalar field given by (7.1.6) is logarithmic. If we naively putmq = 0 in this
solution the McDonald function reduces to the logarithmic function which cannot
reach a finite boundary value at infinity. Thus, as we mentioned above, infinitely
long flux tubes do not exist.

However, for r � L, the problem becomes three-dimensional. The solution to
the three-dimensional free scalar equation of motion behaves as

(q − v) ∼ 1/|�x|

where xn (n = 1, 2, 3) are the spatial coordinates in the three-dimensional space.
With this behavior the scalar field reaches its boundary value at infinity. Clearly,

1/L plays the role of an IR cutoff for the logarithmic behavior of the scalar field.
Now we can safely putmq = 0. The formula for the radius of the electromagnetic

core of the vortex takes the form

Rg ∼ 1

mγ
ln
(
mγL

)
, (7.1.9)
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192 Strings on the Higgs branches

while the string tension now becomes [103]

T = 2πv2

ln
(
mγL

) . (7.1.10)

The ANO string becomes “thick.” Nevertheless, its transverse size Rg is much
smaller than its length L,

Rg � L,

so that the string-like structure is clearly identifiable.As a result, the potential acting
between the probe well-separated monopole and antimonopole confines but is no
longer linear in L. At large L [103]

V (L) = 2πv2 L

ln
(
mγL

) . (7.1.11)

The potential V (L) is an order parameter which distinguishes different phases
of a given gauge theory (see, for example, [71]). We conclude that on the Higgs
branches one deals with a new confining phase, which had never been observed
previously. It is clear that this phase can arise only in supersymmetric theories
because we have no Higgs branches without supersymmetry.

7.2 Example: N = 1 SQED with the FI term

Initial comments regarding this model are presented in Part I, see Section 3.2.2.
The SQED Lagrangian in terms of superfields is presented in Eq. (3.2.1), while the
component expression can be found in (3.2.5). For convenience we reiterate here
crucial features of N = 1 SQED, to be exploited below.

The field content of N = 1 SQED is as follows. The vector multiplet contains
the U(1) gauge field Aμ and the Weyl fermion λα , α = 1, 2. The chiral matter
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7.2 Example: N = 1 SQED with the FI term 193

multiplet contains two complex scalar fields q and q̃ as well as two complex Weyl
fermions ψα and ψ̃α . The bosonic part of the action is

SSQED =
∫
d4x

{
1

4g2
F 2
μv + ∇̄μq̄∇μq + ∇̄μq̃∇μ ¯̃q + V (q, q̃)

}
, (7.2.1)

where

∇μ = ∂μ − i

2
Aμ, ∇̄μ = ∂μ + i

2
Aμ.

Thus, we assume the matter fields to have electric charges ne = ±1/2. The scalar
potential of this theory comes from the D term and reduces to

V (q, q̃) = g2

8
(|q|2 − |q̃|2 − ξ)2. (7.2.2)

The parameter ξ is the Fayet–Iliopoulos parameter introduced through ξ3.
The vacuum manifold of the theory (7.2.1) is the Higgs branch determined by

the condition

|q|2 − |q̃|2 = ξ . (7.2.3)

The dimension of this Higgs branch is two. To see this please observe that in the
problem at hand we have two complex scalars (four real variables) subject to one
constraint (7.2.3). In addition, we have to subtract one gauge phase; thus, we have
4 − 1 − 1 = 2.

In general, the physics of the massless modes in theories with the Higgs branches
can be described in terms of an effective low-energy sigma model

SLE =
∫
d4xgMN(ϕ)∂μϕ

N∂μϕ
M , (7.2.4)

where ϕM are massless scalar fields parametrizing the given Higgs branch and gMN
is the metric which depends on ϕ.

For example, the squark fields in N = 1 SQED subject to the constraint (7.2.3)
can be parametrized as follows:

q = √ξ eiα+iβ cosh ρ,
¯̃q = √ξ eiα−iβ sinh ρ, (7.2.5)

where α is an (irrelevant) gauge phase while ρ(x) and β(x) are two massless fields
living on the Higgs branch. With this parametrization the sigma model (7.2.4) on
the Higgs branch takes the form [175]

SLE = ξ

∫
d4x
{

cosh 2ρ
[
(∂μρ)

2 + (∂μβ)
2 tanh2 2ρ

]}
. (7.2.6)
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194 Strings on the Higgs branches

From this expression one can immediately read off the two-by-two metric tensor.
The mass spectrum of N = 1 SQED with the FI term, as it is defined in Eqs.

(7.2.1) and (7.2.2), consists of one massive vector N = 1 multiplet, with mass

m2
γ = 1

2
g2v2, (7.2.7)

(four bosonic + four fermionic states) and one chiral massless field associated with
fluctuations along the Higgs branch. The VEV of the scalar field above is given by

v2 = |〈q〉|2 + |〈q̃〉|2. (7.2.8)

Next, following [175], let us consider strings supported by this theory. First we
will choose the scalar field VEV to lie on the base point of the Higgs branch,

q = √ξ , q̃ = 0. (7.2.9)

Then the massless field q̃ plays no role in the string solution and can be set to zero.
This case is similar to the case of non-Abelian strings in N = 1 SQCD described
in detail in Section 5.1. On the base of the Higgs branch we do have (classically)
the BPS ANO strings with the tension given by (4.2.12). In particular, their profile
functions are determined by (3.2.18) and satisfy the first-order equations (3.2.19).

Now consider a generic vacuum on the Higgs branch. The string solution has
the following structure [175]. The electromagnetic field, together with the massive
scalar, form a string core of size ∼ 1/(g

√
ξ). The solution for this core is essentially

given by the BPS profile functions for the gauge field and massive scalar q. Outside
the core the massive fields almost vanish, while the light (massless) fields living
on the Higgs branch produce a logarithmic “tail.” Inside this “tail” the light scalar
fields interpolate between the base point (7.2.9) and the VEVs of scalars q and q̃ on
the Higgs branch (7.2.3). The tension of the string is given by the sum of tensions
coming from the core and “tail” regions,

T = 2πξ + 2πξ

ln (g
√
ξ L)

l2, (7.2.10)

where l is the length of the geodesic line on the Higgs branch between the base
point and the VEV,

l =
∫ 1

0
dt

√
gMN

(
∂tϕN

)(
∂tϕN

)
, (7.2.11)

where gMN is the metric on the Higgs branch, while ϕN stand for massless scalars
living on the Higgs branch (see e.g. (7.2.6)). For example, for v2 � ξ

l2 = v2/ξ ,
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and the “tail” contribution in (7.2.10) matches the result (7.1.10) for the string
tension on the flat Higgs branch.

In (7.2.10) we consider the string of a finite length L to ensure infrared regular-
ization. It is also possible [175] to embed N = 1 SQED (7.2.1) in softly broken
N = 2 SQED much in the same way as it was done in Section 5.1 for non-Abelian
strings. This procedure slightly lifts the Higgs branch making even infinitely long
strings well defined. Note, however, that within this procedure the string is not
BPS-saturated at a generic point on the Higgs branch.

https://doi.org/10.1017/9781009402200.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402200.008



