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THREE THEOREMS ON THE GROWTH OF ENTIRE 
TRANSCENDENTAL SOLUTIONS OF ALGEBRAIC 

DIFFERENTIAL EQUATIONS 

SH. STRELITZ 

1. G. Polya [4] has posed the problem as to whether there are entire 
transcendental functions of order zero satisfying an algebraic differential 
equation with rational coefficients. G. Polya himself showed that this is 
impossible for a first order algebraic differential equation. The general 
problem is now completely solved. G. Valiron demonstrated an example 
of a third order algebraic differential equation with an entire transcenden
tal solution of order zero (Theorem 1); V. V. Zimogljad (Theorem 2) 
proved that every entire transcendental solution of a second order 
algebraic differential equation is of a positive order. It seems to us 
expedient to bring these results all together. We give here a proof of 
Theorem 2 different from and in our view simpler than that of V. V. 
Zimogljad. Theorem 3 refines the results of G. Polya (and of others, see 
for example [10] ) and establishes an exact lower bound for the order of an 
arbitrary entire transcendental solution satisfying a first order algebraic 
differential equation. Our proof of Theorem 2 we state below and our 
results of Theorem 3 were published to our knowledge only in Russian in 
[6] and are hardly accessible to the English reader, so that this publication 
may be helpful to bridge the gap. 

2. We formulate in this section the three theorems indicated in the title 
of the paper. 

THEOREM 1. (G. Valiron [9], [10]). There is an entire transcendental 
function of order zero which satisfies a third order algebraic differential 
equation with rational coefficients. 

THEOREM 2. (V. V. Zimogljad [11] ). Every entire transcendental solution 
of a second order algebraic differential equation with rational coefficients is 
of a positive order. 
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ALGEBRAIC DIFFERENTIAL EQUATIONS 1111 

THEOREM 3. (Sh. Strelitz [6] ). Every entire transcendental solution of a 
first order algebraic differential equation with rational coefficients is of an 
order no less than 1/2. The number 1/2 is exact: there is a first order 
algebraic differential equation with rational coefficients which has an entire 
solution of order 1/2. 

3. Proof of theorem 1. It is known from the elliptic function theory that 
the Weierstrass function o(z) satisfies the differential equation 

<>••> e r - < ( s r + ^ ) ' + * 
( [7], Volume 2, p. 19) where AQ and B$ are certain constants. (All the 
constants here and in the sequel in this section depend on the periods of 
the corresponding elliptic Weierstrass function; we will not remind the 
reader of this fact below.) On the other hand ([7], Volume 1, p. 175, 
178) 

(3.2) o(z) = C$x(z)eazl (C0, a = const), where 

oo 

0x(z) = A\<PZ - e~Pz) I I (1 - q2me2^z)(\ - q2me-^% 
n=\ 

A\ /?, q are constants and \q\ < 1. Hence the function 

er - (é)'+-
satisfies equations (3.1) and so 0\(z) is a solution of a third order algebraic 
differential equation with constant coefficients. Let u = erz. Then the 
function 

(3.3) 0(u) = el^\nu) 

A = A' LI (1 + qlm)2 

m= 1 

satisfies the equation 
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1112 SH. STRELITZ 

(3.4) ft4u2[u{u 6-j J = 4[pu[u e-j + a] 

A0[ Pu[ue-) + a] + B0 + 

Now 

oo , 

F(v) = 0(u) = Av I I (1 - (qm + q~mr2v2); v = u - -
m = \ u 

is an entire transcendental solution of order zero of equation (3.4) if we 
replace there u by v according to the equality u = v 4- V v2 + 4. After 
this substitution we rationalize (3.4). F(v) is thus a solution of a third 
order algebraic differential equation with rational coefficients. 

Theorem 1 is proven. 

4. In order to prove Theorems 2 and 3 we need certain properties of 
analytic functions. We state them in this section without proofs. 

Let / (z) ; z = reiq) be an analytic function in the disc \z\ < R = oo. 
Denote 

(4.1) M(r) = max \f(z) |, r < R, 
\A=r 

and by £ = n?/<jp(r) the point on the circle \z\ = r where M(r) = |/(f) |. We 
call a function /z(r) algebroidal in the segment [r]5 ^ ] if h(r) is analytic at 
every point of the interval (r1? r2) and may have at the endpoints of the 
segment only algebraic singularities. 

We have: 
a) By a suitable choice of the points J = re/<p(r) <p(r) is a piecewise 

algebroidal function in every segment 0 ^ r ^ p < R (note that <p(r) is not 
necessarily continuous in [0, p]: a continuous choice for <p(r) is in general 
impossible). In the sequel <p(r) will always mean the function described 
here (see [1], [5] ). 

b) The function M(r) is continuous and piecewise algebroidal in every 
segment 0 ^ r ^ p < R ( [1], [5] ). 

c) Uf(z) =£ Const then always 

(4.2) ^ = — ^ > 0, r > 0 
/(f) M(r) 

where at each point of discontinuity of <p(r) the relation (4.2) is correct 
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ALGEBRAIC DIFFERENTIAL EQUATIONS 1113 

from the right and from the left of the point (the set of such points is as we 
saw in a) finite in each segment [0, p], p < R). 

d) We define 

with f = re"Mr+0\ K(r) is an increasing function in [0, R) provided 
f(z) ^ Axn\ A, m = Const ([5]). At each point f we have by 
differentiation of (4.3) 

(4.4) rK\r) = ï(j^~)' 0 + ' V ( ' ) ) 

where at a singular point of <p(r) we suppose K\r) = K\r + 0) and <p'(r) 
= <p'(r + 0) (here may be K\r) = oo <p'(r) = oo the set of such point in 
each segment 0^r^p<Ris finite). 

e) From (4.2) it follows (r0 > 0) 

(4.5) In M(r) - In M(r0) = / —— dt 
J r0 f 

and, since K(t) is a non-decreasing function, then 

(4.6) K(r0) In - g In Af(r) - In M(r0) ^ K(r) In - . 

In particular for r0 = r/2 and In A/(r0) = Owe have 

K^ j In 2 ^ lnM(r) 

so that 

TT̂ _ In A-(r) — In In M(r) 
(4.7) km , ^ hm —. 

/ * x în r r-*°o In r 
Remark that for an entire transcendental function 

K(r) -> oo. 
r—>co 

f) E. BoreFs Theorem [2]. Let h(r):h(r) > 0 be a non-decreasing 
continuous function from the right on [0, oo) with h(r) Î oo. Then outside 
a certain sequence of intervals E<\ of finite measure 

/?( r -f- — -,— j — h(r) < \: 0 < a = an arbitrarv constant, 
V hl a ( r ) / 
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The sequence E0 = EQ(O) has the following property: each segment [0, R] 
has common points no more than with a finite number of intervals of 
E0. 

Applying this theorem to the function In h(el) we obtain the 
inequality 

(4.8) hire1) - h{r) < 2h(r) 

with 

(4.9) T ^ ln~ ( 1 + a ) /*(r) , 

which is correct outside a sequence E having the same property described 
in Borel's theorem for the set EQ and is of bounded logarithmic measure: 
L drlr < co. 

g) An algebraic equation F(z, w) = 0, where F(z, w) is a polynomial in z 
and w and of degree n with respect to w has in the neighborhood of z = oo 
n solutions of the form 

(4.10) w = (1 + o(\) )Akz
m\ k = l , 2 , . . . , / i 

with complex constants Ak and rational constants mk ([3], Chapter 12). 
Some solutions may coincide. 

h) Let A = { (/>,-, rij) }JL0,Pk < Pk+h k = 1, 2, . . . , m - 1 be a set of 
points on the real plane R2. Denote by A* the convex cover of A. A* is a 
closed polygon and has two vertices whose abscissae are the endpoints of 
the orthogonal projection of A* on the abscissae axis. These two vertices 
divide A* into two parts. Let A° be the upper part of A* and \q, q = 1, 
2, . . . , m0 the slopes of the sides of A° (A° is a version of the 
Puisseu-Newton-Hadamard polygon; see for example [3], [10] ). Fix now 
the number q. Suppose that the points (pJt, rijt\ k = 1, 2, . . . , sq and 
only they lie on the side of A ° with the slope Xq. Then 

(4.11) (m - ju)Xq + njt = (m - j t k ) \ q + njh, k9 i = 1, 2, . . . , sq 

and 

(4.12) (m - j t u ) \ q 4- nh > (m - j)Xq + n/9 

j =£ th i = 1, 2, . . . , sqJ = 1, 2, . . . , m0 

(see for example [3], [6] ). 

5. Proof of theorem 2 [6]. Let w(z) be an entire transcendental solution 
of order zero of a second order algebraic differential equation. 

(5.1) F(z, w, M/, W") = 0 
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where F(z, w, w, v) is a polynomial in all its variables and of degree s ^ 1 
with respect to w, u and v. Denote by H the set of points on the complex 
plane where the following two conditions are satisfied: 

i. \w(z) | > [M(r) ]]~l/4\ \z\ = r, M(r) = max|w(z) 

and 

-1/3 ii. Ku\r - 0) < 
zw\z) 

w(z) 
< K^'ir); K(r) 

rM\r + 0) 
M(r) 

(see Section 4). 

Since w(z) and zw\z)/w(z) are continuous functions outside the set of 
zeroes of w(z) and K(r) is piecewise continuous and monotonous in each 
segment 0 ^ r ^ R < oo, then the set H has no isolated points and 
consists of connected components only. From (4.3) we immediately 
conclude that on each circle \z\ = r there are points belonging to H. From 
i) and ii) we additionally obtain that 

(5.2) 

zw'(z) 

lim 
kl-*> 

w(z) 

\w(z) 
0 

for arbitrary fixed real constants p and q, because according to (4.7) 

In K(r) 
(5.3) lim 

r—»oo In 
0 

for an entire function of order zero (see (4.7) ). We have 

(5.4) U ^ ^ y < C0 \z\2 Mu4s ( \z\ ), C0 = Const 

for z G // . In order to prove this note first that 

(5.5) 
\ w J 

z2W 

w 
-

( : — I + -
w 1 

Let z e H. Then 

w"(z) = If 
-y = i 

w(y) 

(y - z)2 

Consequently 

(5.6) W\z)\ ^ 2M(r + i) \z\ =r 

dy. 
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In view of (4.6) 

In M(r + 1) - In M(r) ^ K(r + 1) In ( 1 + - J 

and according to (5.3) 

K(r + l ) l n ( l + - ) -» 0 

so that M(r + 1) < CxM(r), Cx = Const and (5.6) gives us: |w"(z) | < 
2CiM(r). Thus for z G F 

(5.7) 
zV ' ( z ) 

w(z) 

.2 

< 2C> vmp™ - 2C"!M"4'W-
From (ii), (5.3) and (5.7) from (5.5) we obtain (5.4). 

We substitute now w for w(z) in equation (5.1) and bring it to the 
following form 

4i / zw' (zw'\'\ 
(5.8) 2 PyU—,z(—I 1 VV^(z) = 0. 

Recall now that all the polynomials Pj (z, w, v) are no more than of degree 
2s in u, v. Then for z G 7/ in view of i), (5.2) and (5.4) we have 

z9—, z ^ — J J = <o0(z) 

with 

(5.10) lim ZNO>Q(Z) = 0 
z—*oo 

for every real N. 
If Pc) does not depend on z(zw'/w)' then by the usual Wiman-Valiron 

method [10], [6], it follows from (5.9) that Theorem 2 is correct. 
Suppose therefore in the sequel that P0 from (5.9) depends on z(zw'/w)'. 

We rewrite now (5.9) in the form: 

«•'"2 4^) [ - (? ) r - (o0(z). 
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Denote 

(5.12) ^ l = eldz" = TJ; 0 = 0(z), <o = cc(z). 
w(z) 

For z e H according to i) and ii), (5.3) and e), Section 4 

w(z) > 0; co(z) - > 0, zw ( z ) - ^ o o ; 
z^oo z—>oo 

besides w(z) is a continuous function. Put 

zw'(z) 
0 = 6(z), co = co(z) and ——— = 17. 

w(z) 

Then 

(5.i3) ey.(z,T,) = 2 QjpW = 2 2 4 ^ - v > v u 

/> = 0 /> = 0 <? = 0 

= 2 (1 + o(l))fl°, ejPezsp+P", o(l) ^ 0 . 
Z?=0 Z->00 

ze / / 

Let 

« = max (sp -f- co(z)/?). 

For |z| > 0, z G / / with |z| > r0 sufficiently large this maximum is 
achieved by only one value of/?, say/? = p*. Indeed this is obvious if all 
the sp are different numbers, since 

u(z) -» 0, z G / / . 
z—>oo 

If m a x o ^ ^ . ^ = spx = spi = . . . = ^ / 5 pt < /?, + ,, then 

w/ = spi + oj(z)pl 

since OJ(Z) > 0. Denote 5̂ * = ay; /?* = ^ and a°p* = Ar From (5.13) it 
follows 

(5.14) Qj(z, TJ) = (1 + o ( l ) ) v 4 / V / + ^ 

(we use the fact that zw(z) —> 00). Put z(zw7w) = /A. Equality (5.11) obtains 
now the form 

m 

(5.15) 2 (1 + o(\))AJe
ietJz°^ù)tJixm~J = <o0(z). 

7=0 
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Our first step is now to find solutions of the equation 

m 

(5.16) 2 (1 + o(l))AJe
mJzaJ + œtJli

m~J = 0 
7 = 0 

in the neighborhood of z = oo, z G H. For this purpose we consider the 
set points of A = { (y, oj -f tjw) }JLQ9 W = Const on the plane R2. Let A° 
be the polygon described in h) Section 4 and let 

(5.16') Xq = vq{z) + fiq(z)aq(z), q= 1, 2, . . . , m0 

be the slopes of the sides of A° for various z. It is important that for z <E 
H, \z\ > r0 with r0 great enough /^(z) = fiq = Const, vq(z) = vq = Const, 
g = 1 , 2 , . . . , m0. To see it note that \q equals a certain ratio 

°k ~ °7 + fa ~ */)<«> 
/ - Jfc 

and that those equalities 

a, ~ a, + fa ~ /,)«, = a, - a,fa - tj) ^ / . 
/ - £ y - A: 

different from identities define only a finite number of co values. Thus for 
cc > 0 small enough (u(z) —> 0, see above) the relation (5.17) can be true 
only if it is an identity in co. Fix now the number q and find all the points 
of A which lie on the side of A ° with the slope vq + fiqoi. Let these be the 
points 

UP> <% + tjpa), P = U 2, . . . , 50,y> > 7 p + i . 

Then according to (4.11) and (4.12) 

(5.18) (m - j p k ) \ q + njk = (m - j t ) \ q + «yV; /c, / = 1, 2, . . . , s0 

and 

(5.19) (m - j k ) \ q + «^ > (m - j)Xq + w,-; 

j * jk\ k = IJ = 0, 1, . . . , m. 

By the transformation 

(5.20) ix = ^ M + V v 

we obtain from (5.16) 
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2 (1 + 0 ( i ) )y4.^/"((/-+(w_^)^)^z(
w_v')^+^+[('w-y')^+^wv'w~7' = 0 

j=o J 

whence in view of (5.18) and (5.19) 

(5.21) 2 (1 + o(\))AJkv^'Jk + 
k=\ 

2 Ajf\ + 0(l))z-a*-pfre-iMvm-J = 0. 
l*k 

£ = 1 , 2 , . • • ,-so 

But 

+ [ O'I - ji)Pq + (,-, - ( , > - ^ 

with a certain constant a > 0, so that 

(5.22) 2 (1 + o ( l ) ) 4 ^ o - ^ = o ( - M , M * ) -> oo,z e //. 
A:=l \ Z / z-»oo 

Since the solutions of an algebraic equation are continuous functions of its 
coefficients we get from (5.22) s0 roots: 

v = (1 + o(l) )tf,; 0 # a,- = Const, / = 1 , 2 , . . . , % 

Coming back to the unknown JU we obtain s0 solutions of (5.16) 
corresponding to the considered side of A°\ 

(5.23) nk = (1 + o(l) )akéMzv«+V, fc = 1 , 2 , . . . , % 

Since under the conditions c) and ii) in Section 5 

&,u—) 
equation (5.15) yields now: 

= (o0(z); z G 7/; |z| > r0 

where 

. . ^ C > 0, 

(5.24) I I fz( — ) - /xA(z) 

co0(z)z —> oo for every fixed real N. 
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(5.24) shows that at each point z e H, \z\ > r0 one of the equalities 

(5.25) z[^-J - ft(:) = «t(z), k = 1, 2,. . ., m, 

where /x^(z) are defined in (5.23) with 

ak(z)zN -> 0, k = 1, 2,.. ., m, 
z—*oo 

has to be satisfied. Remark additionally that if Am = 0 in (5.15) then 
among the equalities (5.24) there is 

(5.26) z(^-J = co.(z). 

6. We go on with the proof of Theorem 2. According to (5.12) in view of 
(5.23) from (5.25) we obtain: 

— J = ak(\ + o(\))zVk\— I , z G //, /c = 1, 2, . . . , m. 

Suppose that at some point z <E H is the equality 

(6.2) z ( ^ - ) ' = (1 + o ( l ) ) a z " ( ^ - ) 

with a = ak. v = v^ ft = /?£ and a certain /c holds, |z| > r0. The way we 
found the equalities (6.1) shows that in the connected component Go ^ //, 
|z| > r0, to which the considered z belongs, (6.1) is satisfied everywhere 
with the same constants, a, v and ft. 

Suppose now that the maximum point f of |w(z) |, LCI = r > r0 belongs 
to G0, so that at this point (6.2) is true. Let first v < 0. In this case there is 
an annular region r0 < rf < \z\ < r" belonging to GQ. Our first step in 
proving this statement is to show that the circle C:\z\ = |f| = r belongs to 
G0. Suppose we are wrong and that there are points on this circle where at 
least one of the conditions i) or ii) of Section 5 does not take place. Let z* 
be a point on this circle where condition i) is not satisfied, that is 

\w(z*)\ ^ [M(r)]]~l/4s. 

The function w(z) is continuous on C and therefore there is an arcus / = 
(f\ z(]) on C such that 

| K « ( Z ) | > [M(r)]]~] 
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z ¥= z0 on it and 

\w(z0)\ = [M(r)]]-y4\ 

We have to consider two cases: 
I. On / condition ii) is satisfied, then / e GQ 

and 
II. At some point z e / ii) is violated. 

The case II can take place only if either 

(6.3) 

or 

(6.4) 

zw\l) 

w(z) 

zw'(w) 
w(I) 

^ KU5 (r - 0) 

K5/3 (r). 

Suppose now (6.3) to be correct. Then there exists a point z' e / such 
that 

(6.5) 
z'W(z) 

w(z) 
Kw\r) 

and /() = {z:z e (?, z') } c G0. On /0 

z'w'(z) 

w(z) 

and therefore 

zw'(z) 

< #5 / 3(r) 

w(z) 

Consequently on /0 

< r 5/3u(r) 

V w(z) I 
o(l), o(l) - 0 

|z|—>oo 

and we can rewrite equation (6.2) as 

(6.6) ( ^ V = *0). 

By integration along I0 

(6.7) — = K(r) + o(l). 
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This equality is contradictory to (6.3). Similarly we show that (6.4) is 
impossible too. Thus case II cannot take place and /0 = /. By further 
integration of (6.7) along / putting f = rel{f>^ and z0 = rem we find 

(6.8) In w(z0) = In w(Ç) + iK(r)(m - <p(r) ) + o(l) 

=>|w(z0)| = ( 1 + o(r))M(r). 

This equality is not compatible with (6.5). Hence / = C c GQ. Isolated 
maximum points do not exist and therefore there is an annular region r0 < 
\z\ < r" belonging to G0. Moreover the whole region r0 < \z\ < oo belongs 
to GQ. Indeed suppose the region r0 < \z\ < R belongs to GQ. Then the 
circle { \z\ = R) c GQ too, because on \z\ = R there is a maximum point 
of \w(z) |. Thus on G'0 = G0 n { \z\ > r0} = { \z\ > r0} (6.2) takes place 
with constant a, v and /?. Consequently (6.9) is satisfied in GQ whence it 
follows that the function w'(z)/w(z) has no poles in GQ. But this is 
impossible for an entire transcendental function of order zero. Thus (6.2) 
cannot take place if v < 0. The same is obviously true in case of equation 
(5.26) too. 

Suppose now that in G0, a connected component of / / , the equality (6.1) 
is satisfied with v = 0, that is 

\ w(z) / \ w(z) / 

with 0 ¥^ a = Const. 
Let first /? < 0 and as above let / = (f, z0) c G0. Suppose / ¥= C. Then 

we come to the alternative I — II. But 

â Ku\r) -> oo 
r-^oo 

as above in GQ SO that (6.9) is reduced to 

(zwf\f 

\ w I 

and we return to (6.6). Thus equation (6.8) with fi < 0 is also 
impossible. 

7. Completion of the proof of theorem 2. We have to consider now 
equation 

https://doi.org/10.4153/CJM-1983-061-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1983-061-6


ALGEBRAIC DIFFERENTIAL EQUATIONS 1123 

— ) = ( 1 + o(l)) a — I 

in GQ while ft = 0. 
Suppose first that 0 ë 0 < 1. Let f, z0, z, / = <X z0)

 c Go and /' = (f, 
z') c / have the same meanings as in the previous section so that at z' 
either (6.3) or (6.4) is satisfied. By integration of (7.1) 

(7.2) ( ^ y * - K]-P(r) + i(\ + o(l))( l - p)a(<p - <p(r) ) 

^* ^ ) - [ 1 + WW) 

=>— = #(r) + i(l + ^( l ) )û^(r) ( v - *(/•)) 
w 

so that II is wrong. Thus 

/o = / c G0 and |w(z0) | = M 1 " 1 ' ^ ) . 

By further integration of (7.2) 

(7.3) l n ^ = iK(r)(<ç - *(0 ) - \(l + o(\))aK^(r)^ - <p(r) f 
w(?) 2 

=* In w(z) = In M{r) - X-{\ + o(l) ){Re a }^(r)(<p - <p(r) )2-

According to (4.6) 

(7.4) K(r)r ^ In M(reT) - In M(r) 

and in view of (4.8) and (4.9) 

(7.5) In M(reT) - In M(r) < 2 In M(r) 

for 

T - ln 1 + a In M(r) 

with an arbitrary constant a > 0 outside a set of intervals E{a) of finite 
logarithmic measure. Now Equation (7.5) shows that 

K(r) < 2 In M(r){ln In M(r) } 1 + a , r £ E(a). 

Hence for r <£ E(a) since 0 ^ p < 1 
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K*(r) 2^1n%( r ){ ln lnM( r )}^ ( 1 + a ) _^ 

In M(r) In M{r) 

Now (7.3) gives us 

In \w(z)\ = (1 + o ( l ) ) l n M ( r ) 

=> \w(z)\ = [M(r)]l+0(]\ o(\) -> 0, r € £(<*). 
r—»oo 

But this equality contradicts our supposition I at z0. Thus for r = \z\ € 
E(a) we have / = C c G0. But, as it follows from (7.2), on C ZM/(^)/W(Z) 

is a multivalued function, whence we conclude that w(z) can satisfy (7.1) if 
at all only at a sequence of annular regions rj- < \z\ < r",j — 1, 2, 3. . . , 
such that 

2 In —r = L — < co. 
Px r'j JE(a) r 

So there remains the following possibility: either /? i? 1 in (7.1) or v > 0 
in (6.2), when r = \z\ <£ E(a). If y > 0 then 

(7.6) r^> = K(r) = ^ ^ , atf) -> 0 and 

r = K^/03a\r\ co(l) -> 0. 
r—>oo 

Let 

min { | ^ | } = A0 > 0, 

where #^ are the coefficients in (6.1). 
From (6.1) with respect to (7.5) we obtain in both of the here described 

cases at the maximum point f of w(z): 

K h ï = 0 + *(1) M o W ; l?l = r, r £ E(a) I V w(0 / I 

whence in view of (4.4) for r £ E(a) 

dr 
rK\r) ^ (1 + o(l) )A0K => d In tf(r) ^ (1 + o(l) M 0 — 

r 

-inw=^o+«o))[/;0f-L7] 
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because K(r) is an increasing function. But 

dr L E{a) r 
< oo 

so that 

\nK(r) ^ (A0 + 0(1)) In r. 

This means in accordance with (4.7) that w(z) is of a positive order. 
Thus we see that if w(z) is an entire transcendental solution of order 

zero of equation (5.1) no one equality of (5.25) at the point f with \z\ £ 
E(a) can be satisfied. But this contradicts the fact proven in Section 4. 

Hence (5.1) has no entire transcendental solutions of order zero. 
Theorem 2 is completely proven. 

8. Proof of theorem 3. Let w(z) be an entire transcendental solution of 
order less than 1/2 of the algebraic first order differential equation 

.i) tpjL^rf-j-o, (8 

where Pj(z, n) are polynomials with respect to both the variables. We 
denote as usual in this paper by f the maximum point of the function 
|w(z)| on the circle \z\ = r:\w(S)\ = max|z|=r|w(z) | = M(r)\ |f| = r. 
Put 

(8.2) 
rM\r + 0) 

M(r) 
K(r). 

At the maximum points f we have from (8.1) according to (4.3): 

(8.3) PQ«, K(r)) = - 2 Pj(l K(r))w~J(0-

But for an entire transcendental function w(z) of order less than 1/2 K(r) 
< Crl/2, C = Const (see (4.7) ). Besides 

In M(r) 

In 
oo. 

So 

\Pji$,K(r))\ 
1 w(f) 

and (8.3) gives us 

(8.4) PM,K(r)) = o(l). 

0, j = 1, 2 , . . . , « 
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Suppose Po(z, 7]) to be of degree m with respect to TJ. The equation Po(z, 
TJ) = 0 has in the neighbourhood of z = 00 m solutions of the form 
(4.10): 

T, = (1 + o(l) )AJZPJ\ j = 1, 2, . . . , m. 

Thus we can rewrite (8.4) for \z\ > RQ as 

m 

U(K(r) - (1 + o ( l ) ) ^ ) = o(l). 
y = i 

Hence #(/*) satisfies one of the equalities 

(8.5) K(r) - (1 + o(l) M / ^ = o(l), 7 = 1, 2, . . . , m. 

But i£(r) is an increasing function, and therefore for r > r0 where r0 is 
large enough 

(8.5) K(r) = (1 + o(l) ) ^ = (1 + o ( l ) ) 5 ^ 

with a constant 7, |̂ 4y-| = B and/?y = p > 0, p < 1/2, where p is the order 
of the solution w(z) of (1.2). Consider on the complex plane the set H of 
points where the inequality 

(8.6) \w(z) I > Ma%r) ; r, OLQ = - cos 7rp 

holds. # is obviously an open set. Evidently every maximum point f 
belongs to H. We will now show that on the connected arcus / c / / of the 
circle \z\ = r containing J 

(8.7) 
zW(z) 
w(z) 

< K\r\ \z\ = r = |?| 

if r > r0 with a sufficiently large A*Q. In order to prove (8.7) suppose we are 
wrong, so that at a certain point z0 ^ / 

(8.8) 
Z 0 H/ (ZO) 

= K2(r) and 
zw'(z) 

w(z0) ' I w(z) 

for |z| = r, z G /0 = (£, z0) c /. Hence for z 

|zv/(z) 

< K2(r\ z * z0 

/o 

\7\P 
w(z) 

k(z) 
^ #2*(r) 
Ma%r) 

0 
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(8-9) TT77T = 0 + ol) )A/J, j = 1, 2, 3 , . . . , m 

(1 + o(\))Brp = (1 + 0 ( l ) )# ( r ) 

in view of (8.5). 
Equation (8.3) shows now that on /0 

/ ZW'(z)\ 

\ w(z) / 

whence it follows that zw'(z)/w(z) satisfies on /0 one of the equalities 

zw'(z) 

w(z) 

(see (4.10) and (8.5) ). Note now that zw'(z)/w(z) is a continuous function 
on /0 c / and that f e /0. At f e /0 (8.5) is correct with/?, = p, so that (8.3) 
is right with pj = p and 

I spw'fa)) 1 
I w(z0) 

in contradiction with (8.8). Thus on / (8.7) is true for z c / c H and 

(8.10) — - ^ = (1 + 0(1) M/" . 
w(z) J 

Our intention is now to show that / coincides with the whole circle C:\z\ 
= r. In order to prove it suppose that there is a point z0 e C with |w(z0) | 
< Ma°(r). By integration of (8.10) along the arcus (J, z0) = /0 c / 
assuming z = n?/<p, f = rezcp(r\ 4̂y = iteza and |«p(r) — <p| ^ 77 (such an 
arcus /0 obviously exists) we obtain: 

l n ^ = ( l + 0 ( l ) ) * ^ ( ^ - ^ 0 ) . 
w(s) P 

Consequently 

In |w(z) I = In M(r) 

+ (1 + o( l ) ) [cos(p<p + a) — cos(p<p(r) + a ) ] . 

By integration of (8.5) from r0 to r (in view of (8.2) ) we get 

Brp 

lnM(r ) = (1 + o( l ) ) 
P 

so that on /Q 

(8.11) In w(z) = I 1 + cos(p<p + a) - cos(p<p(r) + a) I + o(l)rp. 

The equality (8.5) shows now that at every point f we have 
^ ( « + <p(r)p) = j + o ( 1 ) _ 

Consequently 
cos(p<p(r) + a) = 1 + o(l) and 
cos(p<p -f a) = (1 + o(l) ) cos p(<p — <p(r) ). 
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We rewrite now (8.11) in the form 
Brp 

\n\w(z) | = (1 + o(l) ) cos p(cp - <p(r) ) + o(\)rp. 
P 

But p < - and \<p — <p(r) | ^ tn. Then 

Brp 

ln|w(z) | ^ (cos Tip + o(l) ) 
P 

= (1 + o( l ) ) cos77p In M(r) 
= (1 + 0(1)) ln[M(r)]2a°. 

Whence tending z —> z0 on /Q 
|w(z())| ^ M(2 + 0 ( , ) a V ) 

in contradiction with our supposition 
\w(z0) I < M°°(r). 

Thus / = C and |u<(z) | g Ma°(r) > 0 on C for r = \z\ > r0. But this is 
impossible for an entire transcendental function of order p < 1/2. So p ^ 
1/2. 

To complete the proof of Theorem 3 we note that the entire function 
cosy(z of order p = 1/2 satisfies the algebraic differential equation 

y1 + 4zy'2 = 1. 
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