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The algebra of functions with Fourier

transforms in a given function space

U.B. Tewari and 'A.,K. Gupta

Let G ©be a locally compact abelian group and ¢ be its dual
group. For 1 =p <o let AP(G) denote the set of all those

functions in Ll(G) whose Fourier transforms belong to Lp(a) .

Let M(Ap(G)) denote the set of all functions ¢ belonging to

Lm(a) such that ¢°% is Fourier transform of an Ll—function
on G whenever f belongs to Ap(G) . For 1 2p<g<®  we
prove that AP(G) % Aq(G) provided G is nondiscrete. As an
application of this result we prove that if ¢ 1is an infinite
compact abelian group and@ 1 < p = 4 then zp(&) g M(Ap(G)) .
and if p > L then there exists Y € Zp(a) such that Y does

not belong to M(AP(G))

1. Introduction
Let G be a locally compact abelian group and let 1 <p < » , Ap(G)
is the Banach algebra consisting of all those functions f € Ll(G) for
which % € Lp(F) vhere [ denotes the dual group of G . The

multiplication in Ap(G) is the convolution and the norm is given by
P = + |IF €4_(c)
IFIE = ety + 71, (F € 4,6)
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In [7] and [8] Larsen stated without proof that the Ap(G) are

distinct for distinct p wunless G 1is discrete in which case

Ap(G) = Ll(G) s Yp . In a private communication Professor Larsen told us

that his proof of this assertion was fallacious and he gave a proof of the
fact that Ap(G) g Aq(G) s P <q in the case that G is R or T or G

is infinite compact and 1 <= p <2 . 1In this paper we shall prove this
result for nondiscrete G . As an application we shall show that for an

infinite compact abelian group G , Zp(T) g M(AP(G)) ,if 1 =p =4, and
there exists Y € Zp(I') such that ¢ fM(Ap(G)) , if p >4 . Here
M(Ap(G)) denotes the algebra of multipliers of Ap(G) . For the results
on Ap(G) and its multipliers we refer the reader to [7], where the

standard results from harmonic analysis and functional analysis are also

given in the appendices.

2. Results on AP(G)

In this section we shall prove that for nondiscrete G and
12p<g<®o, AP(G) g Aq(G) . The proof of this fact depends on several
intermediary results which are of interest for their own sake.

PROPOSITION 1. Let G be a nondiscrete locally compact abelian
group and let 1 <p < 2. Then Ap(G) G Aq(G) » provided p <q <.

Proof. Since G is nondiscrete, therefore T is non-compact. Let
U be a symmetric neighbourhood of O in T such that U is compact .

Choose a sequence {yn} in T such that (Yi+U+U] is disjoint from
(YJ.+U+U] , unless 2 =j . Let g = Xy and
Vo1
h = kzl ;(l_/p ka+U+U
(for any set 4 , Xy denotes the characteristic function of A ) Then
g and h both belong to L,(I') and hence there exists f € Ll(G) such

2
that 3" =g * h . Moreover, g ELl(I‘) and h € Lq(I‘) ; therefore
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f € Aq(G) . But f ¢ Ap(G) . In fact

1

ZE7E'D(U)

g *h('t) =

for each T € Y, + U, where p is the Haar measure on I' . Since (Yi+U)
and [Yj+U) are disjoint for © # j , it follows that g * h § Lp(F) .
that is, f ¢AP(G) .

REMARK. The proof of Proposition 1 is a modification of the arguments
of Martin and Yap [9], p. 218.

COROLLARY 1. Let G =T, the circle group, and 1 <p < q < ® .
Th, A_(G A (G) .
en p( = q( )

Proof. If 1 =p < 2 , then the result follows from Proposition 1.
If p22 then q > 2 and the conjugate index ¢q' 1lies between 1 and
2 . It is known (Edwards [2], p. 147) that there exists f ¢ Lq,(G) such

that f does not belong to Lp(F) . Such a function f belongs to Aq(G)

vbut fé AP(G)

PROPOSITION 2. Let G =R, the real line, and 1 <p < q < =,
Th A (G A (G) .
en p( ) g q( )

Proof. Since p < q it follows that Ap(G) g_Aq(G) . Moreover, it
can be easily seen that |f||9 =< 2”f”p for every f € Ap(G) . Therefore
the assumption that Ap(G) = Aq(G) would lead to the existence of a
constant K > O such that
(1) ety + Hpr = K[Hfﬂl*ﬂf"q]

for every f € AP(G) . We shall show that (1) leads to a contradiction.

For this purpose consider the function

= T

s (=) =

where o >0 .
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Let fa = Ea where ~ denotes the inverse Fourier transform, that

is,

fol=) = j‘: b (£)e" Fat .

Then ”faul = 2m ; (see [4], pp. 21-22). Moreover f‘a = ZTI'Aa and
1/p
2 2 1/,
(2) 13,0, = 2nf2g] TP for 12p <o

(2) follows from an easy computation. From (1) and (2) it follows that

1/p 1/
o + 2"[(:_3?] &P < K[zmen[i] qal/q:l

q+l
or
1/p 1l/q
2 1/p 2 1/q
(3) 2"[p+lJ o < (K-1)om + QK"[qﬂ] o
ot as 1/q
Dividing (3) by « on both sides we get
1/p 1l/q
2 1/p-1/q -1/q 2
(L) 2n[p—+l] o < (K-1)2mo, + 2KT _q+l .
Taking limit as o * « in (4) we see that the right hand side of (k)
remains bounded while the left hand side tends to <« since p < q . This

contradiction establishes the proposition.

PROPOSITION 3. Let G be an infinite compact totally discomnected
abelian group and 1 <p < q < = . Then AP(G) g Aq(G) .

Proof. As in the proof of Proposition 2, the assumption that
Ap(G) = Aq(G) would lead to the existence of a constant X > O such that

Iy + 17l = K[Ilflll+llfllq]

for every f € Ap(G) . Then we shall have

(5) U7l < KIfly + KUfl, for every f €4 (G)

We shall show that (5) leads to a contradiction. Since G is compact

and totally disconnected, there exists a neighbourhood basis {Va}aEI of
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0 in G consisting of open and closed subgroups of G ; (see [5],

p. 62). Since G 1is infinite compact, it follows that

(6) l(ilm Ay =0,

where XA denotes the normalized Haar measure on G .
Let A, = X(Va) and let X, denote the annihilator subgroup of Vo -
Since Va is open and closed, it follows that Xa is finite. Let ny be

the number of points in X and let fa = xVa . Then ”fanl = Aa and

n 2 _
fa = AaxXa . Also Hf“all2 = Aa . Therefore by the Plancherel Theorem we

get

2 S 2 2
A, = lIF NS = " = X n
a a'2 Ygr I | o a

Therefore n, = l/Aa . Now, for 1 =p < = | we have
- = . 1/p _ ,1/p' . [
”f&”p = Aa ny o= A , where 1/p +1/p' =1 .

From (5) it follows that

1/p’ 1/q’
(1) Aa = Kka + Aa
s A 1/q'
Dividing both sides of (7) by Aa ve get
) )
(8) AP <t g
a o -

Teking the limit in (8) we see that the right hand side remains
bounded, while the left hand side tends to <« , because l/p' <1/q9' ana
Aa tends to zero. This contradiction yields the proof.

REMARK. The sbove proof uses a technique due to Edwards [3], p. 196.

PROPOSITION 4. Let G, and G, be locally compact abelian groups
and G =G xG,. Let 1sp<q<x. If Ap(Gi]#Aq(Gi] for some
. , then A_(G A (G) .

i, p( ) # q( )
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Proof. We may assume that Ap (Gl) # Aq (Gl] (the proof in the other
case is exactly similer). Choose f € Aq(Gl) such that f § Ap(Gl] . Let

g be any non-zero function belonging to Ap (62) . Define

Az, y) = flx)ogly) for (=z, y) € G, x G, .
Then h € Aq(G) but & ¢ Ap(G) , because fz(r, n) = ?(r)°§(n) and
hoe Lp(f') if and only if 7 € Lp(l"l) and & € Lp(I‘2) , where T, Fl and

1"2 are the dual groups of G, Gl and 02 respectively.

Let G be a locally compact abelian group and let H be & closed
subgroup. For a continuous function f on G which has compact support,

define
(e = | flad
H

where dy denotes Haar integral on H . It is well known (see [10],

Chapter 3) that 'rrH(f) is constant on cosets modulo H and that TTH(f)

defines a continuous function on G/H which has compact support. This

gives a mapping T, from CC(G) into C'C(G/H) , where CC(G) denotes the
space of continuous functions with compact support. This mapping Ty
extends to Ll(G) and it maps Ll(G) onto Ll(G/H) . Reiter [11] has
shown that if S(G) is a Segal algebra on G , then HH(S(G)] becomes a
Segal algebra on G/H . The following proposition is interesting because
it shows that My (AP(G)) = AP(G/H) under the hypothesis that H is
compact. We shall use this proposition to prove Theorem 1 of this paper.

PROPOSITION 5. Let G be'a locally compact abelian group and let H
be a compact subgroup of G . Then nH(Ap(G)] = AP(G/H) .

Proof. Let A be the annihilator of H . Since H is compact, it
follows that A is open. Also for f € Ll(G) . TTH(f')" = ?'A . Therefore
f € Ap(G) implies that my(f) eAp(c/H) and hence nH(Ap(c)) gAp(a/H)

To prove the other inclusion take f' € Ap(G/H) . Then there exists
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f e Ll(G) such that HH(f) = f' . Consider the function g = my % f

where my is the normalized Haar measure on H and my is considered as

a bounded measure on the whole group G in the usual manner. Since

ﬁH = X, it follows that ﬂH(g) = f' , because WH(g) and f' have the

same Fourier transform. Also since A is open and § = ?' on A and
g =0 outside A , it follows that g € Ap(G) . Therefore

TrH[Ap(G)) = Ap(G/H) .

THEOREM 1. Let G be an infinite compact abelian group and let

lsp<qg<®. Then AP(G) < Aq G

Proof. We have already proved the theorem for totally disconnected G
in Proposition 3. Let us now suppose that (G is not totally disconnected.
Then the dual group [' has an element of infinite order; (eee [12Z],

p. 47). Therefore I contains Z (the group of integers) as a subgroup.
Let H Ybe the annihilator of this subgroup. Then the dual of G/H is
isomorphic to Z and hence G/H is isomorphic to T (the circle group).
By Corollary 1 it follows that Ap(G/H) g Aq(G/H) . The theorem now

follows from Proposition 5.
COROLLARY 2. Let G be a nondiserete locally compact, compactly
generated abelian group and 1 <p < q < = ., Then Ap(G) ? Aq(G)

Proof. From Theorem 9.8 of [5] it follows that G = R x Zb X F ,
where a and b are nonnegative integers and F 1is a compact gbelian
group. If a > 0 then the result follows from Propositions 2 and L, Ir
a =0 then since ( 1is nondiscrete it follows that F 1is an infinite
compact abelian group. The result then follows from Theorem 1 and

Proposition 4.

PROPOSITION 6. Let G be a locally compact abelian group and let
H be an open subgroup of G . Let f € Ll(H) . Define g on G by

setting g=f on H and g =0 outside H. Then g € Ll(G) and
g € Lp(F) if and only if } € Lp(P/A) s Where 1 =sp <®® and A 4is the

annithilator of H .
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Proof. It is obvious that g € Ll(G) . Let F bve the set of all
those elements ¢ € Ll(P) which are almost everywhere constant on each

coset of A . Let n : T +~T/A be the quotient map. Then it follows from
Theorem 28.55 of [é] that h + h ©°n is a Banach algebra isomorphism of

Ll(F/A) onto F‘. Since g is zero outside H , § is constant on

cosets of A . Moreover § = fon and l§|p = |f|P o n . Hence it
follows that g € L,(T) if and only if 7e L,(T/A) .

COROLLARY 3. Let G be a locally compact abelian group and
l1=p<g<=x, Let H be an open subgroup of G such that
H)cA(H) . Th A (G) ¢ G) .
A(H) G A (H) . Then 4_(G) G 4,(G)
Proof. Let f € Aq(H) such that f ¢ Ap(H) . Define g as in

Proposition 6. Then Proposition 6 implies that g € Aq(G) but
A_(G) .
g §4,(

THEOREM 2. Let G be a nondiscrete locally-compact abelian group
and 1 =p <gq <, Then Ap(G) G Aq(G) .

Proof. Theorem 2.4.1 of [12] implies that there exists an open
subgroup H of G such that H = F* x F where n is a nonnegative

integer and F is a compact abelian group. If = > 0 then Ap(H) i Aq(H)

by Proposition 4. If % = 0 +then since G 1is nondiscrete and H is open
it follows that F is an infinite compact abelian group. Therefore

AP(H) % Aq(H) by Theorem 1. Thus, in any case, AP(H) g Aq(H) . The
proof now follows from Corollary 3.
3. Multipliers of AP(G)

In this section ¢ will denote an infinite compact abelian group and

I' its dual group. We shall prove: )
THEOREM 3. zp(r) < M[AP(G)] for 1sps<h . If W<p<e then

there exists Y € zp(r) such that ¥ ¢ M(Ap(a)) .

Proof. It is known that every bounded function on I defines a
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multiplier on Ap(G) , provided 1 = p =2 (see {71, p. 207). Therefore
we may assume that p > 2 . Suppose p =4 and ¢ € Zp(I‘) and

fea p((;) . By Holder's inequality we have

I lofn)® = [z M(Y)Igp/p_g]l-a/p[
Y Y

< ©™

A 2/p
1 If(Y)ip]
Y

k]

because ¢ € Zp(l") and -g’i-Q- Zp for 2<p=1Uh . Therefore there exists
g € LQ(G) such that § = @*F . Clearly g € AP(G) . Therefore
o € M(AP(G‘)) . Since the constant functions on I define multipliers on

Ap(G) it follows that zp(r) < M(Ap(c:)) .

Let us now consider the case when &4 < p < ® . By Theorem 1, there

exists & function f € Z,(6) such that ) l}'(Y)lh = ® and
Y

) !;‘(Y)Ip<°". Let q>=3‘\'. Then ¢ € 1_(T) . However gozfl(r)
Y&l p 2
Therefore, from Theorem 1.1 of [1] it follows that there exists a function
€ on [ such that e(y) = 21 and for no integrable function g on G
ve have g(y) = e(Y)o{y) ¢(Y) . Now the function W(Y) = e{Y)o(Y) is a
funection belonging to Zp(I‘) , but t})‘?‘ is not Fourier transform of any
integrable function., Therefore Y § M(AP(G)) even though ¥ € Zp(I') .
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