The algebra of functions with Fourier transforms in a given function space

U.B. Tewari and A.K. Gupta

Let G be a locally compact abelian group and \hat{G} be its dual group. For $1 \leq p < \infty$, let $A_p(G)$ denote the set of all those functions in $L_1(G)$ whose Fourier transforms belong to $L_p(\hat{G})$. Let $M(A_p(G))$ denote the set of all functions φ belonging to $L_{\infty}(\hat{G})$ such that $\varphi \cdot \hat{f}$ is Fourier transform of an L^1 -function on G whenever f belongs to $A_p(G)$. For $1 \leq p < q < \infty$, we prove that $A_p(G) \subsetneq A_q(G)$ provided G is nondiscrete. As an application of this result we prove that if G is an infinite compact abelian group and $1 \leq p \leq 4$ then $l_p(\hat{G}) \subsetneq M(A_p(G))$, and if p > 4 then there exists $\psi \in l_p(\hat{G})$ such that ψ does not belong to $M(A_p(G))$.

1. Introduction

Let G be a locally compact abelian group and let $1 \leq p < \infty$. $A_p(G)$ is the Banach algebra consisting of all those functions $f \in L_1(G)$ for which $\hat{f} \in L_p(\Gamma)$ where Γ denotes the dual group of G. The multiplication in $A_p(G)$ is the convolution and the norm is given by

 $\|f\|^{p'}=\|f\|_1+\|\hat{f}\|_p\quad \left(f\in A_p(G)\right)\ .$

Received 8 March 1973.

73

In [7] and [8] Larsen stated without proof that the $A_p(G)$ are distinct for distinct p unless G is discrete in which case $A_p(G) = L_1(G)$, $\forall p$. In a private communication Professor Larsen told us that his proof of this assertion was fallacious and he gave a proof of the fact that $A_p(G) \subsetneq A_q(G)$, p < q in the case that G is R or T or Gis infinite compact and $1 \le p < 2$. In this paper we shall prove this result for nondiscrete G. As an application we shall show that for an infinite compact abelian group G, $l_p(\Gamma) \gneqq M(A_p(G))$, if $1 \le p \le 4$, and there exists $\psi \in l_p(\Gamma)$ such that $\psi \notin M(A_p(G))$, if p > 4. Here $M(A_p(G))$ denotes the algebra of multipliers of $A_p(G)$. For the results on $A_p(G)$ and its multipliers we refer the reader to [7], where the standard results from harmonic analysis and functional analysis are also given in the appendices.

2. Results on $A_p(G)$

In this section we shall prove that for nondiscrete G and $1 \le p < q < \infty$, $A_p(G) \subsetneq A_q(G)$. The proof of this fact depends on several intermediary results which are of interest for their own sake.

PROPOSITION 1. Let G be a nondiscrete locally compact abelian group and let $1 \le p < 2$. Then $A_p(G) \subsetneq A_q(G)$, provided $p < q < \infty$.

Proof. Since G is nondiscrete, therefore Γ is non-compact. Let U be a symmetric neighbourhood of O in Γ such that \overline{U} is compact. Choose a sequence $\{\gamma_n\}$ in Γ such that $(\gamma_i + U + U)$ is disjoint from $(\gamma_i + U + U)$, unless i = j. Let $g = \chi_U$ and

$$h = \sum_{k=1}^{\infty} \frac{1}{k^{1/p}} \chi_{\gamma_k + U + U}$$

(for any set A, χ_A denotes the characteristic function of A). Then g and h both belong to $L_2(\Gamma)$ and hence there exists $f \in L_1(G)$ such that $\hat{f} = g \star h$. Moreover, $g \in L_1(\Gamma)$ and $h \in L_q(\Gamma)$; therefore

74

 $f \in A_{\alpha}(G)$. But $f \notin A_{\alpha}(G)$. In fact

$$g \star h(\tau) = \frac{1}{k^{1/p}} \rho(U)$$

for each $\tau \in \gamma_k + U$, where ρ is the Haar measure on Γ . Since $(\gamma_i + U)$ and $(\gamma_j + U)$ are disjoint for $i \neq j$, it follows that $g \star h \notin L_p(\Gamma)$, that is, $f \notin A_p(G)$.

REMARK. The proof of Proposition 1 is a modification of the arguments of Martin and Yap [9], p. 218.

COROLLARY 1. Let G = T, the circle group, and $1 \le p < q < \infty$. Then $A_p(G) \subsetneq A_q(G)$.

Proof. If $1 \le p < 2$, then the result follows from Proposition 1. If $p \ge 2$ then q > 2 and the conjugate index q' lies between 1 and 2. It is known (Edwards [2], p. 147) that there exists $f \in L_{q'}(G)$ such that \hat{f} does not belong to $L_p(\Gamma)$. Such a function f belongs to $A_q(G)$ but $f \notin A_p(G)$.

PROPOSITION 2. Let G = R, the real line, and $1 \le p < q < \infty$. Then $A_p(G) \subsetneq A_q(G)$.

Proof. Since p < q it follows that $A_p(G) \subseteq A_q(G)$. Moreover, it can be easily seen that $\|f\|^q \leq 2\|f\|^p$ for every $f \in A_p(G)$. Therefore the assumption that $A_p(G) = A_q(G)$ would lead to the existence of a constant K > 0 such that

(1)
$$||f||_{1} + ||\hat{f}||_{p} \le K[||f||_{1} + ||\hat{f}||_{q}]$$

for every $f \in A_p(G)$. We shall show that (1) leads to a contradiction. For this purpose consider the function

$$\Delta_{\alpha}(x) = \begin{cases} 1 - \frac{|x|}{\alpha}, & |x| \leq \alpha, \\ \\ 0, & |x| > \alpha, \end{cases}$$

where $\alpha > 0$.

Let $f_{\alpha} = \Delta_{\alpha}$ where $\tilde{}$ denotes the inverse Fourier transform, that is,

$$f_{\alpha}(x) = \int_{-\infty}^{\infty} \Delta_{\alpha}(t) e^{itx} dt$$
.

Then $\|f_{\alpha}\|_{1} = 2\pi$; (see [4], pp. 21-22). Moreover $\hat{f}_{\alpha} = 2\pi\Delta_{\alpha}$ and

(2)
$$\|\hat{f}_{\alpha}\|_{p} = 2\pi \left(\frac{2}{p+1}\right)^{1/p} \alpha^{1/p} \text{ for } 1 \leq p < \infty$$

(2) follows from an easy computation. From (1) and (2) it follows that

$$2\pi + 2\pi \left(\frac{2}{p+1}\right)^{1/p} \alpha^{1/p} \leq K \left[2\pi + 2\pi \left(\frac{2}{q+1}\right)^{1/q} \alpha^{1/q}\right]$$

or

(3)
$$2\pi \left(\frac{2}{p+1}\right)^{1/p} \alpha^{1/p} \leq (K-1)2\pi + 2K\pi \left(\frac{2}{q+1}\right)^{1/q} \alpha^{1/q}$$

Dividing (3) by $\alpha^{1/q}$ on both sides we get

(4)
$$2\pi \left(\frac{2}{p+1}\right)^{1/p} \alpha^{1/p-1/q} \leq (K-1)2\pi \alpha^{-1/q} + 2K\pi \left(\frac{2}{q+1}\right)^{1/q}$$

Taking limit as $\alpha \rightarrow \infty$ in (4) we see that the right hand side of (4) remains bounded while the left hand side tends to ∞ since p < q. This contradiction establishes the proposition.

PROPOSITION 3. Let G be an infinite compact totally disconnected abelian group and $1 \le p < q < \infty$. Then $A_p(G) \subsetneq A_q(G)$.

Proof. As in the proof of Proposition 2, the assumption that $A_p(G) = A_q(G)$ would lead to the existence of a constant K > 0 such that

$$\|f\|_{1} + \|\hat{f}\|_{p} \leq \kappa [\|f\|_{1} + \|\hat{f}\|_{q}]$$

for every $f \in A_{p}(G)$. Then we shall have

(5)
$$\|\hat{f}\|_p \leq K \|f\|_1 + K \|\hat{f}\|_q$$
 for every $f \in A_p(G)$.

We shall show that (5) leads to a contradiction. Since G is compact and totally disconnected, there exists a neighbourhood basis $\{V_{\alpha}\}_{\alpha\in I}$ of 0 in G consisting of open and closed subgroups of G; (see [5], p. 62). Since G is infinite compact, it follows that

(6)
$$\lim_{\alpha} \lambda(V_{\alpha}) = 0 ,$$

where λ denotes the normalized Haar measure on G .

Let $\lambda_{\alpha} = \lambda(V_{\alpha})$ and let X_{α} denote the annihilator subgroup of V_{α} . Since V_{α} is open and closed, it follows that X_{α} is finite. Let n_{α} be the number of points in X_{α} and let $f_{\alpha} = \chi_{V_{\alpha}}$. Then $\|f_{\alpha}\|_{1} = \lambda_{\alpha}$ and

 $\hat{f}_{\alpha} = \lambda_{\alpha} \chi_{\chi_{\alpha}}$. Also $\|f_{\alpha}\|_2^2 = \lambda_{\alpha}$. Therefore by the Plancherel Theorem we get

$$\lambda_{\alpha} = \|f_{\alpha}\|_{2}^{2} = \sum_{\gamma \in \Gamma} |\hat{f}(\gamma)|^{2} = \lambda_{\alpha}^{2} \cdot n_{\alpha}$$

Therefore $n_{\alpha} = 1/\lambda_{\alpha}$. Now, for $1 \le p < \infty$, we have $\|\hat{f}_{\alpha}\|_{p} = \lambda_{\alpha} \cdot n_{\alpha}^{1/p} = \lambda_{\alpha}^{1/p'}$, where 1/p + 1/p' = 1.

From (5) it follows that

(7)
$$\lambda_{\alpha}^{1/p'} \leq K \lambda_{\alpha} + \lambda_{\alpha}^{1/q'}.$$

Dividing both sides of (7) by $\lambda_{\alpha}^{1/q'}$ we get

(8)
$$\lambda_{\alpha}^{1/p'-1/q'} \leq K \lambda_{\alpha}^{1/q} + K$$

Taking the limit in (8) we see that the right hand side remains bounded, while the left hand side tends to ∞ , because 1/p' < 1/q' and λ_{α} tends to zero. This contradiction yields the proof.

REMARK. The above proof uses a technique due to Edwards [3], p. 196. **PROPOSITION 4.** Let G_1 and G_2 be locally compact abelian groups and $G = G_1 \times G_2$. Let $1 \le p \le q \le \infty$. If $A_p(G_i) \ne A_q(G_i)$ for some *i*, then $A_p(G) \ne A_q(G)$. Proof. We may assume that $A_p(G_1) \neq A_q(G_1)$ (the proof in the other case is exactly similar). Choose $f \in A_q(G_1)$ such that $f \notin A_p(G_1)$. Let g be any non-zero function belonging to $A_p(G_2)$. Define

$$h(x, y) = f(x) \cdot g(y) \quad \text{for} \quad (x, y) \in G_1 \times G_2$$

Then $h \in A_q(G)$ but $h \notin A_p(G)$, because $\hat{h}(r, n) = \hat{f}(r) \cdot \hat{g}(n)$ and $\hat{h} \in L_p(\Gamma)$ if and only if $\hat{f} \in L_p(\Gamma_1)$ and $\hat{g} \in L_p(\Gamma_2)$, where Γ , Γ_1 and Γ_2 are the dual groups of G, G_1 and G_2 respectively.

Let G be a locally compact abelian group and let H be a closed subgroup. For a continuous function f on G which has compact support, define

$$\pi_H(f)(x) = \int_H f(xy) dy ,$$

where dy denotes Haar integral on H. It is well known (see [10], Chapter 3) that $\pi_H(f)$ is constant on cosets modulo H and that $\pi_H(f)$ defines a continuous function on G/H which has compact support. This gives a mapping π_H from $C_C(G)$ into $C_C(G/H)$, where $C_C(G)$ denotes the space of continuous functions with compact support. This mapping π_H extends to $L_1(G)$ and it maps $L_1(G)$ onto $L_1(G/H)$. Reiter [11] has shown that if S(G) is a Segal algebra on G, then $\pi_H(S(G))$ becomes a Segal algebra on G/H. The following proposition is interesting because it shows that $\pi_H(A_p(G)) = A_p(G/H)$ under the hypothesis that H is compact. We shall use this proposition to prove Theorem 1 of this paper.

PROPOSITION 5. Let G be a locally compact abelian group and let H be a compact subgroup of G. Then $\pi_H(A_p(G)) = A_p(G/H)$.

Proof. Let Λ be the annihilator of H. Since H is compact, it follows that Λ is open. Also for $f \in L_1(G)$, $\pi_H(f)^{\uparrow} = \hat{f}|_{\Lambda}$. Therefore $f \in A_p(G)$ implies that $\pi_H(f) \in A_p(G/H)$ and hence $\pi_H(A_p(G)) \subseteq A_p(G/H)$. To prove the other inclusion take $f' \in A_p(G/H)$. Then there exists

 $f \in L_1(G)$ such that $\pi_H(f) = f'$. Consider the function $g = m_H * f$ where m_H is the normalized Haar measure on H and m_H is considered as a bounded measure on the whole group G in the usual manner. Since $\hat{m}_H = \chi_\Lambda$ it follows that $\pi_H(g) = f'$, because $\pi_H(g)$ and f' have the same Fourier transform. Also since Λ is open and $\hat{g} = \hat{f}'$ on Λ and $\hat{g} = 0$ outside Λ , it follows that $g \in A_p(G)$. Therefore $\pi_H(A_p(G)) = A_p(G/H)$.

THEOREM 1. Let G be an infinite compact abelian group and let $1 \le p < q < \infty$. Then $A_p(G) \subsetneq A_q$ G.

Proof. We have already proved the theorem for totally disconnected G in Proposition 3. Let us now suppose that G is not totally disconnected. Then the dual group Γ has an element of infinite order; (see [12], p. 47). Therefore Γ contains Z (the group of integers) as a subgroup. Let H be the annihilator of this subgroup. Then the dual of G/H is isomorphic to Z and hence G/H is isomorphic to T (the circle group). By Corollary 1 it follows that $A_p(G/H) \subsetneq A_q(G/H)$. The theorem now follows from Proposition 5.

COROLLARY 2. Let G be a nondiscrete locally compact, compactly generated abelian group and $1 \le p < q < \infty$. Then $A_p(G) \subsetneq A_q(G)$.

Proof. From Theorem 9.8 of [5] it follows that $G = R^a \times Z^b \times F$, where a and b are nonnegative integers and F is a compact abelian group. If a > 0 then the result follows from Propositions 2 and 4. If a = 0 then since G is nondiscrete it follows that F is an infinite compact abelian group. The result then follows from Theorem 1 and Proposition 4.

PROPOSITION 6. Let G be a locally compact abelian group and let H be an open subgroup of G. Let $f \in L_1(H)$. Define g on G by setting g = f on H and g = 0 outside H. Then $g \in L_1(G)$ and $\hat{g} \in L_p(\Gamma)$ if and only if $\hat{f} \in L_p(\Gamma/\Lambda)$, where $1 \le p < \infty$ and Λ is the annihilator of H. Proof. It is obvious that $g \in L_1(G)$. Let F be the set of all those elements $\varphi \in L_1(\Gamma)$ which are almost everywhere constant on each coset of Λ . Let $\eta : \Gamma \to \Gamma/\Lambda$ be the quotient map. Then it follows from Theorem 28.55 of [6] that $h \to h \circ \eta$ is a Banach algebra isomorphism of $L_1(\Gamma/\Lambda)$ onto F. Since g is zero outside H, \hat{g} is constant on cosets of Λ . Moreover $\hat{g} = \hat{f} \circ \eta$ and $|\hat{g}|^p = |\hat{f}|^p \circ \eta$. Hence it

follows that $\hat{g} \in L_p(\Gamma)$ if and only if $\hat{f} \in L_p(\Gamma/\Lambda)$.

COROLLARY 3. Let G be a locally compact abelian group and $1 \le p < q < \infty$. Let H be an open subgroup of G such that $A_p(H) \subseteq A_q(H)$. Then $A_p(G) \subseteq A_q(G)$.

Proof. Let $f \in A_q(H)$ such that $f \notin A_p(H)$. Define g as in Proposition 6. Then Proposition 6 implies that $g \in A_q(G)$ but $g \notin A_p(G)$.

THEOREM 2. Let G be a nondiscrete locally-compact abelian group and $1 \le p < q < \infty$. Then $A_p(G) \subseteq A_q(G)$.

Proof. Theorem 2.4.1 of [12] implies that there exists an open subgroup H of G such that $H = R^n \times F$ where n is a nonnegative integer and F is a compact abelian group. If n > 0 then $A_p(H) \subset A_q(H)$ by Proposition 4. If n = 0 then since G is nondiscrete and H is open it follows that F is an infinite compact abelian group. Therefore $A_p(H) \subset A_q(H)$ by Theorem 1. Thus, in any case, $A_p(H) \subset A_q(H)$. The proof now follows from Corollary 3.

3. Multipliers of $A_{p}(G)$

In this section G will denote an infinite compact abelian group and Γ its dual group. We shall prove:

THEOREM 3. $l_p(\Gamma) \subsetneq M(A_p(G))$ for $1 \le p \le 4$. If $4 then there exists <math>\psi \in l_p(\Gamma)$ such that $\psi \notin M(A_p(G))$.

Proof. It is known that every bounded function on Γ defines a

multiplier on $A_p(G)$, provided $1 \le p \le 2$ (see [7], p. 207). Therefore we may assume that p > 2. Suppose $p \le 4$ and $\varphi \in l_p(\Gamma)$ and $f \in A_p(G)$. By Hölder's inequality we have

$$\sum_{\mathbf{Y}} \| \varphi \widehat{f}(\mathbf{Y}) \|^2 \leq \left(\sum_{\mathbf{Y}} \| \varphi(\mathbf{Y}) \|^{2p/p-2} \right)^{1-2/p} \left(\sum_{\mathbf{Y}} \| \widehat{f}(\mathbf{Y}) \|^p \right)^{2/p}$$

$$< \infty,$$

because $\varphi \in l_p(\Gamma)$ and $\frac{2p}{p-2} \ge p$ for $2 \le p \le 4$. Therefore there exists $g \in L_2(G)$ such that $\hat{g} = \varphi \cdot \hat{f}$. Clearly $g \in A_p(G)$. Therefore $\varphi \in M(A_p(G))$. Since the constant functions on Γ define multipliers on $A_p(G)$ it follows that $l_p(\Gamma) \subsetneq M(A_p(G))$.

Let us now consider the case when $4 . By Theorem 1, there exists a function <math>f \in L_1(G)$ such that $\sum_{\gamma} |\hat{f}(\gamma)|^4 = \infty$ and

 $\sum_{\gamma \in \Gamma} |\hat{f}(\gamma)|^p < \infty . Let \varphi = \hat{f} . Then \varphi \in l_p(\Gamma) . However \varphi^2 \notin l_2(\Gamma) .$ Therefore, from Theorem 1.1 of [1] it follows that there exists a function ε on Γ such that $\varepsilon(\gamma) = \pm 1$ and for no integrable function g on G we have $\hat{g}(\gamma) = \varepsilon(\gamma)\varphi(\gamma)\cdot\varphi(\gamma) .$ Now the function $\psi(\gamma) = \varepsilon(\gamma)\varphi(\gamma)$ is a function belonging to $l_p(\Gamma)$, but $\psi \cdot \hat{f}$ is not Fourier transform of any integrable function. Therefore $\psi \notin M\{A_p(G)\}$ even though $\psi \in l_p(\Gamma)$.

References

- [1] R.E. Edwards, "Changing signs of Fourier coefficients", Pacific J. Math. 15 (1965), 463-475.
- [2] R.E. Edwards, Fourier series: A modern introduction, Volume II (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Atlanta, Dallas, Montreal, Toronto, London, 1967).
- [3] R.E. Edwards, "Inequalities related to those of Hausdorff-Young", Bull. Austral. Math. Soc. 6 (1972), 185-210.

- [4] P.R. Goldberg, Fourier transforms (Cambridge Tracts in Mathematics and Mathematical Physics, 52. Cambridge University Press, Cambridge, 1961).
- [5] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume I (Die Grundlehren der mathematischen Wissenschaften, Band 115. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963).
- [6] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, Band 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
- [7] Ronald Larsen, An introduction to the theory of multipliers (Die Grundlehren der mathematischen Wissenschaften, Band 175. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [8] Ronald Larsen, "The multipliers for functions with Fourier transforms in L_p ", Math. Scand. 28 (1971), 215-225.
- [9] John C. Martin and Leonard Y.H. Yap, "The algebra of functions with Fourier transforms in L^p ", *Proc. Amer. Math. Soc.* 24 (1970), 217-219.
- [10] Hans Reiter, Classical harmonic analysis and locally compact groups (Clarendon Press, Oxford, 1968).
- [11] Hans Reiter, L¹-algebras and Segal algebras (Lecture Notes in Mathematics, 23]. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
- [12] Walter Rudin, Fourier analysis on groups (Interscience, New York, London, 1962).

Department of Mathematics, Indian Institute of Technology, Kanpur, India.