
BULL. AUSTRAL. MATH. SOC. 42AI8, 43A22

VOL. 9 (1973), 73-82.

The algebra of functions with Fourier

transforms in a given function space

U.B. Tewari and A,K. Gupta

Let G be a locally compact abelian group and G be i t s dual

group. For 1 £ p < <=° , l e t A (G) denote the set of a l l those

functions in LAG) whose Fourier transforms belong to L (§) .

Let M[A (G)) denote the set of a l l functions <p belonging to

~ ^ 1

£„(<?) such that cp'/ is Fourier transform of an £ -function

on G whenever f belongs to A (G) . For l i p < i ) < « > > w e

prove that A (G) 5 A {G) provided G i s nondiscrete. As an

application of th is resul t we prove that i f G is an inf in i te

compact abelian group and 1 5 p 5 h then I (G) c M[A (<?)) ,

and i f p > 1* then there exists if € I (G) such that ^ does

not belong to M[A (G)) .

1. Introduction

Let G be a locally compact abelian group and l e t l S p < ° ° . A (G)

i s the Banach algebra consisting of a l l those functions / 6 LAG) for

which / € i
c>(r) where V denotes the dual group of G . The

multiplication in A {G) i s the convolution and the norm is given by

\\f\f = II/II3. + ll?ll [f *
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In [7] and [S] Larsen stated without proof that the A ((?) are

d i s t i nc t for d i s t inc t p unless G i s discrete in which case

A (G) = L (G) , V p . In a private communication Professor Larsen told us

tha t his proof of th i s assert ion was fallacious and he gave a proof of the

fact that A (G) c A (G) , p < q in the case that G i s R or T or G

i s i n f in i t e compact and 1 £ p < 2 . In this paper we shal l prove th is

r e s u l t for nondiscrete G . As an application we shal l show that for an

i n f i n i t e compact abelian group G , I (T) c M[A (G)) , i f 1 < p < l» , and

there exis ts ty € I (T) such that ty $ M{A (G)) , i f p > k . Here

M[A {G)) denotes the algebra of multipliers of A (G) . For the resul ts

on A (G) and i t s mult ipl iers we refer the reader to [7 ] , where the

standard resu l t s from harmonic analysis and functional analysis are also

given in the appendices.

2. Results on A (c)

In th i s section we shal l prove tha^ for nondiscrete G and

1 5 p < q < °° , A (G) c A (G) . The proof of th is fact depends on several

intermediary resul ts which are of in te res t for the i r own sake.

PROPOSITION 1. Let G be a nondisarete locally aompaat abelian

group and let 1 £ p < 2 . Then A (G) c A (G) , provided p < q < °° .

Proof. Since G i s nondiscrete, therefore T is non-compact. Let

U be a symmetric neighbourhood of 0 in T such that U is compact.

Choose a sequence {y } in T such that [y^+U+u) i s dis joint from

(y .+U+ll) , unless i = j . Let g = Xy a*"*

00

h = kllk^p \+u+u

(for any set A , XA denotes the characteristic function of A ) . Then

g and h both belong to LAT) and hence there exists / € L (G) such

that f = g * h . Moreover, g i L{T) and h 6 L (T) ; therefore
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/ € A (G) . But f If A (G) . In fact

g * h(r) = -^j-p(U)
k1/p

for each T Z y, + U , where p i s the Haar measure on T . Since ( Y - + ^ )

and (y •+[]) a r e d i s j o i n t for i t j , i t follows t h a t g * h \ L (T) ,

t h a t i s , f £ A (G) .

REMARK. The proof of P ropos i t ion 1 i s a modif ica t ion of the arguments

of Martin and Yap [ 9 ] , p . 218.

COROLLARY 1. Let G = T , the circle group, and 1 5 p < q < » .

Then A (G) c; A (C) .

Proof. I f l i p < 2 , then the r e s u l t follows from Propos i t ion 1 .

I f p > 2 then q > 2 and the conjugate index q' l i e s between 1 and

2 . I t i s known (Edwards [ 2 ] , p . 1U7) t h a t t h e r e e x i s t s f € L ,(G) such

t h a t / does not belong to L (F) . Such a funct ion / belongs t o A (G)

but / { Ap(G) .

PROPOSITION 2 . Let G = R , the real line, and 1 £ p < q < °° .

Proof. Since p < q i t follows that A (G) cA (G) . Moreover, i t

can be easily seen that \\f\f £ 2||,f||p for every f € A (G) . Therefore

the assumption that A (G) = 4 (G) would lead to the existence of ap q

constant K > 0 such that

(1) ii/iii + II?IIP s

for. every f (. A (G) . We shall show that (l) leads to a contradiction.

For this purpose consider the function

1 - "^ . l-l s a .

, |x| > a ,

where a > 0 .
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Let fQ = Xa where " denotes the inverse Fourier transform, that

i s ,

f (x) = f ba{t)e
itxdt .

* —CO

( 2 )

"^<x"l = 27T ' ^ s e e [ 4 - 1 ' p p > 21-22>>- Moreover fa = 2v&a and

> l l / P -,/„

'a "p
= 2TT for 1 < p

(2) follows from an easy computation. From (l) and (2) it follows that

2ir + 2TT
(P+1J

< X 2TT+21T

(3)

(h)

2 ] 1 / P l / p
2ir -7T a±/p < X-1)2TT +

Dividing (3) by a ^ on both s ides we get

2ir al/p-l/q £

Taking l i m i t as a -»• °° in {k) we see t ha t the r i gh t hand side of (h)

remains bounded while the l e f t hand s ide tends t o °° s ince p < q . This

con t r ad i c t i on e s t ab l i shes the propos i t ion .

PROPOSITION 3. Let G be an infinite compact totally disconnected

abelian group and 1 5 p < q < °° . Then A (G) c A (G) .

Proof. As in the proof of Proposition 2, the assumption that

A (G) = A (G) would lead to the existence of a constant K > 0 such that
P "7

11/11 + Il/H 5 x [ll/ll
-1 p

for every / € A (G) . Then we shall have

(5)
ll/llp 2 tfll/lli + K\\f\\q for every / 6 Ap(G) .

We shall show that (5) leads to a contradiction. Since G is compact

and totally disconnected, there exists a neighbourhood basis {7 } _ of

https://doi.org/10.1017/S0004972700042891 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042891


The algebra of functions 77

0 in G consisting of open and closed subgroups of G ; (see [5],

p. 62). Since G is infinite compact, it follows that

(6) lim X[V ) = 0 ,

a a

where X denotes the normalized Haar. measure on G .

Let Xa = ^(^a) and l e t X denote the annihilator subgroup of V^ .

Since Va is open and closed, i t follows that X^ is f i n i t e . Let « a be

the number of points in X and l e t f = Xy • Then H/JL = ^a
 eLnA

fr, ~ *~Xy • Also | | / ||„ = X . Therefore by the Plancherel Theorem we

get

X = 11/ II2 = T | / ( Y ) | 2 = X2-n .

Therefore n = 1/X . Now, for 1 £ p < °° , we have

ll/allp = \ ' n ^ = A^P , where- 1/p * i /p ' = 1 .

From (5) i t follows that

Dividing both s ides of (7) by X ^ we get

(8)
a a •

Taking the limit in (8) we see that the right hand side remains

bounded, while the lef t hand side tends to °° , because l / p ' < l/q' and

X tends to zero. This contradiction yields the proof.

REMARK. The above proof uses a technique due to Edwards [3] , p . 196.

PROPOSITION 4. Let G and G be locally compaat abelian groups

and ff = G1 x G2 . Let 1 £ p < q < °° . If A [G^] t A
ql

G{) f°v some

i , then A (G) jt A (G) .
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Proof. We may assume that A [G ) t A [G) (the proof in the other

case is exactly s imi la r ) . Choose / € A [G ) such that / f A [G ) . Let

g be any non-zero function belonging to A [G ) . Define

h(x, y) = f(x)'g{y) fdr (x, y) € G± * G2 .

Then h (. A (G) but h f A (G) , because h(r, r\) = f(r)-g(r\) and

fc € L (T) i f and only i f / € L ( r j and ^ € L [V2) , where T, 1^ and

r ? are the dual groups of G, G and (?„ respectively.

Let G be a local ly compact abelian group and l e t H be a closed

subgroup. For a continuous function f on G which has compact support,

define

V/)(x) = f

where dy denotes Haar integral on H . I t i s well known (see [ /0 ] ,

Chapter 3) that ! „ ( / ) i s constant on cosets modulo H and that vu(f)

defines a continuous function on G/H which has compact support. This

gives a mapping TT̂  from C^,(G) in to C^(G/H) , where ^ (G) denotes the

space of continuous functions with compact support. This mapping IT

extends to L±{G) and i t maps LAG) onto LAG/H) . Reiter [ / / ] has

shown that i f S(G) i s a Segal algebra on G , then ir~ [£(<?)) becomes a

Segal algebra on G/H . The following proposition is interest ing because

i t shows that -n^A (C)) = AAG/U) under the hypothesis that H i s

compact. We shal l use th i s proposition to prove Theorem 1 of th is paper.

PROPOSITION 5. Let G be a locally compact abelian group and let H

be a compact subgroup of G . Then v (AAG)) = A (G/fl) .

Proof. Let A be the annihilator of H . Since H i s compact, i t

follows that A i s open. Also for / i LAG) , ir#(/V = ? | A • Therefore

f € A (C) implies that Trfl(f) Z A (G/H) and hence TT^U (G)) CA(G/H) .

To prove the other inclusion take / ' € AAG/H) . Then there exists

https://doi.org/10.1017/S0004972700042891 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042891


The algebra of functions 79

/ € L (G) such that ^Af) = f • Consider the function g = m * f

where mu is the normalized Haar measure on H and m., is considered as
a n

a bounded measure on the whole group G in the usual manner. Since
™H ~ *A i t fo-1--'-ows that ^Ag) = / ' , because v^(g) and / ' have the

same Fourier transform. Also since A is open and g = f on A and

g = 0 outside A , i t follows that g € A (G) . Therefore

*H{Ap{G)) = AAG/H) .

THEOREM 1. Let G be an infinite compact abelian group and let

1 S p < q < °° . Then A (G) c A G .

Proof. We have already proved the theorem for totally disconnected G

in Proposition 3- Let us now suppose that G is not totally disconnected.

Then the dual group V has an element of infinite order; (eee [12],

p. U7). Therefore T contains Z (the group of integers) as a subgroup.

Let H be the annihilator of this subgroup. Then the dual of G/H is

isomorphic to Z and hence G/H is isomorphic to T (the circle group).

By Corollary 1 it follows that A (G/H) c A (G/H) . The theorem now

follows from Proposition 5•

COROLLARY 2. Let G be a nondiscrete locally compact, compactly

generated abelian group and 1 S p < q < OT . Then A (G) c A (G) .

Proof. From Theorem 9.8 of [5] it follows that G = if x T * F ,

where a and b are nonnegative integers and F is a compact abelian

group. If a > 0 then the result follows from Propositions 2 and k. If

a = 0 then since G is nondiscrete it follows that F is an infinite

compact abelian group. The result then follows from Theorem 1 and

Proposition 1*.

PROPOSITION 6. Let G be a locally compact abelian group and let

H be an open subgroup of G . Let f € L (H) . Define g on G by

setting g = f on H and g = 0 outside H . Then g £ L (G) and

§ € L (T) if and only if f € L (T/h) t where 1 £ p < » and A is the

annihilator of H .
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Proof. I t i s obvious that g € L (G) . Let F be the set of a l l

those elements <j> € L^(T) which are almost everywhere constant on each

coset of A . Let n : F •* T/A be the quotient map. Then i t follows from

Theorem 28.55 of [6] that h •* h ° n i s a Banach algebra isomorphism of

LAT/A) onto F'. Since g i s zero outside H , g is constant on

cosets of A . Moreover g = f ° n and |g | = \f\^ ° 1 . Hence i t

follows that g 6 LAT) i f and only i f f € L (T/A) .

COROLLARY 3. Let G be a locally compact abelian group and

1 5 p < q < °° . Let H be an open subgroup of G such that

A (H) c A (H) . Then A (G) C A\G) .

Proof. Let f € A (H) such that f \ A {H) . Define g as in

Proposition 6. Then Proposition 6 implies that g f A (<3) but

9 I Ap(G) .

THEOREM 2. Let G be a ncndiaorete locally-compact abelian group

and 1 < p < q < °° . Then A (G) c A (G) .

Proof. Theorem 2.U.1 of [72] implies that there exists an open

subgroup H of G such that H = n * F where n is a nonnegative

integer and F is a compact abelian group. If n > 0 then 4 (fl) <~ A (H)

by Proposition k. If n = 0 then since G is nondiscrete and fl i s open

i t follows that F i s an inf in i te compact abelian group. Therefore

A (H) c A (#) by Theorem 1. Thus, in any case, A (H) c A (H) . The

proof now follows from Corollary 3.

3. Multipliers of A (G)

In th i s section G w i l l denote an in f in i t e compact abelian group and

T i t s dual group. We shal l prove:

THEOREM 3 . I ( D c M[A (G)) f o r l £ p £ l + . I f U < p < =» t h e n

there exists ty € I (T) such that \p $ M[A (G)) .

Proof. I t is known that every bounded function on T defines a
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multiplier on A(G) , provided 1 5 p < 2 (see [73, p . 207). Therefore

we may assume that p > 2 . Suppose p 5 h and <p ( I (F) and

f i A (G) . By Holder's inequality we have

because <p i ZyC) and | j — 2 p for 2 < p S h . Therefore there exists

g € £g(£) such that g = <p'/ . Clearly g € 4 (£) . Therefore

ip € Af(y4 (G)) • Since the constant functions on F define multipliers on

A (G) i t follows that I (T) <~ M{A (G)) .

let us now consider the case when k < p < °° . By Theorem X, there

exists a function / ( LAG) such that J I /(Y)| = °° and
Y

I I ? ( Y ) | P < °° • Let <p => / . Then <p € Z (F) . However <p2 t Z9(F) .

Therefore, from Theorem 1.1 of [?] i t follows tha t there exists a function

e on F such that e(y) = ±1 and for no integrable function g on G

ve have g(y) = e(y)<p(y) «<P(Y) . Now the function WY) = e(y)<p(Y) i s a

function belonging to I (F) , but i/i*/ i s not Fourier transform of any

integrable function. Therefore ip $ M{A {G)) even though </> € Z (F) .
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