All the programs are satisfactorily simple and user-friendly and certainly make appropriate use of computer facilities for helping pupils gain understanding of topics covered by the task sheets concerned. It would also require no great initiative for a teacher to make sensible use of the software in association with personal lesson plans and "homemade" worksheets.

NIGEL WEBB
Oakham School, Rutland LE15 6DT


This unit has also been designed as a supported self-study guide. It requires some knowledge of the use of Normal probability tables, confidence intervals and the Central Limit Theorem, from the unit The normal distribution.

The unit covers some ideas from hypothesis testing, including t-tests, some non-parametric methods and some material on correlation and regression.

Chapter 1 (Hypothesis testing) discusses the problems involved in trying to make a decision concerning loaded and fair dice. The program "sampling" is used to simulate drawing samples from a binomial distribution, and students are asked to investigate the effect of different decision rules. The Normal approximation to the binomial distribution, and the continuity correction involved, is glossed over rather quickly, but otherwise this section is well thought through. The terminology of hypothesis testing is presented, and the ideas applied to a variety of examples involving means and proportions.

Chapter 2 (Student t-distribution) extends the hypothesis tests for a mean, formed using the Central Limit Theorem, to the case when the population variance is unknown. The material on Gosset's original investigations with small samples, leading to the t-distribution, is very nice (apart from the consistent misspelling of the name Gosset). The t-distribution is then applied to paired data to give the matched pairs t-test.

Chapter 3 (Two sample tests) develops the distribution of the difference between sample means, and shows how we can pool to estimate the variance if it is unknown (in the case of common population variances). The statement 'the only examples considered in this unit will be ones where the two samples can be assumed to come from populations with a common variance' needed to be followed up in some way. The usual question from students of why we treat this differently from the case of combining data is not addressed and there is not sufficient discussion of the differences between using paired and unpaired data.

Chapter 4 (Non-parametric tests) develops the sign test and the Wilcoxon signed-rank test as tests of the median, but only uses them in this type of problem. Tests involving two samples (other than the paired case) are not considered, and the Mann-Whitney U-test is excluded.

Finally, in chapter 5 (Correlation and regression) some ideas involving bivariate data are studied. The material in this chapter is often slightly superficial, in particular the theoretical development, and there is not sufficient consideration given to the use of graphic calculators (although their use was incorporated in the earlier material). The covariance, correlation coefficient, lines of best fit and Spearman's rank correlation coefficient are all dealt with (briefly).

The solutions seem to be mostly accurate and the commentaries include some helpful points. There is some good material in this unit, but the presentation is somewhat variable in its depth of treatment, and the order of the material seems to jump about from one thing to another with no overall plan.

JAN DANGERFIELD
Penwith College, Penzance, Cornwall TR18 2SA