
2 Images, Transforms and Sampling

We commence this chapter with a short introduction to images in §2.1. We define
continuous and discrete images, and the relation between the two. Next, in §2.2, §2.3
and §2.4 we introduce the Fourier, Radon and Walsh transforms, respectively. We first
formulate each transform in the continuous setting, before addressing its discretization.
For the first and third, we also discuss the relation to the Discrete Fourier and Discrete
Walsh–Hadamard Transforms (DFT and DHT), respectively.

Much of this chapter serves to fix concepts and notation that will be used throughout
the rest of the book. In doing so, we will assume a number of standard mathematical
concepts. Further details are given in the Appendices.

2.1 Images

We consider continuous and discrete images. A continuous image is a function f :
[0, 1]d → C. We allow f to be complex-valued, since it is relevant for some applications
and mathematically no more difficult to treat. Depending on the application, the values
f can take may be restricted. For instance, in the real case, f may be nonnegative
( f (x) ≥ 0), nonnegative and bounded (0 ≤ f (x) ≤ T for some T), or even binary
( f (x) ∈ {0, 1}). We shall not discuss such considerations in any detail.

Typically, d is equal to one, two or three. We somewhat euphemistically refer to a
function f : [0, 1] → C as an image, even though it is one-dimensional. Where needed,
we will also consider f as a function over the whole of Rd that takes the value zero
outside [0, 1]d .

This setup applies to greyscale images, which are our primary focus. Colour images
can be represented as vector-valued functions; for example, f : [0, 1]d → R3 in the case
of an RGB (Red, Green, Blue) image.

A discrete image is a d-dimensional array of numbers:

X =
(
Xi1,...,id

)N
i1,...,id=1 ∈ C

N×···×N . (2.1)

For simplicity, we consider only square arrays. We refer to N as the resolution of the
image. Often, it will be convenient to reshape X into a vector. We do this in the standard
way via lexicographical ordering. Formally, this is the bijection ς : {1, . . . , Nd } →
{1, . . . , N }d whose inverse is given by

ς−1(i) = Nd−1(i1 − 1) + Nd−2(i2 − 1) + · · · + id, i = (i1, . . . , id). (2.2)
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Figure 2.1 Left: A one-dimensional continuous image f . Middle: Its discretization x ∈ CN at
resolution N = 32. Right: The continuous image g given by (2.4).

Given X of the form (2.1), we define its vectorization

vec(X ) = x = (xi)
Nd

i=1 ∈ C
Nd

, xi = Xς (i) . (2.3)

Likewise, given x ∈ CNd , we write X = vec−1(x) ∈ CN×···×N for its corresponding
anti-vectorization.

A discrete image X can be converted to a continuous image g by

g =

Nd∑
j=1

x j χ j, x = vec(X ). (2.4)

We assume throughout that { χ j }N
d

j=1 is the pixel basis. To be precise, if ς ( j) = (i1, . . . , id),
then χ j is the indicator function of the corresponding cell

[(i1 − 1)/N, i1/N ) × · · · × [(id − 1)/N, id/N ) ⊂ [0, 1]d .

Conversely, a continuous image f can be discretized, giving a discrete image X , by
sampling it on the corresponding equispaced grid of points:

Xi1,...,id = f ((i1 − 1)/N, . . . , (id − 1)/N ), i1, . . . , id ∈ {1, . . . , N }. (2.5)

Throughout, we refer to X as the discretization of f at resolution N . Figure 2.1 gives an
illustration of this process for d = 1.

There are other ways to convert between continuous and discrete images. For instance,
one may replace the pixel basis by a smoother, but still local basis, or take local averages
in (2.5) instead of pointwise samples. Different procedures lead to somewhat different
discretization errors. However, for our purposes it will be sufficient to keep in mind that
all discretizations commit errors, without worrying unduly about their specific nature.

2.1.1 Test Images

We use a number of different test images throughout this book to examine the various
reconstruction procedures. These are shown in Fig. 2.2. The first two, ‘SL phantom’
and ‘GLPU phantom’, are synthetic brain images used to benchmark methods for MRI
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‘SL phantom’ ‘GLPU phantom’ ‘brain’

‘pomegranate’ ‘dog’ ‘donkey’

‘klubbe’ ‘kopp’ ‘peppers’

Figure 2.2 Test images. The original ‘dog’ image was provided by courtesy of Elizabeth
Sawchuk, the ‘kopp’ and ‘klubbe’ images courtesy of Vegard Antun, the ‘pomegranate’ image
courtesy of Andy Ellison, Boston University Medical School, and the ‘brain’ image courtesy of
General Electric Healthcare. See the Notes section for more information about these and the
other test images.

or X-ray CT reconstruction. The former is the famous Shepp–Logan phantom image,
ubiquitous in imaging literature. They are both continuous images. The third and fourth,
‘brain’ and ‘pomegranate’, are discrete images obtained from actual MRI scans. The
remaining images are natural images, also discrete, which will be used primarily to test
reconstructions from binary measurements.
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2.2 Sampling with the Fourier Transform 33

2.1.2 Assessing Image Quality

The quality of a recovered image can be assessed in many different ways. In this book,
we use either a simple visual comparison (informally known as the ‘eyeball metric’) or
the Peak Signal-to-Noise Ratio (PSNR). PSNR is defined as

PSNR = 20 · log10

(
MAXX√

MSE

)
, (2.6)

where MSE is the Mean Squared Error:

MSE =
1

Nd

N∑
i1,...,id=1

|Xi1,...,id − X̂i1,...,id |2.

Here X is the true image (often called the ground truth), X̂ is its reconstruction and
MAXX is the maximum possible pixel value of the image. Often, MAXX = 255. Pixel
values are commonly represented as unsigned 8-bit integers, and hence they belong to
the range {0, . . . , 255}. PSNR is usually stated in decibel (dB) units, with a higher PSNR
meaning better image quality. Typically, for good visual quality one wants the PSNR to
be at least 30dB.

While PSNR is a widely used measure of image quality, it does have several limitations.
It can be highly affected by, for instance, small rotations or shifts, even though such an
operation barely changes the visual quality of the image. It also does not distinguish
between different types of artefacts. Blurry artefacts, which are often more visually
appealing, can easily carry the same PSNR as less visually appealing noisy artefacts.
The design of more advanced image quality metrics is a subject in itself, and one we
will not consider. The Notes section contains several references for the interested reader.

2.2 Sampling with the Fourier Transform

Having discussed images, we now move on to sampling and our first of three transforms,
the Fourier transform. In this section, we make use of material in Appendix E.

2.2.1 The Fourier Reconstruction Problem

As noted in Chapter 1, a key problem in imaging is to recover a continuous image f
from samples of its Fourier transform {F f (2πω) : ω ∈ Ω}, where Ω ⊂ Zd is some
finite index set. In the absence of noise, this is a problem of the form (1.3). Specifically:

Given the data {F f (2πω) : ω ∈ Ω}, recover f . (2.7)

This is an infinite-dimensional inverse problem, which needs to be discretized in order
to be solved numerically. We describe a standard discretization below.

https://doi.org/10.1017/9781108377447.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108377447.004


34 Images, Transforms and Sampling

2.2.2 Fourier Orderings

Before doing so, we need a short discussion on orderings. Let {υω }ω∈Zd denote the
d-dimensional Fourier basis (E.3), and observe that F f (2πω) = 〈 f , υω〉L2 . The Fourier
basis is naturally indexed over Zd . However, to convert (2.7) into a standard discrete
inverse problem of the form (1.1), it is useful to reindex it over N. We write {υi }∞i=1 for
the corresponding basis, and note that such reindexing is permitted since the Fourier
series (E.4) of f converges unconditionally. To distinguish between the two indexings,
we refer to ω ∈ Zd as the frequency and i ∈ N as the index.

It is useful to formalize, at least partially, how such reindexing is performed. When
d = 1, we do this via the bijection

 : N→ Z, i �→ (−1)i �i/2� . (2.8)

Note that this bijection satisfies

({2L + 1, . . . , 2M }) = {−M + 1, . . . ,−L} ∪ {L + 1, . . . , M }, (2.9)

for all 0 ≤ L < M . In particular, for even N ,

({1, . . . , N }) = {−N/2 + 1, . . . , N/2}. (2.10)

In other words, it gives a correspondence between the first N indices i = 1, . . . , N and
the lowest N frequencies ω = −N/2 + 1, . . . , N/2.

When d ≥ 2, there are many different ways to define a bijection  = (d) : N → Zd .
Often, we do not worry about writing down the bijection explicitly as we did for the
d = 1 case in (2.8). We do, however, assume that such a bijection takes the form

(d) (i) = ((ς (i)1), . . . , (ς (i)d)) , i ∈ N, (2.11)

where  denotes the one-dimensional bijection (2.8), ς is an arbitrary bijection N→ Nd

and ς (i)k is the kth component of ς (i).

2.2.3 Discrete Fourier Measurements and the Fourier Matrix

Let f : [0, 1] → C. Then

F f (2πω) =
∫ 1

0
f (x)e−2πiωx dx ≈ 1

N

N∑
j=1

x je−2πiω( j−1)/N, (2.12)

where x j = f (( j − 1)/N ) and x = (x j )Nj=1 is the discretization of f at resolution N .
Assume that N is even. Restricting ω to the values {−N/2+ 1, . . . , N/2}, the expression
(2.12) gives an approximation to F f at the lowest N frequencies. Using the bijection
(2.8), and noting (2.10), we can write this as

(〈 f , υ�(i)〉)Ni=1 ≈
1
N

Fx. (2.13)

Here the matrix F ∈ CN×N is defined as follows:
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2.2 Sampling with the Fourier Transform 35

Definition 2.1 (Fourier matrix) The one-dimensional Fourier matrix is the matrix
F = F (1) ∈ CN×N with entries

Fi j = exp(−2πi(i)( j − 1)/N ), i, j = 1, . . . , N .

For d ≥ 2, the d-dimensional Fourier matrix is given by

F (d) = F (1) ⊗ · · · ⊗ F (1) ∈ CNd×Nd

,

where ⊗ denotes the Kronecker product.

When clear, we simply write F for the d-dimensional Fourier matrix. Note that
N−dF∗F = I; that is, the Fourier matrix is unitary up to the scaling 1/

√
Nd. As we

discuss in Remark 2.2, F is closely related, although not identical, to the matrix of the
Discrete Fourier Transform (DFT).

Much as in the one-dimensional case (2.13), the d-dimensional Fourier matrix gives
an approximation to the lowest Nd frequencies of a d-dimensional continuous image
f : [0, 1]d → C. Let ς be the lexicographical ordering (2.2) and  = (d) : {1, . . . , Nd } →
{−N/2 + 1, . . . , N/2}d be the bijection defined by

(d) (i) = ((ς (i)1), . . . , (ς (i)d)) , i = 1, . . . , Nd, (2.14)

where  is as in (2.8) and ς (i)k denotes the kth component of ς (i). Let X be the
discretization of f at resolution N and x = vec(X ) ∈ CNd . Then

〈 f , υ�(i)〉 =
∫

[0,1]d
f (x)e−2πi�(i) ·x dx

≈ N−d
Nd∑
j=1

f

(
ς ( j)1 − 1

N
, . . . ,

ς ( j)d − 1
N

)
exp ��−2πi

d∑
k=1

(ς (i)k )(ς ( j)k − 1)
N

��
= N−d

Nd∑
j=1

x j

d∏
k=1

F (1)
ς (i)k,ς ( j)k

= N−d
Nd∑
j=1

F (d)
i j x j .

Here in the last step we used (A.21). This gives

1
Nd

Fx ≈
(
〈 f , υ�(i)〉

)Nd

i=1
.

In other words, N−dFx is an approximation to the Fourier transform F f (2πω) at the
lowest Nd frequencies ω ∈ {−N/2 + 1, . . . , N/2}d .

Remark 2.2 The form of the Fourier matrix used in Definition 2.1 is convenient for
several reasons. First, it arises directly in the discretization of the Fourier integral (2.12).
Second, the ordering of its rows is useful for the mathematical analysis performed in
later chapters. However, it is somewhat unconventional, and therefore worth explaining
how it relates to the DFT F : CN → CN (Definition E.1). The connection is as follows.
For any x ∈ CN ,

Fx = QF (Dx),
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36 Images, Transforms and Sampling

where D ∈ CN×N is the diagonal matrix with diagonal entries

D j j = exp(2πi(N/2 − 1)( j − 1)/N ), j = 1, . . . , N,

and Q ∈ RN×N is the permutation matrix with

Qi j = δ�(i)+N/2−j, i, j = 1, . . . , N .

Hence Fx is the DFT of a phase-shifted version of x, followed by a permutation to
account for the different indexing of frequency space. As a result, the matrix–vector
multiplications x �→ Fx and y �→ F∗y can be implemented efficiently, in O(N log(N ))
arithmetic operations, using the Fast Fourier Transform (FFT). A similar relation, which
we will not discuss explicitly, also holds in two or more dimensions.

2.2.4 The Discrete Fourier Reconstruction Problem

Consider the problem (2.7) and let N be such that Ω ⊆ {−N/2 + 1, . . . , N/2}d . In other
words, the maximal frequency sampled is at most N/2. Let P ∈ Rm×Nd be the row
selector matrix that picks the rows of the d-dimensional Fourier matrix F corresponding
to the values

{−1(ω) : ω ∈ Ω} ⊆ {1, . . . , Nd },

where  is as in (2.14), and write A = PF ∈ Cm×Nd . We now arrive at the following
discrete counterpart of the problem (2.7):

Given the data y = Ax, recover x. (2.15)

Since Ω usually corresponds to a subset of the Nd lowest frequencies, we refer to
the matrix A as a subsampled Fourier matrix. Because of Remark 2.2, matrix–vector
multiplications with A and A∗ can be performed efficiently.

It is worth stressing that (2.7) and (2.15) are related, but distinct problems. The
former involves measurements of the continuous Fourier transform of a continuous
image f , while the latter involves measurements of the discrete Fourier transform of its
discretization X = vec−1(x). The corresponding discretization error and its effect will
be discussed further in the next chapters.

2.3 Sampling with the Radon Transform

While the Fourier transform arises in many imaging modalities, arguably even more
modalities are based on the so-called Radon transform. This transform and its variants
underlie tomographic imaging, which is found widely in applications. We now give a
short introduction to this transform.
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lt,θ
t

Figure 2.3 The parametrization (t, θ) of
lines in the plane.

2.3.1 Definition

The Radon transform is an operator taking a function f : R2 → C to the set of values
corresponding to its integrals along arbitrary lines in the plane. In order to define it,
we first need a parametrization of such lines. Every line in the plane can be expressed
in terms of an angle 0 ≤ θ < 2π measured counterclockwise from the x-axis that
defines a normal vector n = (cos(θ), sin(θ)), and a perpendicular displacement t ∈ R
from the origin. This is shown in Fig. 2.3. Given (t, θ) ∈ R × [0, 2π) we write lt,θ for
the corresponding line. Note that l−t,θ = lt,θ+π , meaning this parametrization is not
one-to-one. To enforce uniqueness we may, for instance, consider angles θ ∈ [0, π) only.

Definition 2.3 (Radon transform) The Radon transform R f of f : R2 → R is

R f (t, θ) =
∫
lt, θ

f ds =
∫ ∞

−∞
f (t cos(θ) − s sin(θ), t sin(θ) + s cos(θ)) ds,

for t ∈ R and 0 ≤ θ < π, where, in the first integral, ds is the arclength measure along
the line lt,θ .

Note that R f need not be defined for arbitrary f and arbitrary (t, θ). We shall not
discuss existence conditions in any depth, except to say that R f is defined everywhere
when, for example, f is piecewise continuous and compactly supported. This is a
suitable model for the images in this book. Observe that the Radon transform is linear,
i.e. R (a f + bg) = aR ( f ) + bR (g) whenever the corresponding transforms are defined.

2.3.2 The Radon Reconstruction Problem

Similar to the Fourier transform, the image reconstruction problem from Radon mea-
surements takes the following form:

Given the data {R f (t, θ) : (t, θ) ∈ Θ}, recover f . (2.16)

Here Θ ⊂ R × [0, π) corresponds to a finite subset of lines in the plane.
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This problem also requires discretization – an issue we pursue in a moment. First,
however, we develop the intimate relationship between the Radon and Fourier transforms,
the so-called Fourier-slice theorem.

2.3.3 The Fourier-Slice Theorem

The Fourier-slice (also projection-slice or central-slice) theorem states (under mild
conditions on f : R2 → C) that the one-dimensional Fourier transform of R f (t, θ) with
respect to the displacement t is equal to the two-dimensional Fourier transform of f
expressed in polar coordinates. Specifically,

F1R f (ω, θ) = F f (ω cos(θ), ω sin(θ)), ω ∈ R, θ ∈ [0, 2π), (2.17)

where F denotes the two-dimensional Fourier transform and F1 is the one-dimensional
Fourier transform with respect to the first component.

From the perspective of measurements, the Fourier-slice theorem means that sampling
the Radon transform of f at a fixed angle and a full set of displacements t ∈ R, i.e.
acquiring the data

{R f (t, θ) : t ∈ R}, (2.18)

is equivalent to sampling the Fourier transform of f along the radial line with angle θ,
i.e. the data

{F f (ω cos(θ), ω sin(θ)) : ω ∈ R}.

Note that (2.18), or more precisely, the function gθ (t) = R f (t, θ), is often referred
to as the Radon projection of f at angle θ. Hence, acquiring the Radon projection is
equivalent to sampling the Fourier transform of f along the corresponding radial line.
More generally, acquiring k Radon projections of f at k distinct angles is equivalent to
sampling F f along the corresponding k radial lines.

2.3.4 Filtered Back-Projection

While not strictly connected to the question of discretization, since it follows naturally
from the Fourier-slice theorem, we now briefly discuss the matter of inversion of the
Radon transform.

The Fourier transform is invertible and its inverse has a simple expression. By contrast,
inverting the Radon transform is a more delicate affair. The so-called filtered back-
projection formula gives an explicit expression for a certain left inverse of R. In order
to state this, we first introduce the back-projection operator:

Definition 2.4 (Back-projection) Let g = g(t, θ) be a function on R × [0, π). The
back-projection of g, Bg, is

Bg(x) =
1
π

∫ π

0
g(x1 cos(θ) + x2 sin(θ), θ) dθ, ∀x = (x1, x2) ∈ R2.
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Suppose that g = R f is the Radon transform of some function f . Then the back-
projection Bg(x) at a point x simply averages the value of the line integrals of f over
all lines lt,θ passing through the point x.

It is tempting to think that back-projection might invert the Radon transform. Unfor-
tunately, applying B to the Radon transform R f of a function f does not return f itself,
but rather a blurred version of it. We will illustrate this later in Fig. 3.7. To obtain an
inversion formula, one first needs to filter R f in a suitable way before applying B. This
leads to the well-known filtered back-projection formula:

f =
1
2
B
(
F −1

1 ( |ω |F1 (R f ) (ω, θ))
)
. (2.19)

Observe that if the factor |ω | were omitted, the right-hand side would be precisely BR f ,
and therefore not equal to f . This factor provides the filtering needed – specifically,
suppressing low frequencies and amplifying high frequencies – to counteract the blurring
effect of the back-projection operator B.

2.3.5 The Discrete Radon Reconstruction Problem 1: Radial Fourier Sampling

There are several ways to discretize the Radon transform. The first way is to use the
Fourier-slice theorem followed by the Fourier discretization of §2.2.3 to obtain discrete
Fourier measurements along radial lines. This approach assumes that the set of samples

Θ = {(t, θi) : t ∈ R, i = 1, . . . , k}

consists of a finite set of angles 0 ≤ θ1 < · · · < θk < π and all possible displacements
t ∈ R. That is, one acquires the full Radon projections of f at each angle θi . The Fourier-
slice theorem then gives that (2.16) is equivalent to the Fourier reconstruction problem
(2.7) with

Ω′ = {(ω cos(θi), ω sin(θi)) : ω ∈ R, i = 1, . . . , k} .

To convert this to a discrete problem, we fix a resolution N and then approximate Ω′
by a finite index set of integer frequencies Ω ⊆ {−N/2 + 1, . . . , N/2}2. This can be
done, for instance, by replacing each point (ω cos(θi), ω sin(θi)) ∈ Ω′ ∩ (−N/2, N/2]2

with its nearest integer neighbour, a process known as nearest-neighbour gridding (also
known as regridding). Having done this, the discrete analogue of (2.16) is then simply
the discrete Fourier reconstruction problem (2.15) with the index set Ω.

This discretization procedure commits several errors. There is the error due to dis-
cretizing the continuous Fourier transform as in §2.2.3. There is also the error due to
gridding. Moreover, in order to set up the discrete problem, one needs to take the one-
dimensional Fourier transform F1 of the projection R f (·, θ). In fact, one usually cannot
acquire R f (t, θ) at all displacements t ∈ R in practice. Instead, the displacements are
sampled on a finite, but sufficiently fine grid, and then the continuous Fourier transform
F1 is replaced by a DFT. This, however, gives rise to another source of error.
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2.3.6 The Discrete Radon Reconstruction Problem 2: Algebraic Formulation

Discretization errors aside, another issue with this approach is that it requires one to
acquire the full Radon projection at each angle. As we explain in Chapter 3 in the context
of X-Ray CT, this may not be desirable or even possible in practice.

We now describe a simpler and more flexible discretization procedure. Suppose that
the measurements correspond to an arbitrary set of lines

Θ = {(ti, θi) : i = 1, . . . ,m} ⊂ R × [0, π).

We cannot appeal to the Fourier-slice theorem in this case. Instead, we discretize simply
by replacing f with its discretization x ∈ CN2 at resolution N . This gives

R f (ti, θi) ≈
N2∑
j=1

xiR ( χ j )(ti, θi),

where { χ j } is the pixel basis (see §2.1). Hence we may replace (2.16) with the discrete
problem

Given the data y = Ax, recover x, (2.20)

where A ∈ Rm×N2 is the matrix with (i, j)th entry R ( χ j )(ti, θi). Note that these entries
are straightforward to compute since { χ j } is the pixel basis.

This discretization is not only simpler and more flexible than the previous approach,
it also commits only one discretization error, instead of three. A downside is that FFTs
cannot be used for the matrix–vector multiplications. Yet, the matrix A is usually sparse,
since the vast majority of pixels do not intersect a given line. Hence sparse matrix tools
can be employed to accelerate computations.

2.4 Binary Sampling with the Walsh Transform

We now introduce our final transform of this chapter, the Walsh (or Walsh–Hadamard)
transform. This is a binary analogue of the Fourier transform, and shares many of its
properties. Additional details on this transform and proofs of the results stated in this
section can be found in Appendix F.

2.4.1 Walsh Functions

The derivation of the Walsh transform begins with the definition of the so-called Walsh
functions. These are based on dyadic representations of numbers:

Definition 2.5 The dyadic expansion of x ∈ [0, 1) is the series

x =
∞∑
i=1

xi2−i, (2.21)

where (xi)i∈N ∈ {0, 1}N. The sequence (xi)i∈N is denoted ẋ.
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2.4 Binary Sampling with the Walsh Transform 41

The dyadic expansion defines a mapping between the set of binary sequences {0, 1}N
and the interval [0, 1). This map is not one-to-one. Indeed, a dyadic rational x = k/2j

can be represented either by a finite expansion, or by an infinite expansion where xi = 1
for all i > j. This problem is easily remedied, however, by simply choosing the finite
expansion instead of the infinite expansion whenever the possibility arises. This yields
a one-to-one correspondence between [0, 1) and the subset G of {0, 1}N, defined by

G =
{
ẋ = (xi)i∈N ∈ {0, 1}N : xi = 0 infinitely often

}
.

We write g : [0, 1) → G for the corresponding bijection. Observe that every
ẋ ∈ {0, 1}N\G has xi = 0 for only finitely many i, i.e. xi = 1 for all i > j for
some j.

Similarly, but more straightforwardly, we define the dyadic expansion of a nonnegative
integer n ∈ N0 as

n =
∞∑
i=1

ni2i−1, (2.22)

where (ni)i∈N ∈ {0, 1}N. This gives a one-to-one mapping N0 → H ⊂ {0, 1}N, where H
is the set of binary sequences with only finitely many nonzero terms.

Definition 2.6 (Walsh functions, Paley ordering) The Paley-ordered Walsh functions
are defined by

υn(x) = υPn (x) = (−1)
∑∞

i=1 ni xi , x ∈ [0, 1), n ∈ N0, (2.23)

where (xi)i∈N ∈ G and (ni)i∈N ∈ H are the dyadic expansions of x and n, respectively.

Figure 2.4 plots the first 16 Walsh functions. Observe that each function takes values
in {+1,−1} and has finitely many sign changes in [0, 1). The pattern that these sign
changes take is described further in Lemma F.1.

2.4.2 The Walsh Basis and Transform

As shown in Theorem F.7, the Walsh functions {υn}n∈N0 form an orthonormal basis of
L2([0, 1)). Hence, we may write every f ∈ L2([0, 1)) as

f =
∞∑
n=0

H f (n)υn,

where H f (n) = 〈 f , υn〉L2 are the (Paley-ordered) Walsh coefficients of f . We refer to
the operator

H : L2([0, 1)) → �2(N0), f �→ (〈 f , υn〉L2
)∞
n=0 (2.24)

as the (Paley-ordered) Walsh transform (also known as the Walsh–Hadamard transform).
We can extend the Walsh basis to higher dimensions via tensor products. Specifically,

we define the system {υn}n∈Nd
0

, where υn is the d-fold tensor product

υn = υn1 ⊗ · · · ⊗ υnd
, n = (n1, . . . , nd) ∈ Nd

0 , (2.25)
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vP0 vS0

vP1 vS1

vP2 vS3

vP3 vS2

vP4 vS7

vP5 vS6

vP6 vS4

vP7 vS5

vP8 vS15

vP9 vS14

vP10 vS12

vP11 vS13

vP12 vS8

vP13 vS9

vP14 vS11

vP15 vS10

Figure 2.4 The first 16 Walsh functions with the Paley (vPn ) or sequency (vSn ) orderings.

of the univariate Walsh functions. This is an orthonormal basis of L2([0, 1)d) by con-
struction. The d-dimensional Walsh transform H : L2([0, 1)d) → �2(Nd

0 ) is defined in
the obvious manner.

2.4.3 The Sequency Ordering

The Paley ordering is convenient for establishing many of the theoretical properties
of the Walsh functions. However, as shown in Fig. 2.4, it has the disadvantage that the
number of sign changes of the nth Walsh function is generally not equal to n. The number
of sign changes is known as the sequency of the Walsh function, a property that can be
thought of as its frequency. Fortunately, this issue can be remedied by switching to the
so-called sequency ordering:

Definition 2.7 (Walsh functions, sequency ordering) The sequency-ordered Walsh
functions are defined by

υn(x) = υSn (x) = (−1)
∑∞

i=1 (ni+ni+1)xi , x ∈ [0, 1), n ∈ N0,

where (xi)i∈N ∈ G and (ni)i∈N ∈ H are the dyadic expansions of x and n, respectively.

https://doi.org/10.1017/9781108377447.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108377447.004


2.4 Binary Sampling with the Walsh Transform 43

It will come as little surprise to the reader to learn that the sequency-ordered Walsh
functions are ordered with increasing sequency. Specifically, for each n, υn = υSn has
precisely n sign changes in [0, 1). See Fig. 2.4. Since sequency is analogous to frequency,
we commonly refer to the index n ∈ N0 of the sequency-ordered Walsh function as the
Walsh frequency. In particular, figures in this book showing Walsh sampling schemes
(see Fig. 1.5, as well as other examples in Chapters 3 and 4) are always done with respect
to this ordering.

Figure 2.4 describes the relation between the first 16 Paley- and sequency-ordered
Walsh functions. As shown in Lemma F.8, in the general case one has

υSn = υ
P
h(n), n ∈ N0,

where h(n) ∈ N0 is known as the Gray code of n ∈ N0. Lemma F.9 also shows that

{υPn : 2j ≤ n < 2j+1} = {υSn : 2j ≤ n < 2j+1}. (2.26)

In particular, the first 2r Paley-ordered Walsh functions coincide with the first 2r
sequency-ordered Walsh functions, and in general, switching between the two order-
ings has no effect on the dyadic structure of the Walsh basis.

2.4.4 The Hadamard Matrix and the Discrete Walsh–Hadamard Transform

Let N = 2r and x = (x j )Nj=1 ∈ C
N be the discretization of a continuous, one-dimensional

image f : [0, 1] → C at resolution N . As in §2.2.3, we can approximate the continuous
Walsh transform of f by

H f (n) ≈ 1
N

N∑
j=1

x jυn(( j − 1)/N ).

Hence the lowest N Walsh frequencies can be approximated by(H f (n)
)N−1
n=0 ≈ 1

N
H x,

where H ∈ RN×N is the following matrix:

Definition 2.8 (Hadamard matrix) For N = 2r , the one-dimensional Paley- or sequency-
ordered Hadamard matrix is the matrix H = H (1) ∈ RN×N with entries

Hm+1,n+1 = υm(n/N ), m, n = 0, . . . , N − 1,

where υm are the Paley- or sequency-ordered Walsh functions. For d ≥ 2, the d-
dimensional Hadamard matrix is given by

H (d) = H (1) ⊗ · · · ⊗ H (1) ∈ RNd×Nd

.

As before, we write H for H (d) whenever the meaning in clear. The matrix H has
entries in {−1,+1}. It is also symmetric, H = H�, and unitary up to a constant with
N−dH�H = I (see Proposition F.10). As in one dimension, if f : [0, 1]d → C and
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Paley Sequency Ordinary

Figure 2.5 The 32 × 32 Hadamard matrix H with the Paley, sequency and ordinary orderings.
White corresponds to a value of +1 and black to a value of −1.

x ∈ CNd is its discretization at resolution N , then N−dH x is an approximation to the
lowest Nd Walsh frequencies of f . Specifically,

1
Nd

H x ≈
(
H f (−1(i))

)Nd

i=1
,

where  = (d) : {1, . . . , Nd } → {0, . . . , N − 1}d is the bijection defined by

(d) (i) = (ς (i)1 − 1, . . . , ς (i)d − 1) , i = 1, . . . , Nd, (2.27)

and ς is as in (2.2).
Much like the discrete Fourier transform, the Hadamard matrix gives rise to a discrete

transform H : CNd → CNd , the Discrete Walsh–Hadamard Transform (DHT). It and
its inverse are given by

H (x) = H x, H−1(y) = N−dHy, x, y ∈ CNd

. (2.28)

Note that we use the letter ‘H’ here (rather than ‘W ’) to avoid confusion with the Discrete
Wavelet Transform (DWT) introduced in Chapter 9.

Finally, we remark that the Paley- and sequency-ordered Hadamard matrices are
related to a third type of Hadamard matrix that is often found in the literature:

Definition 2.9 (Ordinary Hadamard matrix) Let N = 2r . The ordinary Hadamard
matrix H = Hr ∈ RN×N is defined by

H1 =

(
1 1
1 −1

)
, Hr = Hr−1 ⊗ H1 =

(
Hr−1 Hr−1
Hr−1 −Hr−1

)
.

The ordinary Hadamard matrix is simply a reordering of the rows of of the Paley-
or sequency-ordered Hadamard matrix (Proposition F.11). These three forms of the
Hadamard matrix are shown in Fig. 2.5.

A motivation for introducing the ordinary Hadamard matrix is because it easily admits
a fast transform. Its dyadic structure means that matrix–vector multiplications can be
computed efficiently using a divide-and-conquer approach. This approach is described
in §F.5. Much like the FFT, it involves only O (N log(N )

)
arithmetic operations. This
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means the DHT (with respect to either the Paley or sequency ordering) can also be
implemented in O (N log(N )

)
time, since the Paley- or sequency-ordered Hadamard

matrices are simply row permutations of the ordinary Hadamard matrix. We refer to the
resulting procedure as the Fast Walsh–Hadamard Transform (FHT).

2.4.5 The Continuous and Discrete Walsh Reconstruction Problems

LetΩ ⊂ Nd
0 be a finite set of Walsh frequencies (recall that this means we are considering

the sequency ordering) and f : [0, 1]d → C be a continuous d-dimensional image. The
continuous Walsh reconstruction problem is

Given the data {H f (n) : n ∈ Ω}, recover f .

To derive the discrete problem, let N be such that Ω ⊆ {0, . . . , N − 1}d and P ∈ Rm×Nd

be the row selector matrix that picks out the rows of the sequency-ordered Hadamard
matrix H ∈ RNd×Nd corresponding to the values

{−1(n) : n ∈ Ω} ⊆ {1, . . . , Nd },

where  is as in (2.27). If x ∈ CNd is the discretization of f at resolution N , then the
corresponding discrete reconstruction problem is simply

Given the data y = Ax, recover x,

where A = PH ∈ Rm×Nd is the corresponding subsampled Hadamard matrix.

Notes

The introduction to images given in §2.1 is brief, but sufficient for the remainder of this
book. For a significantly more in-depth treatment, see for example [50]. See [50,273,491]
for further discussion on the limitations of MSE and PSNR for assessing image quality.

The Shepp–Logan phantom (‘SL phantom’ in Fig. 2.2) is a famous test image in
medical imaging, introduced in 1974 by Shepp and Logan [437]. It is a continuous,
piecewise constant image defined as a sum of ten ellipses. In particular, its continuous
Fourier and Radon transforms can be calculated exactly. Unfortunately, the SL phantom
is rather too simple a test image in many cases. This motivated the development of the
second image in Fig. 2.2, the ‘GLPU phantom’, introduced by Guerquin-Kern, Lejeune,
Pruessmann & Unser [245]. Like the SL phantom it is a continuous, piecewise constant
image with an analytic expression for its Fourier transform. Discretized versions of
both images can, of course, be generated at any resolution. The ‘brain’ image is a
512 × 512 image obtained from an actual MRI scan. The resolution is limited by the
scanner, and the object being scanned (a human brain). The ‘pomegranate’ image is a
2048×2048 image from an MRI scan of a pomegranate fruit, the higher resolution being
possible in this case because the object is not a living subject.

The ‘peppers’ image is also a standard test image in image processing. It can be
found in a database maintained by the University of Southern California’s Signal and
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Image Processing Institute [1]. The original image is colour, and of size 512 × 512. The
‘donkey’ image is from the authors’ collection and is of size 768 × 768.

Our cursory treatment of the Radon transform hardly does it justice. Whole books
have been devoted to its mathematical properties and practical implementation. We have
based §2.3 on [198, 204, 305, 370]. Derivations of the Fourier-slice theorem (2.17) and
filtered back-projection formula (2.19) can be found in these sources. What makes the
Radon transform challenging and interesting, both theoretically and computationally,
is the question of its inversion. Filtered back-projection (2.19) is just one possible left
inverse. However, there are many others. This stems from the fact that the range of the
Radon transform is not the whole space. In contrast, the Fourier transform has a unique
inverse on L2(R).

Discretization of the filtered back-projection formula, as described in §2.3.5, is the
standard means to numerically invert the Radon transform in the classical setting –
that is, where there is ‘sufficient’ data. For an in-depth treatment, see [198, Chpt. 10]
and [370, Chpt. 5]. By and large, this remains the standard algorithm for commercial
X-ray CT scanners [386] (see also the Notes section of Chapter 3). The other approach
described in §2.3.6 is related to the so-called Algebraic Reconstruction Technique (ART).
It ignores properties of the Radon transform such as the Fourier-slice theorem and sim-
ply discretizes the continuous image. Classically, when the number of measurements
m exceeds the number of degrees of freedom Nd this has been solved as an overdeter-
mined (and possibly also regularized) least-squares problem. Fast solvers use iterative
algorithms such as Kaczmarz’s method. See [198,370]. As we note in §3.3, this type of
discretization is often preferred when applying compressed sensing techniques.

Walsh series were introduced by Walsh in 1923 [485]. They are far less well known
than their famous Fourier cousin, and used far less widely in practice. Historically, Walsh
series have found applications in coding theory and image and signal processing. Our
treatment here and in Appendix F covers only the basic properties, which will be sufficient
for the remainder of this book. We have based these sections on [54, 224, 232], all of
which contain far greater detail. The various orderings of the Walsh basis are sometimes
given different names in the literature. The sequency ordering is often referred to as the
Walsh–Kaczmarz ordering [54, p. 17], and the Paley ordering as the natural, normal
or dyadic ordering. Typically, the Paley ordering is preferred for theory, whereas the
sequency ordering is favoured in practice, due to its analogy with frequency.
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