
J. Functional Programming 10 (1): 19–56, January 2000. Printed in the United Kingdom

c© 2000 Cambridge University Press

19

Kleisli, a functional query system

LIMSOON WONG

Kent Ridge Digital Labs,

21 Heng Mui Keng Terrace, Singapore 119613

(e-mail: limsoon@krdl.org.sg)

Abstract

Kleisli is a modern data integration system that has made a significant impact on bioinfor-

matics data integration. This paper contains a brief introduction to the Kleisli system and

an example to illustrate its uses in the bioinformatics arena. The primary query language

provided by Kleisli is called CPL, which is a functional query language whose surface syntax

is based on the comprehension syntax. Kleisli is itself implemented using the functional lan-

guage SML. So this paper also describes the influence of functional programming research

that benefits the Kleisli system, especially the less obvious ones at the implementation level.

Availability. Kleisli has been commercialized under the name “KRIS”. It is available from

Kris Technology Inc., 713 Santa Cruz Ave, #2, Menlo Park, CA 94025, USA. Direct email to

info@kris-inc.com and web browser to http://www.kris-inc.com.

Capsule Review

In April 1993, a workshop organised by the US Department of Energy considered the

database requirements of the Human Genome Project. An appendix of the workshop report

listed twelve queries that would be difficult or impossible to answer with current database

systems, because they require combining information from two or more databases in disparate

formats.

All twelve of these queries have been answered using Kleisli/CPL. CPL (Collection Pro-

gramming Language) is a high-level language for formulating queries. Kleisli, the system that

implements CPL, translates CPL into SQL for querying relational databases, or runs the

queries against data in ASN.1 or other formats. Kleisli/CPL is in active use by bioinformatics

researchers, and is in production use in the pharmaceutical industry.

Functional programming plays two roles here: CPL is a functional language, and Kleisli is

written in Standard ML. As well as explaining how Kleisli/CPL is used for bioinformatics,

the article details three places where functional programming techniques play a role: how

type inference supports a flexible exchange format; the use of monads in a query language;

and applying higher-order functions to optimize queries.

1 Introduction

The Kleisli system (Davidson et al., 1997) is an advanced broad-scale integration

technology that has proved useful in the bioinformatics arena (Benton, 1996; Karp,

1996; Baker and Brass, 1998; Leser et al., 1998). Many bioinformatics problems

require access to data sources that are high in volume, highly heterogeneous and

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

20 L. Wong

complex, constantly evolving, and geographically dispersed. Solutions to these prob-

lems usually involve multiple carefully sequenced steps and require information to be

passed smoothly between the steps. Kleisli is designed to handle these requirements

directly by providing a high-level query language, CPL (Wong, 1998a), that can be

used to express complicated transformation across multiple data sources in a clear

and simple way.

Many key ideas in the Kleisli system are influenced by functional programming

research, as well as database query language research. Its high-level query language

CPL is a functional programming language that has a built-in notion of “bulk” data

types suitable for database programming and has many built-in operations required

for modern bioinformatics. Kleisli is itself implemented on top of the functional

programming language Standard ML of New Jersey (SML/NJ). Even the data

format that Kleisli uses to exchange information with the external world is derived

from an idea in type inference.

This paper provides an overview of the Kleisli system; a summary of its impact

on query language theory; an illustration of its uses in the bioinformatics arena;

and a description of the influence of functional programming research that benefits

the Kleisli system, especially the less obvious ones at the implementation level. The

organization of the paper is as follows. Section 2 has three subsections that give

an overview of the architecture, data model, and query language (CPL) of Kleisli.

Section 3 has three subsections that explain the impact of Kleisli on the integration

of biology data and illustrate this impact using a real-life example. Section 4 also

has three subsections that single out three areas in the implementation of Kleisli and

discuss how they are influenced by functional programming research. In particular,

how type inference gives rise to Kleisli’s self-describing data exchange format, how

monad gives rise to Kleisli’s internal abstract representation of queries and simple

optimization rules, and how higher-order functions give rise to a simple implemen-

tation of Kleisli’s powerful optimizer. The effectiveness of this optimizer is discussed

in section 5. Section 6 discusses the differences between the old 1994 prototype the

author built at the University of Pennsylvania and the current production version

constructed at Kent Ridge Digital Labs as presented in this paper.

2 Quick tour of Kleisli

Kleisli can be regarded as a system for data access, transformation, and integration.

It sits between heterogeneous data sources and tools that operate on some integrated

version of the available data. In this quick tour, the focus is on the data model of

Kleisli that is based on complex object types and on the high-level query language

supported by Kleisli called CPL (Collection Programming Language). Its basic

architecture is presented in section 2.1, its data model in section 2.2, and an overview

of CPL in section 2.3.

2.1 Architecture

The Kleisli system (Davidson et al., 1997) is written entirely in SML/NJ. The

architecture of the system is depicted in Figure 1. Kleisli is extensible in many ways:

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 21

CPL-Kleisli

pipe

memory
shared

Net

Servers
Remote

GSDB

GenBank

GDB

NCBI-BLAST

Sybase

ASN.1

Drivers

BLAST

CPL

Type

NRC

Optimizer

Driver

Object

Complex

Manager

OPM

Manager

Library

Primitive

Module

ACeDB

Fig. 1. Kleisli architecture.

it can be used to support many other high-level query languages by replacing the

CPL module. Kleisli can also be used to support many different types of external

data sources by adding new drivers, which forward Kleisli’s requests to these sources

and translate their replies into Kleisli’s exchange format. The installation at Kent

Ridge Digital Labs contains over 60 drivers for all popular bioinformatics systems,

including Sybase, Oracle, Entrez (Schuler et al., 1996), WU-BLAST2 (Altschul and

Gish, 1996), Gapped BLAST (Altschul et al., 1997), ACEDB (Walsh et al., 1998),

etc. Furthermore, the optimizer of Kleisli can be customized by adding different

rules and strategies.

When a query is submitted to Kleisli, it is first processed by the CPL Module which

translates it into an equivalent expression in NRC. The abstract calculus NRC is

based on that described by Buneman et al. (1995), and is chosen as the internal query

representation because it is easy to manipulate and amenable to machine analysis.

The NRC expression is then analyzed by the Type Module to infer the most general

valid type for the expression, and is passed to the Optimizer Module. Once optimized,

the NRC expression is then compiled by the NRC Module into calls to the Complex

Object Library. The resulting compiled code is then executed, accessing drivers and

external primitives as needed through pipes or shared memory. The Driver and

Primitive Managers keep information on external sources and primitives and the

wrapper/interface codes to them. The Complex Object Library contains routines

for manipulating complex objects such as codes for set intersection and codes for

iterating over a set.

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

22 L. Wong

The core of the Kleisli system is divided into two main components, as shown

by the dotted line in the figure. The first component provides high-level language

support and consists of the CPL Module (approximately 7000 lines of SML codes),

the Type Module (approximately 3100 lines), the Nested Relational Calculus (NRC)

Module (approximately 3300 lines), and the Optimizer Module (approximately 3500

lines including codes for actual optimization rules). The second component is the

query engine and consists of the Driver Manager (approximately 16100 lines in-

cluding codes for actual drivers), the Primitive Manager (approximately 5400 lines

including codes for actual primitives implementation), and the Complex Object Li-

brary (approximately 7000 lines). More detail of the implementation of Kleisli is

deferred to a later section, where the influence of functional programming is dis-

cussed. For now, let us proceed to a quick tour of CPL and see some bioinformatic

actions.

2.2 Complex object types

The data model underlying Kleisli is a complex object type system that goes beyond

the “sets of records” or “flat relations” type system of relational databases (Codd,

1970). It allows arbitrarily nested records, sets, lists, bags, and variants. A bag is

also called a multi-set, which is conceptually a set in which duplicates may occur.

A list is conceptually a bag with order. A variant is also called a tagged union

type and represents a type that is “either this or that”. Our sets, bags, and lists are

homogeneous. In order to mix objects of different types in a set, bag, or list, it is

necessary to inject these objects into a variant type.

The simultaneous availability of sets, bags, and lists in Kleisli deserves some

comments. In a relational database, the sole “bulk” data type is the set. In a

functional programming language, the usual “bulk” data type is the list. Having

only one bulk data type presents at least two problems in many important real life

applications. Firstly, the particular bulk data type, be it set or list, may not be a

natural model of real data. For example, if we are modeling the author list of a

paper and the ordering of authors is important, it is conveniently modeled as a

list. If it is modeled as a set, then it is necessary to model it as a set of author-

position pairs, to avoid losing information on the ordering of authors. Secondly, the

particular bulk data type, be it set or list, may not be an efficient model of real

data. For example, if we are modeling the author list of a paper and the ordering

of authors is unimportant for the particular application we have in mind, it is

conveniently modeled as a set. If it is modeled as a list, then well-known database

query optimizations such as re-ordering of joins (Ullman, 1989) can no longer be

applied, as they normally do not preserve positional ordering.

Example 2.1

The GenPept report is the format chosen by the US National Center for Biotech-

nology Information to present amino acid sequence information. The information

includes the sequence itself, its interesting biological features, its derivation from a

source DNA sequence, references to papers and authors studying it, cross references

to other databases containing related information, and so on. While an amino acid

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 23

sequence can be thought of as a string of letters, certain regions and positions of the

string are of special biological interest, such as binding sites, active sites, domains,

and so on. The feature table of a GenPept report is the part of the GenPept report

that documents the positions of these regions of special biological interest, as well as

annotations or comments on these regions. The following type represents the feature

table of a GenPept report from Entrez (Schuler et al., 1996).

(#uid: num, #title: string, #accession: string,

#feature: { (#name: string, #start: num, #end: num,

#anno: [(#anno_name: string, #descr: string)]) })

It is an interesting type because it is a record of set of lists of records. Here is

the detail. It is a record of four fields #uid, #title, #accession, and #feature.

The first three of these store values of types num, string, and string, respectively.

The #uid field uniquely identifies the GenPept report. The #feature field is a set of

records, which together form the feature table of the corresponding GenPept report.

Each of these records has four fields #name, #start, #end, and #anno. The first three

of these have types string, num, and num respectively. They represent, respectively,

the name, start position and end position of a particular feature in the feature table.

The #anno field is a list of records. Each of these records has two fields #anno_name

and #descr, both of type string. These records together represent all annotations

on the corresponding feature. �

In general, the types are freely formed by the syntax: t ::= num | string | bool |
{t} | {|t|} | [t] | (l1 : t1, ..., ln : tn) | <l1 : t1, ..., ln : tn>. Here num, string, and

bool are the base types. The other types are constructors and build new types from

existing types. The types {t}, {|t|}, and [t] respectively construct set, bag and list

types from type t. The type (l1 : t1, ..., ln : tn) constructs record types from types t1,

..., tn. The type <l1 : t1, ..., ln : tn> constructs variant types from types t1, ..., tn. The

flat relations of relational databases are basically sets of records, where each field

of the records is a base type; in other words, relational databases have no bags, no

lists, no variants, no nested sets and no nested records. Values of these types can be

explicitly constructed in CPL as follows, assuming the e’s are values of appropriate

types: (l1 : e1, ..., ln : en) for records; <l : e> for variants; {e1, ..., en} for sets;

{|e1, ..., en|} for bags; and [e1, ..., en] for lists.

Example 2.2
A value conforming to our feature table type is

(#uid: 131470, #accession: "131470", #title: "... (PTP-1C)...",

#feature: {(#name: "source", #start: 0, #end: 594,

#anno: [(#anno_name: "organism", #descr: "Mus musculus"),

(#anno_name: "db_xref", #descr: "taxon:10090")]), ...})

This particular feature table belongs to GenPept report 131470, and is that of a

protein tyrosine phosphatase 1C sequence. The particular feature displayed above

is from amino acid 0 to amino acid 594, which is actually the entire sequence.

The feature entry displayed above has two annotations. The first indicates that this

amino acid sequence is derived from mouse DNA sequence. The second provides a

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

24 L. Wong

cross reference to the US National Center for Biotechnology Information taxonomy

database, where further information on the taxonomic relationship of mouse to

other organisms can be found. �

The schemas and structures of all popular bioinformatics databases, flat files, and

softwares are easily mapped into this data model. At the extreme of data structure

complexity are Entrez (Schuler et al., 1996) and ACEDB (Walsh et al., 1998), which

contain deeply nested mixtures of sets, bags, lists, records and variants. At the other

extreme of data structure complexity are the relational database systems (Codd,

1970) such as Sybase and Oracle, which contain flat sets of records. Currently,

Kleisli gives access to over sixty of these and other sources used regularly by

molecular biology laboratories in Singapore and in phamaceutical companies. The

reason for this ease of mapping bioinformatics sources to Kleisli’s data model is

that they are all inherently composed of combinations of sets, bags, lists, records,

and variants. So we can directly and naturally map sets to sets, bags to bags, lists to

lists, records to records, and variants to variants into Kleisli’s data model, without

having to make any (type) declaration before hand.

It would not be possible to map these sources so easily onto a relational database

system or a deductive database system, as all relational and deductive database

systems impose the first normal form requirement. The first normal form is an

important concept of relational databases and is the basis of their practical im-

plementation. It is also a key ingredient in guaranteeing termination of queries in

deductive databases. A value is in first normal form if it is “flat”, i.e. it contains no

nested records, nested sets, or other “bulk” types. Relational database systems and

their deductive extensions are designed to only manipulate data in first normal form

or its further restrictions and their implementations exploit this first normal form

assumption to achieve great efficiency.

The number of type constructors may seem spartan compared to those of pop-

ular functional programming languages, where arbitrary number of fresh types and

type constructors can be introduced by a programmer. The closest database cor-

respondence to types in programming languages is the schemas. A schema of a

relational database contains a list of relation names, the structure of the underly-

ing relations, and other information such as the presence of indices. The relation

structures correspond to the definition of the types. In spite of this correspondence,

there seems to be a different attitude towards types between the two worlds. In

a database query language, it is not necessary to introduce a new relation type

explicitly. Almost every query in a database query language results in a “new” type.

For example, a projection query that extracts two fields from an existing relation

having three fields in principle introduces a “new” record type having only those

two named fields. In a functional programming language such as Haskell, new

record types cannot be created easily, as they must be explicitly introduced before

hand. So to implement the same query, the Haskell programmer would have to

first introduce a new type with a type constructor having the two named fields.

Even in a functional programming language like SML/NJ, where new record types

can be used without prior type declaration, it is often the case that variant types

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 25

must be declared before hand. Therefore, the number of types in databases is not

spartan.

The difference is that the richness of types in database programming is hidden by

their being implicit, while the richness of types in functional programming is high-

lighted by their being explicit. The fact that almost all database queries introduce

“new” types makes a compelling reason for database programming languages to

favour more flexible type constructors and types that are completely, conveniently,

and anonymously defined in terms of their structures. Interestingly, more experi-

mental or theoretical investigations of functional programming languages, such as

that by Remy (1989), also explored these ideas and favoured similar spartan but

more flexible type constructions.

2.3 Collection programming language

The syntax of CPL is similar to that of the ODMG standard for object-oriented

database languages (Cattell, 1996). An interesting feature of the syntax of CPL is the

heavy used of the comprehension syntax, which showed up long ago in functional

programming languages such as Miranda and later formalized by Wadler (1992).

A typical comprehension in CPL syntax is { x * x | \x <- S, odd(x) } which

returns a set consisting of the squares of all odd numbers in the set S. This is similar

to the notation found in functional languages, the main difference being that the

binding occurrence of x is indicated by preceding it with a backslash, and that the

expression returns a set rather than a list. As in functional languages, \x <- S is

called a “generator”, and odd(x) is called a “filter”. Rather than giving the complete

syntax, which can be found in Wong (1998a), we illustrate CPL through a series of

examples.

Example 2.3

This query extracts the titles and features of a set DB of feature tables. Note the

use of \x to introduce the variable x. The effect of \x <- DB is to bind x to each

element of the set DB.

{ (#title: x.#title, #feature: x.#feature) | \x <- DB };
�

Example 2.4

This query extracts the titles and features of those elements of DB whose titles

contain tyrosine as a substring.

{ (#title: x.#title, #feature: x.#feature)

| \x <- DB, x.#title string-islike "%tyrosine%" };
�

These queries are no more than simple project-select queries. A project-select

query is a query that operates on one (flat) relation or set. Thus, the transformation

that such a query can perform is limited to selecting some elements of the relation

and extracting or projecting some fields from these elements. Except for the fact

that the source data and the result are not in first normal form, these queries

could be expressed in a relational query language. However, CPL can perform

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

26 L. Wong

more complex restructurings such as nesting and unnesting not found in common

relational database languages like SQL, as shown in the following examples.

Example 2.5

This query reduces the nested relation DB, which is a set of sets of lists, by one level,

to a set of lists. It also restructures it by eliminating uids and accessions.

{ (#title: x.#title, #feature: f.#name, #start: f.#start, #end: f.#end,

#annotations: f.#anno)

| \x <- DB,

\f <- x.#feature };
�

Example 2.6

This query flattens DB completely. The \a <--- f.#anno has similar meaning to

\x <- DB, but works on list instead of set. Thus, it binds a to each item in the list

f.#anno.

{ (#title: x.#title, #feature: f.#name, #start: f.#start, #end: f.#end,

#anno-name: a.#anno_name, #anno-descr: a.#descr)

| \x <- DB,

\f <- x.#feature,

\a <--- f.#anno };
�

Example 2.7

This query navigates through each annotation a of each feature f of each entry x

in DB to discover the organism of that entry. It then restructures the nested relation

into a database of entries with associated organisms.

{ (#entry: x, #organism: a.#descr)

| \x <- DB,

\f <- x.#feature,

\a <--- f.#anno, a.#anno_name = "organism" };
�

Example 2.8

This query demonstrates how to do nesting in CPL. The subquery DB’ is the

restructuring of DB as in Example 2.7. The subquery ORG then extracts all organism

names. The main query groups entries in DB’ by organism names. It also sorts the

output list by alphabetical order of organism names, because [u | \u <- ORG]

converts the set ORG into a duplicate-free sorted list.

let \DB’ == { (#entry: x, #organism: a.#descr)

| \x <- DB, \f <- x.#feature,

\a <--- f.#anno, a.#anno_name = "organism" } in

let \ORG == { y.#organism | \y <- DB’ }

in [(#organism: z,

#entries: { v.#entry | \v <- DB’, v.#organism = z })

| \z <--- [u | \u <- ORG]];
�

The inspiration for CPL came primarily from Breazu-Tannen et al. (1991), who

presented structural recursion as a query language. However, structural recursion has

two difficulties. The first is that not every syntactically acceptable structural recursion

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 27

program is logically well-defined (Breazu-Tannen and Subrahmanyam, 1991). The

second is that structural recursion has too much expressive power because it can

express queries that require exponential time and space.

While programming languages always take Turing completeness for granted, the

attitude in database programming is radically different. In the context of querying

databases, due to their immense size, queries are restricted to those which are

practical in the sense that they should be within a low complexity class such as

LOGSPACE, PTIME, or TC0. In fact, one may even want to prevent any query

that has worse than O(n · log n) complexity, unless one is confident that the query

optimizer has high probability of optimizing the query to no more than O(n · log n)

complexity. Thus database query languages such as SQL are designed in such a way

that joins are easily recognized, as joins are the only operations in a typical database

query language that require O(n2) complexity if evaluated naively.

Thus, Tannen and Buneman suggested a natural restriction on structural recursion

to reduce its expressive power and to guarantee its well-definedness. Their restriction

cuts structural recursion down to homomorphisms on the commutative idempotent

monoid of sets, revealing a telling correspondence to monads (Wadler, 1992). A

nested relational calculus, which is denoted here byNRC, was then designed around

this restriction (Buneman et al., 1995).NRC is essentially the simply-typed lambda

calculus extended by a construct for building records, a construct for decomposing

records by field selection, a construct for building sets, a construct for decomposing

sets by means of the restriction on structural recursion. Specifically, the construct

for decomposing sets is
⋃{e1 | x ∈ e2}, which forms a set by taking the big union

of e1[o/x] over each o in the set e2. NRC (suitably extended) is implemented by

the NRC Module of Kleisli and is the abstract counterpart of CPL, a la Wadler’s

equations relating monads and comprehensions (Wadler, 1992).

To show that NRC is a good basis for a query language, its relationship to

existing query languages must be investigated. Furthermore, it has to enable solution

to existing open problems in query language theory, it has to enable generalization of

existing results in query language theory, it has to facilitate practical implementation,

it has to allow for good query optimization, and it has to enable new applications.

The expressive power of NRC and its extensions are studied by several authors

(Suciu, 1997; Dong et al., 1997; Libkin and Wong, 1997; Buneman et al., 1995;

Suciu and Wong, 1995). These papers presented solutions to several open problems

in query language theory. The most important of these results are directed at

NRC(=) and NRC(Q, +, ·,−, ÷,
∑

, =, 6Q). The former is NRC augmented

with equality test. The latter is NRC(=) further augmented with rational numbers,

linear order on rational numbers, arithmetic operations, and a summation construct.

NRC(=) was shown to have exactly the power as the usual nested relational algebra

(Buneman et al., 1995). NRC(Q, +, ·,−, ÷,
∑

, =, 6Q) was shown to capture the

power of SQL, including aggregate functions and group-by constructions (Libkin

and Wong, 1997). These languages are much easier to analyse than existing nested

relational algebras and SQL, and thereby are likely to be easier to implement and

optimize. For example, Libkin and the author (Libkin and Wong, 1997) began

a series of powerful analyses on NRC(Q, +, ·,−, ÷,
∑

, =, 6Q) that fruitfully

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

28 L. Wong

resolved several open questions on SQL, including the following long anticipated

results on unordered graphs: NRC(Q, +, ·,−, ÷,
∑

, =, 6Q) and thus SQL

cannot test if a graph is a chain, nor test if a graph is connected, nor test if

a graph has an even number of edges, nor compute the transitive closure of a

graph.

The impact of these and other theoretical results on the design of CPL and Kleisli

is that CPL adopts NRC(Q, +, ·,−, ÷,
∑

, =, 6Q) as its core. NRC(Q, +, ·,−,

÷,
∑

, =, 6Q) captures all standard nested relational queries in a high-level manner

that is easy for automated optimizer analysis (a primary reason that we were able

to use it to prove many difficult theorems on SQL.) It is also easy to translate

more user-friendly surface syntax such as the comprehension syntax or the SQL

select-from-where syntax into NRC(Q, +, ·,−, ÷,
∑

, =, 6Q). It is thus a very

suitable core.

However, the fixpoint operator and several forms of structural recursion can be

imported into CPL for rare occasions where recursive computations are needed. To

appreciate this design decision, let us look at SQL, the de facto commercial query

language. As proved by Libkin and Wong (1997), SQL cannot express recursive

queries. In practice, although fixpoint computations are sometime desirable, it is of

less importance in the database context than counting. Indeed, in SQL, a limited

recursion construct has only been recently proposed and is still being debated for

the latest standard, while aggregate functions such as summation and average have

always been part of SQL (they belong to the so-called “entry-level” SQL92, which

is supported by all commercial relational database systems).

3 Impact on bioinformatics

As mentioned earlier, the Kleisli system was developed as a general solution to

broad-scale data integration problems. The author and his collaborators used the

bioinformatics arena as the first testbed of the old 1994 prototype of the system

(Davidson et al., 1997) and succeeded in making an impression on that field (Leser

et al., 1998; Benton, 1996; Karp, 1996; Baker and Brass, 1998). A brief commentary

to the functional programming community on the success of Kleisli was also given

by Wadler (1998). The description of Kleisli in action in bioinformatics provided

by these previous papers was perhaps overly simplified. So we provide a detailed

real-life example in querying protein patents for illustration. The challenges of data

integration in bioinformatics is explained in section 3.1. The motivation behind the

detailed example and the protocol involved is explained in section 3.2. The CPL

query implementing the example is exhibited and explained in section 3.3.

3.1 Data integration

“Until recently, biological sequence databases were built by biologists. When se-

quence databases were first created the amount of data was small and it was

important that the database entries were human readable. Database entries were

constructed, therefore, as flat files, that is, text entries with the information ordered

in a specific way. Indeed, it is probably more accurate to describe these databases

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 29

as data repositories. As new types of data were captured or created, new data

repositories were created using a variety of flat file formats. The result of this effort

has been to create a large number of different databases, all in different formats,

typically using non-standard data query software, and only really properly accessible

to bioinformatics experts” (Baker and Brass, 1998).

It is a significant challenge if these pieces have to be used together in complex ways

to answer new questions in biology. Clearly, simple retrieval of data is not sufficient

for modern bioinformatics. The challenge is how to manipulate the retrieved data

derived from various databases and re-structure the data in such a way to investigate

specific biological problems. This may require feeding the retrieved data into various

application programs, such as multiple sequence alignment programs, 3D structure

modeling programs, and so on, which require specific input data sets and formats.

As observed by Baker and Brass (1998), many existing biology data retrieval

systems are not fully up to the demand of flexible and painless data integration.

These systems rely on low-level direct manipulation by biologists. The archetypal

example is the Entrez system (Schuler et al., 1996). Here a biologist uses a keyword

to extract summary records, then click on each record to view its contents or perform

operations. This works well for simple actions. However, as the number of actions or

records increases, such direct manipulation quickly becomes a repetitive drudgery.

Also, when the questions become more complex and involve many databanks,

assembly of the data needed exceeds the skill and patience of most biologists.

Merely providing a library package that interfaces to a lot of databases and analysis

softwares is also not useful if it requires long-winded and tedious programming to

make use of and/or adding to the package, as demonstrated (Selletin and Mitschang,

1998) by the difficulties with CORBA (Siegel, 1997).

As described earlier, Kleisli (Davidson et al., 1997) goes one step further and

provides the high-level and powerful query language CPL. CPL offers a nice data

model and many high-level operators to express complex queries and tranformations

on these biology databases and analysis softwares in a manner that is extremely

straightforward and without overly taxing a user’s programming skill. It is now

widely agreed that Kleisli has significantly reduced the difficulty of integrating

biology data (Benton, 1996; Karp, 1996; Baker and Brass, 1998). To get a sense of

Kleisli’s impact on bioinformatics, let us describe the very first bioinformatics query

implemented in Kleisli in 1994 (Davidson et al., 1997).

It was one of the so-called “impossible” queries of a US Department of Energy

Bioinformatics Summit Report.1 That query was to find for each gene located on

a particular cytogenetic band of a particular human chromosome, as many of its

non-human homologs as possible. Basically, this query means that for every gene

found on a particular position in the human genome, find DNA sequences from

non-human organisms that are similar to it.

In 1994, the main database containing cytogenetic band information was the GDB

(Pearson et al., 1992), which was a Sybase relational database. To find homologs,

1 http://www.gdb.org/Dan/DOE/whitepaper/contents.html

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

30 L. Wong

the actual DNA sequences were needed and the ability to compare them was also

needed. Unfortunately, that database did not keep actual DNA sequences. The actual

DNA sequences were kept in another database called GenBank (Burks et al., 1992).

At the time, access to GenBank was provided through the ASN.1 version of Entrez

(Schuler et al., 1996), which was an extremely complicated retrieval system. Entrez

also kept precomputed homologs of GenBank sequences.

So this query required the integration of GDB (a relational database) and Entrez

(a non-relational “database”) that first extracted names of genes on the required

cytogenetic band and accessed Entrez for the homologs of these genes and finally

filtered these homologs to retain only the non-human ones. This query was con-

sidered “impossible” because there was at that time no system that could work

across the bioinformatics sources involved due to their heterogeneity, complexity,

and geographical locations. Given the complexity of this query, the CPL query given

by Davidson et al. (1997) was remarkably short.

Since then Kleisli has been used to power many bioinformatics applications (Baker

et al., 1998; Chen et al., 1998a; Chen et al., 1998b; Chen et al., 1998c). In the next

two sections, a bioinformatics application in protein patents that is easily understood

by non-biologists is described.

3.2 Querying protein patents

Consider a pharmaceutical company that has a large choice of protein sequences

to work on (i.e. to determine their functions). A criterion for selection is patent

potential. A process involving many data sources and steps is required, as depicted

in the “dataflow” diagram in Figure 2.

At the initial stage, only the amino acid sequence of these sequences and very

little else is known. A question at this point would be: Which of them have already

been patented? Existing patent search systems are information-retrieval systems

that rely on English words. These systems suffer from the dichotomy of recall

vs. precision (Frakes and Baeza-Yates, 1992). They either return only the highly

relevant information at the expense of missing out a large proportion of them, or

return most of the highly relevant information at the expense of returning also a lot

of irrelevent information. So searching patents using them is laborious and is not

always fruitful. Furthermore, at this early search, we do not even have any English

word to use for searching – we have only the actual amino acid sequences! Thus,

more reliable technology for comparing these protein sequences to those sequences

already patented is needed.

There are two things that come to the rescue. First, protein patents are generally

based on protein function and primary sequence structure (i.e. the linear string of 20

symbols in the amino sequence.) Second, bioinformatics is sufficiently advanced and

tools that can reliably identify homology at the primary sequence structure level are

available (Pearson, 1995). Therefore, if patented protein sequences can be extracted

from some database and prepared in a form suitable for such tools to operate on,

there is a means to reliably identify which of the company’s sequences have not yet

been patented. The patented sequences can be obtained from the protein section of

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 31

find other similar seqs find abstracts and claims

USER USER

check against patented seqs

find superfamily

USER

query seq

superfamily rep seq

unpatented rep seq

in superfamily
unpatented seq

of seq

patented rep seq

patent detail

Entrez

SCOP

USPTO

SCOP domains

patent texts

NR
patented

seq

Fig. 2. Pharmaceutical company dataflow example.

Entrez (Schuler et al., 1996). These are “warehoused” locally for greater efficiency.

The sequence comparison software, WU-BLAST2 (Altschul and Gish, 1996), can

be used for comparing the company’s sequences against this warehouse for primary

sequence structure homology.

After the unpatented protein sequences have been identified, the second question

at this point is: Which ones of these have the potential for wider patent claims? To

understand this question it is necessary to recognize that protein patents are generally

granted on a sequence and its function. While the functions of the company’s proteins

are unknown at this point, because no work has been done on them yet, it is

known that proteins of the same evolutionary origin tend to have similar functions

even if they differ significantly in their primary structure (Lodish et al., 1995).

Using the terminology of structural classification of protein database of Murzin et

al. (1995) (officially known as scop, in lower case), these proteins are in the same

superfamily. So one way to identify protein sequences that have potential for wider

patent claims is to find those having large number of unpatented sequences in the

same superfamilies. Homology searching algorithms based on primary structure are

generally not sufficiently sensitive to detect the majority of sequences in a typical

superfamily (Pearson, 1995), as the primary structure of distance members of the

family are likely to have mutated significantly. So tools for homology search at the

tertiary structure level are needed.

No reliable automatic tools for this purpose exists at this moment, because struc-

tural similarity at the tertiary level does not necessarily imply similarity in function.

Nevertheless, reliable manually constructed databases of superfamilies exist. A very

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

32 L. Wong

nice one is scop (Murzin et al., 1995). Therefore, if the unpatented sequences can be

screened against scop, it is possible to pull out other representative sequences in their

superfamilies and check which ones have already been patented, thus identifying

superfamilies with good potential. WU-BLAST2 is a reliable sequence comparison

program suitable for carrying out the screening. After unpatented representatives

of superfamilies have been found, it is still necessary to use them to fish out the

rest of the unpatented members of superfamilies. This step can be accomplished by

using Gapped BLAST (Altschul et al., 1997) to remotely compare these representa-

tives against the huge nonredundant protein database (NR) curated at the National

Center for Biotechnology Information.

Having found these potentially good protein sequences, the pharmaceutical com-

pany is ready to work on them and to hopefully patent the results in due course.

The company is ready to ask the third question: What are the relevant prior arts?

The examination of prior arts is also necessary to determine directions when the

company begins work on their proteins, if it decides to work on them at all. Re-

trieving the texts of patented sequences in the same superfamilies as their proteins

would be very helpful here. This step is complementary to the previous step and

can be carried out using exactly the same technology! In the next section, the CPL

program that accomplishes this step is presented.

3.3 Patented proteins in a superfamily

This subsection concentrates on explaining this example query:

Example 3.1

The CPL program below answers this question: Find the superfamily that a given

protein sequence SEQ belongs to, and identify patented members of this superfamily.

1. localblast-blastp (#name: "scop-blast", #db: "scopseq");

2. localblast-blastp (#name: "pat-blast", #db: "patseq");

3. scop-add "scop";

4. setindex-access (#name:"sid2seq", #file: "scopseq", #key: "#sid");

5. {(#sf: (#desc: xinfo.#desc.#sf, #hit:x.#accession, #pscore:x.#pscore),

6. #bridge: (#hit: s, #patent: p.#title, #pscore: p.#pscore))

7. | \x <- process SEQ using scop-blast, x.#pscore <= PSCORE,

8. \xinfo <- process <#sidinfo: x.#accession> using scop,

9. \s <- process <#numsid: xinfo.#type.#sf> using scop,

10. \y <- process <#key: s> using sid2seq,

11. \p <- process y.#seq using pat-blast, p.#pscore <= PSCORE }; �

This query requires the following data sources: scopseq, which contains the

representative sequences for various superfamilies in scop; patseq, which contains

the patented protein sequences extracted from Entrez; and scop (Murzin et al.,

1995), which contains the structural classification of proteins. Each entry in scopseq

is uniquely identified by a name called sid, on which an index is available. The

scop database is a specialized deeply nested database and comes with a specialized

retrieval software that supports four commands, two of which are used here: given a

sid, return the corresponding scop entry; given a scop classification number, return

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 33

the sid of all scop entries belonging to that class. This query also requires WU-

BLAST2, which is a good sequence comparison software. Both scopseq and patseq

have already been “warehoused” by the Kleisli system before hand in a format

compatible with WU-BLAST2 (Altschul and Gish, 1996) for greater efficiency. So

we have a query that requires three different sources and two different softwares

that are not typical database systems.

A connection scop-blast is established between WU-BLAST2 and scopseq (line

1). A connection pat-blast is established between WU-BLAST2 and patseq (line

2). These connections allow WU-BLAST2 to compare a given input protein sequence

against the sequences in scopseq and patseq to identify those that are homologous

or highly similar to the input protein sequence. A connection scop is establish on

scop (line 3). This connection provides classification information on proteins. To

provide random access to representative sequences of scop superfamilies given their

scop identifier sid, a connection sid2seq is established on the sid index of scopseq

(line 4). Having set all these connections up, the real work can start.

The given sequence SEQ is compared for sequence similarity against scop super-

family representative sequences in scopseq using scop-blast to look for a hit x at a

strong given threshold PSCORE (line 7). SEQ is regarded to be in the same superfamily

as such a hit x. The sid of x is recorded in the #accession field of x. The protein

classification record xinfo of x is looked up from scop using scop and the sid of

x (line 8). This record has a field #type, which is another record. This inner record

has a field #sf, which stores the scop classification number of x’s superfamily. Using

this classification number and the scop connection, we ask scop for all the sid s

of representatives in the superfamily of x (line 9). Each representative s serves as

a “bridge” to help us identify the desired patented sequences. For each such rep-

resentative s, we use the index sid2seq to look up its sequence record y (line 10).

The #seq field of this record stores the protein sequence of y. This sequence is then

“BLASTed” against patented sequences in patseq using the connection pat-blast;

those hits p at the given strong threshold PSCORE are the patented sequences desired

(line 11). The relevant information (the superfamily information of x, the bridge s,

and the patent information p) are returned in the output set (lines 5–6).

4 Influence of functional programming

Functional programming has a significant influence on the design and implemen-

tation of Kleisli and CPL. This influence is most visible at the language level of

CPL. CPL has higher-order functions and a ML-style polymorphic type system. Its

type system is further augmented with another invention from the functional pro-

gramming community: parametric record polymorphism (Ohori et al., 1989; Remy,

1989). Although CPL’s view of record type variables is closer to that in Machiavelli

(Ohori et al., 1989) than the row variables of Remy (1989), the implementation

(Wong, 1995a) of polymorphic records in Kleisli is based on a clever idea of Remy

(1992). The most noticeable feature of CPL, the comprehension syntax, made its

appearance many years ago in the programming language world in languages such

as Miranda. It was also discussed earlier and elsewhere (Buneman et al., 1995) that

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

34 L. Wong

the core of CPL is founded on structural recursion (Breazu-Tannen et al., 1991) and

monad (Wadler, 1992).

It is more interesting to discuss the influence of functional programming on

components of the Kleisli system that are less visible. In particular, we discuss

the self-describing exchange format of Kleisli in section 4.1, the abstract internal

representation of queries in section 4.2, and the optimizer in section 4.3.

4.1 Type inference and self-describing exchange format

Of the many discoveries by the functional programming community, our favourite

is parametric polymorphism and type inference. CPL uses such a type system and

Kleisli’s self-describing data exchange format is also a direct derivative of such a

type system. The benefits are discussed in this subsection.

In a dynamic heterogeneous environment such as that of bioinformatics, many

databases and softwares are used. Worse still, they often do not have any thing

that can be thought of as an explicit database schema. Further compounding the

probem is that research biologists demand flexible access and queries in very ad hoc

combinations. Thus, a query system that aims to be a general integration mechanism

in such an environment, must satisfy four conditions. First, it must not count on

the availability of schemas. It must be able to compile any query submitted based

completely on the structure of that query. Secondly, it must have a data model that

these external databases and softwares can easily translate to, without doing a lot of

type declarations and so on. Thirdly, it must shield existing queries from evolution

of these external databases and softwares as much as possible. For example, an

extra field appearing in an external database table must not make it necessary to

recompile/rewrite an existing query. Fourthly, it must have a data exchange format

that is straightforward to use, so that it does not demand too much programming

effort or contortion to capture the variety of structures of output from external

databases and softwares.

The first three of these requirements are addressed directly by several interesting

features of CPL’s type system. CPL has polymorphic record types that allow,

for example, \R => { x.#name | \x <- R, x.#salary > 1000}, which defines a

function that returns names of people in R earning more than a thousand dollars. This

function can be applied to any R that has at least the #name and the #salary fields,

thus allowing the input source some freedom to evolve. CPL also has variant types

that allow, for example, { <#name: "John">, <#zip-code: 119613> }, which is

a set containing objects of very different structures; in this case, a string carrying

a #name tag and a number carrying a #zip-code tag. This feature is particularly

useful in handling ASN.1-formatted (ISO, 1987) data from GenBank (Burks et al.,

1992), one of the most important and most complex sources of DNA sequences, as

it contains a profusion of variant types.

Note that functional programming languages like Haskell and SML require

variant types to be declared in advance, and Haskell does not even have first class

record types. In contrast, CPL does not require variant types to be declared at all.

In fact, CPL does not require any type to be declared at all. Of course, the type and

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 35

meaning of any CPL program can always be completely inferred from its structure

without the use of any schema or type declaration. This makes it possible to logically

plug in any data source without doing any form of schema declaration, at a small

acceptable risk of run-time errors if the inferred type and the actual structure are

not compatible. This is an important feature because most of our data sources do

not have explicit schemas, while a few have extremely big explicit schemas that run

into tens of pages – an example big complex schema is the ASN.1 schema of Entrez

(National Center for Biotechnology Information, 1992) – making it impractical to

have any form of declaration.

We now come to the fourth requirement. A data exchange format is an agreement

on how to lay out data in a data stream or message when the data is exchanged

between two systems. In our case, it is the format for exchanging data between Kleisli

and all the bioinformatics sources. The data exchange format of Kleisli corresponds

one-to-one to Kleisli’s data model. It provides for records, variants, sets, bags and

lists; and it allows these data types to be freely composed. In fact, the data exchange

format completely adopts the syntax of value construction in CPL, as described in

section 2.2. Recall that CPL programs contain no type declaration. A CPL compiler

has to figure out if a CPL program has a principle typing scheme. This kind of

type inference is possible because every construct in CPL has an unambiguous most

general type. In particular, the value construction syntax is such that it is possible

to inspect only the first several symbols to figure out local type constraints on the

corresponding value, as each value constructor is unambiguous. For example, if a

{| bracket is seen, it is immediately clear that it is a bag; and if a (bracket is seen,

it is immediately clear that it is a record. Thus, by adopting the value construction

syntax of CPL as the data exchange format, the latter becomes self describing.

A self-describing exchange format is one in which there is no need to define in

advance the structure of the objects being exchanged. In database terminology, it

means there is no fixed schema. In programming language terminology, it means

there is no type declaration. In a sense, each object being exchanged carries its own

description. A self-describing format has the important property that, no matter how

complex the object being exchanged is, it can be easily parsed and reconstructed

without any schema information. To understand this advantage, one should look at

the ISO ASN.1 standard (ISO, 1987) open systems interconnection. It is not easy to

exchange ASN.1 objects because before we can parse any ASN.1 object, we need to

parse the schema that describes its structure first – making it necessary to write two

complicated parsers instead of a simple one.

It should be mentioned that self-describing data exchange formats exist in several

forms in earlier work (Papakonstantinou et al., 1995; Litwin et al., 1990). However,

Kleisli’s is probably the first self-describing exchange format that is consciously de-

rived from type inference! It should be noted that Kleisli also has a self-describing

compressed data exchange format that is more compact than the value construction

syntax of CPL. For example, instead of {(#name: "John", #age: 10), (#age:12,

#name: "Peter"), ...}, one uses the shorter {|DEFR1 #name #age ("John" 10),

|R1 ("Peter", 12), ...}. In the former, the fields of records are position inde-

pendent, at the cost of having to repeat record labels many times. In the latter, the

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

36 L. Wong

record labels are declared in advanced and the fields of records are fixed according

to the order of declaration of their corresponding labels, so that it is not necessary

to repeat record labels. Essentially, |DEFRi works like a data type declaration defin-

ing the “constructor” |Ri, whose scope is restricted to the particular data stream

from the point that particular |DEFRi appears to the end of that data stream or

to the point |DEFRi is redefined in that data stream, whichever comes earlier. Thus

the simple compressed exchange format essentially retains the flavour imparted by

CPL’s value construction syntax.

4.2 Kleisli triples and abstract syntax

Let us briefly recall the restricted form of structural recursion which corresponds

to the presentation of monads by Kleisli (Wadler, 1992; Buneman et al., 1995). It

is the combinator ext(·)(·) obeying these three equations: ext(f){} = {}, ext(f){o} =

f(o), and ext(f)(A ∪ B) = ext(f)(A) ∪ ext(f)(B). Thus, ext(f)(R) is equal to the⋃{f(x) | x ∈ R} construct of NRC. The direct correspondence in CPL is: ext{e1

| \x <- e2 }, which is interpreted as ext(f)(e2), where f(x) = e1. This combinator is

a key operator in the Complex Object Library of Kleisli, and is at the heart of the

NRC, the abstract representation of queries in the implementation of CPL. It earns

its central position in the Kleisli system because it offers tremendous practical and

theoretical convenience.

Its practical convenience is best seen in the issue of abstract syntax in the

implementation of a database query language. The abstract syntax is the internal

representation of a query and is usually manipulated by code generators; the better

abstract synax is the one that is easier to analyse. It must not be confused with

the surface syntax, which is what the usual database programmer programs in;

the better surface syntax is the one that is easier to read. It is worth contrasting

the ext construct to the comprehension synax here. With regard to surface syntax,

CPL adopts the comprehension syntax because it is a easier to read than the ext

construct. For example, the Cartesian product of two sets is expressed using the com-

prehension syntax as {(x, y) | \x <- R, \y <- S}. In contrast, it is expressed

using the ext construct as ext{ext{{(x,y)} | \y <- S} | \x <- R}, which is

more convoluted. However, the advantage of the comprehension syntax more or

less ends here. With regard to abstract syntax, the situation is exactly the opposite!

Comprehensions are easy for the human programmer to read and understand. How-

ever, they are in fact extremely inconvenient for automatic analysis and is thus a

poor candidate as an abstract representation of queries. This difference is illustrated

below by a pair of contrasting examples in implementing optimization rules.

A well-known optimization rule is vertical loop fusion (Goldberg and Paige,

1984), which corresponds to the idea of getting rid of intermediate data. Such an

optimization on queries in the comprehension syntax can be expressed informally as

{e | G1, ..., Gn, \x <- {e′ | H1, ..., Hm}, J1, ..., Jk}
 {e[e′/x] | G1, ..., Gn, H1, ..., Hm, J1[e′/x], ..., Jk[e

′/x]}
Such a rule in comprehension form is very simple to grasp. Basically the intermediate

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 37

set built by the comprehension {e′ | H1, ..., Hm} has been eliminated, in favour of

generating the x on the fly. In practice it is quite messy to implement the rule

above. In writing that rule, the informal “...” denotes any number of generator-filters

in a comprehension. When it comes to actually implementing it, a nasty traversal

routine must be written to skip over the non-applicable Gi in order to locate the

applicable \x <- {e′ | H1, ..., Hm} and Ji. The author tried to find a simple technique

to implement such a rule for over three years but did not succeed.

Let us now consider the ext construct. As pointed out by Wadler (1992), any

comprehension can be translated into this contruct. Its effect on the optimization

rule for vertical loop fusion is dramatic. This optimization is now expressed as

ext{e1 | \x <- ext{e2 | \y <- e3}}
 ext{ ext{e1 | \x <- e2} | \y <- e3}

The informal and troublesome “...” no longer appears. Such a rule can be coded up

straightforwardly in almost any implementation language. A similar simplication is

also observed in proofs using structural induction. For comprehension syntax, when

one comes to the case for comprehension, one must introduce a secondary induction

proof based on the number of generators and filters in the comprehension, whereas

the ext construct does not give rise to such complication. A related saving is that

comprehensions require two kinds of terms, expressions and qualifiers, whereas the

ext formulation requires only one kind of terms, expressions.

To illustrate this point more concretely, it is necessary to introduce some detail

from the implementation of the Kleisli system (Wong, 1995b). The type SYN of ML

objects that represent queries in Kleisli is declared in the NRC Module mentioned in

section 2.1. The data constructors that are relevant to our discussion are given below,

with the corresponding CPL constructs enclosed within ML comment brackets. It is

some times convenient to think of an object of type SYN as an expression tree. For

example, IfThenElse(e1, e2, e3) can be thought of as a tree, with e1, e2, and e3 as

subtrees, and IfThenElse as root.

type VAR = int (* Variables, represented by int *)

type SVR = int (* Server connections, represented by int *)

datatype SYN

= ...

| EmptySet (* { } *)

| SngSet of SYN (* { E } *)

| UnionSet of SYN * SYN (* E1 {+} E2 *)

| ExtSet of SYN * VAR * SYN (* ext{ E1 | \x <- E2 } *)

| IfThenElse of SYN * SYN * SYN (* if E1 then E2 else E3 *)

| Read of SVR * real * SYN (* process E using S,

the real is the request priority assigned by optimizer *)

All ML objects that represent optimization rules in Kleisli are functions and they

have type RULE as given below.

type RULE = SYN -> SYN option

If an optimization rule r can be successfully applied to rewrite a expression e

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

38 L. Wong

to an expression e′, then r(e) = SOME(e′). If it cannot be successfully applied, then

r(e) = NONE.

We now return to the optimization rule on vertical loop fusion. As promised

earlier, we are rewarded by a simple implementation:

Example 4.1

Vertical loop fusion.

fun VerticalLoopfusion(ExtSet(E1, x, ExtSet(E2, y, E3)))

= SOME(ExtSet(ExtSet(E1, x E2), y, E3))

| VerticalLoopfusion _ = NONE
�

Many other rules that have unpleasant implementation based on the comprehen-

sion syntax also become straightforward under the Kleisli monad representation.

A second one is presented here for illustration. It is easy to see what this rule

means:

{e | ..., \x <- G, C , ...}
 {e | ..., C , \x <- G, ...}, provided x is not free in C .

This rule is called “filter promotion” in the functional programming world. It is a

simple form of code motion (Aho et al., 1986) that migrates a filter C out of an inner

loop (the iteration of x over every element of G), which achieves the dual purpose

of avoiding recomputing C multiple times and – should C be false – avoiding the

computation of G and all the inner loops due to the iteration of x over G. Again

the informal “...” presents a major challenge to implement this rule in a simple way.

However, this rule has a simple correspondence (that is even slightly more general)

when expressed using the ext construct:

ext{ if C then e1 else e2 | \x <- e3}
 if C then ext{e1 | \x <- e3} else ext{e2 | \x <- e3}, provided x is not free in C .

Not surprisingly, its realization in Kleisli is pleasantly simple:

Example 4.2

Filter promotion.

fun SimpleCodeMotion(ExtSet(IfThenElse(C, E1, E2), x, E3))

= if IsFree x C

then NONE

else SOME(IfThenElse(C, ExtSet(E1, x, E3), ExtSet(E2, x, E3)))

| SimpleCodeMotion _ = NONE
�

The surface syntax of CPL is based on comprehension syntax while its internal

abstract representation is based on the ext construct inspired by the Kleisli monad.

The former is a good choice for implementing in CPL. The latter is a good choice for

implementing CPL. Fortunately, it is also well known that an easy translation exists

between them (Wadler, 1992; Buneman et al., 1995). The translations are given by

the following “equations”:

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 39

{e1 | \x <- e2, ...} = ext{{e1 | ...} | \x <- e2}
{e | } = {e}
{e | C , ...} = if C then {e | ...} else {}

Thus, it is possible to have a pie and eat it too!

The Kleisli optimizer also performs many other optimizations. These optimizations

include a more general form of code motion; parallelism to exploit network latency;

selective introduction of laziness to reduce memory consumption and to improve

response time; migration of selection, projection, and joins to external relational

database servers; reordering of joins across tables from distinct database servers;

etc. Some of these were described by Davidson et al. (1997). The impact of some of

these optimizations are discussed in section 5.

4.3 Higher-order functions and optimization

There is another very pleasant experience in implementing the optimizer for the

Kleisli system that illustrates very well the many advantages and conveniences

of higher-order functions, besides allowing the expression of better algorithms as

discussed by Suciu and Wong (1995). The optimizer (Wong, 1995c) consists of an

extensible number of phases. Each phase is associated with a rule-base and a rule

application strategy. A large number of rule application strategies are supported. The

more familiar include BottomUpOnce, which applies rules to rewrite an expression

tree from leaves to root in a single pass; TopDownOnce, which applies rules to rewrite

an expression tree from root to leaves in a single pass; MaxOnce, which applies rules

to the largest redices in a single pass; and so on, together with their multi-pass

versions.

By exploiting higher-order functions all of these rule application strategies can be

decomposed into a “traversal” component that is common to all strategies and a

very simple “control” component that is special for each strategy. In short, higher-

order functions can generate all these strategies extremely simply, resulting in a very

small optimizer core. In order to give some ideas on how this is done, some code

fragments from the optimizer module mentioned in section 2.1 are presented below.

The “traversal” component is a higher-order function that is shared by all strate-

gies:

val Decompose: (SYN -> SYN) -> SYN -> SYN

Recall that SYN is the type of ML objects that represent query expressions. The

Decompose function accepts a rewrite rule r and a query expression Q. Then it

applies r to all immediate subtrees of Q to rewrite these immediate subtrees. Note

that it does not touch the root of Q and it does not traverse Q – it just nonrecursively

rewrites immediate subtrees using r. It is therefore very straightforward and looks

like this:

fun Decompose f (SngSet N) = SngSet (f N)

| Decompose f (UnionSet (N, M)) = UnionSet (f N, f M)

| Decompose f (ExtSet (N, x, M)) = ExtSet (f N, x, f M)

| ...

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

40 L. Wong

A rule application strategy S is a function having the following type

val S: RULEDB -> SYN -> SYN

The precise definition of the type RULEDB is not important to our discussion at

this point, and is deferred until later. Such a function takes in a rule base R and a

query expression Q and optimizes it to a new query expression Q′ by applying rules

in R according to the strategy S .

Assume that Pick: RULEDB -> RULE is a ML function that takes a rule base R

and a query expression Q and returns NONE if no rule is applicable, and SOME(Q′) if

some rule in R can be applied to rewrite Q to Q′. Then the “control” components

of all the strategies mentioned earlier can be generated in a very simple way.

Example 4.3

The MaxOnce strategy applies rules to maximal subtrees. It starts trying the rules on

the root of the query expression. If no rule can be applied, it moves down one level

along all paths and tries again. However, as soon as a rule can be applied along a

path, it stops at that level for that path. In other words, it applies each rule at most

once along each path from the root to the leaves. Here is its “control” component:

fun MaxOnce RDB Query =

case Pick RDB Query

of SOME ImprovedQuery => ImprovedQuery

| NONE => Decompose (MaxOnce RDB) Query
�

Example 4.4

The TopDownOnce strategy applies rules from the root down to the leaves. It tries

to rewrite each node of the query expression at most once as it progresses to the

leaves. Here is its “control” component:

fun TopDownOnce RDB Query =

let fun Pass Subquery =

let val ImprovedSubquery =

case Pick RDB Subquery

of SOME ImprovedSubquery => ImprovedSubquery

| NONE => Subquery

in Decompose Pass ImprovedSubquery end

in Pass Query end
�

Example 4.5

The BottomUpOnce strategy applies rules from the leaves to the root. It tries to

rewrite each node at most once as it moves towards the root of the query expression.

Here is its “control” component:

fun BottomUpOnce RDB Query =

let fun Pass Subquery =

let val ImprovedSubquery = Decompose Pass Subquery

in case Pick RDB ImprovedSubquery

of SOME FurtherImprovedSubquery => FurtherImprovedSubquery

| NONE => ImprovedSubquery end

in Pass Query end
�

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 41

Let us now present an interesting class of rules that requires the use of multiple

rule application strategies. The scope of the rules (vertical loop fusion and filter

promotion) in the previous subsection is over the entire query. In contrast, this class

of rules has two parts. The inner part is “context sensitive” and its scope is limited

to certain component of the query. The outer part scopes over the entire query to

identify contexts where the inner part can be applied. The two parts of the rule can

be applied using completely different strategies.

A rule base RDB is represented in our system as a ML record of type

type RULEDB = {

DoTrace: bool ref,

Trace: (rulename -> SYN -> SYN -> unit) ref,

Rules: (rulename * RULE) list ref }

The Rules field of RDB stores the list of rules in RDB together with their names.

The Trace field of RDB stores a function f that is to be used for tracing the usage

of the rules in RDB. The DoTrace field of RDB stores a flag to indicate whether

tracing is to be done. If tracing is indicated, then whenever a rule of name N in RDB

is applied successfully to transform a query Q to Q′, the trace function is invoked

as f N Q Q′ to record a trace. Normally, this simply means a message like “Q is

rewritten to Q′ using the rule N” is printed. However, the trace function f is allowed

to carry out considerably more complicated activities.

It is possible to exploit trace functions to achieve sophisticated transformation

in a simple way. An example is the rule that rewrites if e1 then ... e1 ... else e3

to if e1 then ... true ... else e3. The inner part of this rule rewrites e1 to true.

The outer part of this rule identifies the context and scope of the inner part of this

rule: limited to the then-branch. This example is very intuitive to a human being.

In the then-branch of a conditional, all subexpressions that are identical to the test

predicate of the conditional must eventually evaluate to true. However, such a rule

is not so straightforward to express to a machine. The informal “...” are again in the

way. Fortunately, rules of this kind are straightforward to implement in our system.

Example 4.6

The If-then-else absorption rule is expressed by the AborbThen rule below. The rule

has three clauses. The first clause says that the rule should not be applied to an

IfThenElse whose test predicate is already a Boolean constant, because it would

lead to non-termination otherwise. The second clause says that the rule should be

applied to all other forms of IfThenElse. The third clause says that the rule is not

applicable in any other situation.

fun AbsorbThen (IfThenElse (Bool _, _, _)) = NONE

| AbsorbThen (IfThenElse (E1, E2, E3)) =

let fun ThenBranch E =

if SyntaxTools.Equiv E1 E then SOME(Bool true) else NONE

in case ContextSensitive ThenBranch TopDownOnce E2

of SOME E2’ => IfThenElse (E1, E2’, E3)

| NONE => NONE

end

| AbsorbThen _ = NONE

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

42 L. Wong

The second clause is the meat of the implementation. The inner part of the rewrite

if e1 then ... e1 ... else e3 to if e1 then ... true ... else e3 is captured by the

function ThenBranch which rewrites any e identical to e1 to true. This function is

then supplied as the rule to be applied using the TopDownOnce strategy within the

scope of the then-branch ... e1 ... using the ContextSensitive rule generator given

below.

fun ContextSensitive Rule Strategy Query =

let

val Changed = ref false (* This flag is set if Rule is applied *)

val RDB = { (* Set up a context-sensitive rule base *)

DoTrace = ref true,

Trace = ref (fn _ => fn _ => fn _ => Changed := true),

(* Changed is true if Rule is used *)

Rules = ref [("", Rule)]}

val OptimizedQuery = Strategy RDB Query (* Apply Rule using Strategy. *)

in if !Changed then SOME OptimizedQuery else NONE

end

This ContextSensitive rule generator is reused for many other context-sensitive

optimization rules, such as those used for migrating selection, projections, and joins

to external relational database systems. �

Thus, the use of higher-order functions greatly simplifies the implementation of

the current Kleisli optimizer (Wong, 1995c), compared the original optimizer from

Wong (1994). It should be mentioned that the author is not the first to discover this

particular method of implementing rewrite strategies; Paulson (1983) and Spivey

(1990) presented similar ideas before.

5 Optimization and performance

Many optimizations emphasized in Kleisli are not traditionally studied in functional

programming languages or in database management systems. This section uses an

example query that joins two relational databases to give an indication of the kind

of optimizations that Kleisli performs on queries involving external sources and

their impact. The idea of migrating joins to data sources is used to improve overall

performance in section 5.2, the idea of lazy evaluation is used to reduce response

time in section 5.3, and the idea of concurrency is used to reduce network idle time

in section 5.4.

5.1 Original query

The unoptimized CPL query below accesses two relational databases in the east

coast of the United States and joins their data. The query was submitted to a

Kleisli/CPL site in Singapore in 1995. There was then a conjested T1 internet link

between Singapore and the United States.

Example 5.1

Sortez (Hart et al., 1994a) is a relational database containing certain information ex-

tracted periodically from Entrez. GDB (Pearson et al., 1992) is a relational database

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 43

containing mapping information. We would like to use GDB to obtain the first

20 records that fall into Human Chromosome 22. Then for each of these records,

retrieve its related records in Sortez. Assuming that some connection(s) gdb has

already been established to GDB and some connection(s) sortez has already been

established to Sortez, this task can be accomplished by the query combine as follows:

primitive loci22 == set-firstn (20,

{(#genbank_ref: x.#genbank_ref, #locus_symbol: y.#locus_symbol)

| \x <- process "select * from object_genbank_eref g where 1=1" using gdb,

x.#object_class_key = 1,

\y <- process "select * from locus l where 1=1" using gdb,

y.#locus_id = x.#object_id,

\z <- process "select * from locus_cyto_location c where 1=1" using gdb,

z.#locus_id = x.#object_id, z.#chrom_num = "22" }) ;

primitive combine ==

{(#gdb: x,

#sortez: {(w.#locus, w.#accn, w.#title, w.#len, w.#taxname)

| \w <- process "select * from gb_head_accs g where 1=1" using sortez,

w.#pastaccn = x.#genbank_ref })

| \x <- loci22}; �

The processM using S construct works by sending the request M to the specified

connection S and then parsing the corresponding reply into a complex object. Kleisli

supports multiple connections to all of its data servers. For the discussion in this

section, we use one connection for GDB (any request sent down gdb is directed to

this connection) and two for Sortez (any request sent down sortez is directed to

one of these connections, whichever is currently free.)

As optimization concerns evaluation, we need to describe the evaluation behaviour

of the comprehension construct. For sets, this construct usually has the form { E

| P1 <- E1, ..., Pn <- En, C1, ..., Cm}. E, Ei, and Cj can be arbitrary expressions.

However, Ei must evaluate to sets and Cj must evaluate to Booleans. Each Pi is a

pattern used for matching elements in the corresponding set Ei. This construct is

evaluated in the absence of optimization using a nested loop. For example, when

n = 2, the evaluation algorithm looks like this:

initialize accumulator to emptyset

foreach matching P1 in E1

do foreach matching P2 in E2

do if C1 and · · · and Cm
then insert E into accumulator

end

end

return accumulator

The set-firstn function simply selects the “first” n items in a set; in our example

above, it selects the first 20 records about the locus of sequences on chromosome

22. We obtained the timings at the end of this section by increasing this number.

Therefore, if we ran loci22, this would cause GDB to be accessed repeatedly to

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

44 L. Wong

compute the three-way join of the three tables object genbank eref, locus, and

locus cyto location of sizes approximately 150,000, 80,000, and 80,000 records,

respectively. There would be one access to bring in the object genbank eref table.

Then there would be n accesses to bring in the locus table n number of times, with

n being the cardinality of the object genbank eref table. Then there would be n ·m
accesses to bring in the locus cyto location table n · m times, with m being the

cardinality of the locus table.

Consequently, if we ran combine, this would cause both GDB and Sortez to be

access many times to compute the join between loci22 and the gb head accs table.

There would first be 1 + n+ n ·m accesses to GDB to compute loci22 as described

above. Then there would be an additional 20 accesses to Sortez to compute the join

between the gb head accs table and the first 20 records in loci22.

It is obvious that such a query would take a long time to produce any output,

even if we had an unconjested high-capacity T3 link between Singapore and the

United States, let alone the conjested T1 link in 1995. It is clearly unacceptable.

In the following sections, we describe some optimizations that Kleisli carries out

automatically.

5.2 Maximal subquery migration

The obvious optimization is to migrate operations to data sources whenever possible.

The rationale for this optimization is that certain statistics and indices are available

to the native optimizers at some of these data sources. Therefore, they can be

expected to perform the operations more efficiently. In fact, we should migrate

subqueries that are as large as possible (Ngu et al., 1993) to execute remotely at

the data sources. The effect of migrating maximal subqueries is to ensure that the

native optimizers have as much context as possible and to give them as much work

as possible.

Example 5.2

The equivalent query after the migration of the three-way join needed to compute

loci22 to GDB is shown below.

primitive loci22’ == set-firstn (20,

process "select genbank_ref = g.genbank_ref, locus_symbol = l.locus_symbol

from locus l, locus_cyto_location c, object_genbank_eref g

where l.locus_id = g.object_id and g.object_id = c.locus_id

and g.object_class_key = 1 and c.chrom_num = ’22’"

using gdb);

primitive combine’ ==

{(#gdb: x,

#sortez: {(w.#locus, w.#accn, w.#title, w.#len, w.#taxname)

| \w <- process "select locus = g.locus, accn = g.accn, len = g.len,

title = g.title, taxname = g.taxname

from gb_head_accs g

where g.pastaccn = " ^ sql-string(x.#genbank_ref)}

using sortez)

| \x <- loci22’}; �

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 45

loci22’ sent just one SQL request to GDB to obtain the desired three-way join.

So executing combine’ required merely one access to GDB and 20 accesses to

Sortez.

Furthermore, each of the 20 accesses to Sortez in combine’ was much cheaper

than that in combine. The reason being that combine brought in the gb head accs

table completely each time, whereas combine’ brought in only a few columns of

that table (because the projections on these columns had been migrated) and only

a few rows of that table (because the selection on the pastaccn column had been

migrated).

This was a big improvement, for the query was completed in about 42 seconds.

However, in this version of the query, the first record was not displayed until the

entire result table was computed. Hence, its response time was also around 42

seconds. If we were joining more records than the first 20, we would have to wait a

rather long time to see anything.

5.3 Lazy evaluation

To improve response time, we should start the output process as soon as some

rows in the resulting table become available. This can be accomplished by lazy

evaluation. The idea of lazy evaluation is implemented by changing combined’ into

a query combined’’ by replacing the outermost {-bracket with a {l-bracket. The

presence of a l-tag in a comprehension construct indicates that the result of the

comprehension is to be formed lazily. That is, as soon as some elements of the set

become available, the system should return them, without waiting for the rest of

the elements in the set. The rest of the elements are returned on demand when they

become available. CPL takes care of coordination automatically.

Thus while combine’’ required the same number of accesses to GDB and Sortez

as combine’, it started displaying the first row of its result after one access to GDB

and one access to Sortez. The response time was now about 7 seconds, greatly

reduced from the 42 seconds of combine’. However, it still needed about 42 seconds

to complete the query.

5.4 Concurrent evaluation

Sortez was accessed once for each item in loci22’. The accesses to Sortez were es-

sentially sequential in the previous versions of our example. Rather than sequentially

sending requests to Sortez, we should be able to exploit the fact that many data

servers (such as Sortez which ran on top of Sybase) could handle several requests

simultaneously. Similarly, while our system was waiting for a response from Sortez,

it had enough resources to send a new request to Sortez or any other servers and

to process the reply to its previous request simultaneously. Since Kleisli/CPL has

built-in capability to coordinate multiple threads of execution automatically, we

should take advantage of it to overlap all these waiting times.

The idea of using concurrency to reduce waiting is implemented by changing

combine’’ into a new query combine’’’ by replacing the outermost generator

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

46 L. Wong

Table 1. Typical execution times

Number of Entries

20 50 80 110 140 170

Total combine’ 42 53 77 109 133 179

Time combine’’ 26 63 91 142 142 159

(sec) combine’’’ 19 37 49 64 80 100

Response combine’ 42 53 77 108 132 178

Time combine’’ 7 11 8 7 9 13

(sec) combine’’’ 10 9 8 7 8 14

\x <- loci22’ by \x <<- loci22’. In CPL, P <- E means matching the pattern

P over elements of the set E in a sequential fashion. On the other hand, P <<-

E means matching the pattern P over elements of the set E in parallel. Thus

combine’’’ took about 10 seconds to display the first row and finished the last row

in about 19 seconds, using two connections to the sortez server concurrently.

In introducing such concurrency, we must be careful of two things. First, the

remote server may only be able to handle a limited number of requests at a time,

say five. In this case, we should send five requests at a time to avoid overwhelming

the remote server. Fortunately, data servers in our application are usually running

on top of commercial systems like Sybase which practice admission control. In

addition, Kleisli provides mechanism to adjust its level of concurrency with respect

to different servers. Secondly, each concurrent thread requires resources such as

memory to be allocated if their output are not consumed quickly enough. This is

tougher to deal with than the first problem. Kleisli relies on a priority-based scheme

to schedule its external data requests, and it has an optimization rule for assigning

priority.

5.5 Optimization results at a glance

In Table 1 we give the typical execution times with respect to the number of loci22

entries. All results were obtained in 1995 by running our queries on a SPARC 20

with 32 MB memory in Singapore. The data sources were located in the east coast of

the United States in Philadelphia (for Sortez) and Baltimore (for GDB). All accesses

relied on a conjested T1 link between the two countries. Note that for combine’’’

we used two connections to Sortez.

The performance improvement shown above had been achieved using CPL without

complicated programming. In fact, Kleisli’s optimizer can automatically perform all

of the optimizations discussed above, as well as many other optimizations.

Note that if write permission were granted on Sortez, the alternative optimization

of semi-join (Ullman, 1989) could be used to achieve potentially greater improvement

than the concurrent version of combine’’’ above. However, the concurrent idea

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 47

of combine’’’ is a more general form of optimization than the semi-join idea. In

particular, the semi-join idea works well only if the data source is a powerful system

such as a full-fledged relational database.

6 Evolution of Kleisli

Kleisli has undergone extensive re-design and re-implementation at the Kent Ridge

Digital Labs since the original prototype built in 1994 at the University of Penn-

sylvania. This section has two purposes: to show how Kleisli has changed; and to

explain advanced features of the current release of the system (Kleisli Version D

Release 21 December 1998). We focus here on granularity of laziness (section 6.1),

exploitation of concurrency (section 6.2), improvement to the type system (section

6.3), improvement to the optimizer (section 6.4), availability of new drivers (section

6.5), and development of new high-level query interfaces (section 6.6).

6.1 Laziness

The old 1994 prototype did have laziness. Unfortunately, its implementation of lazi-

ness contained a bad idea. The bad idea was the mistaken belief that the granularity

of laziness should be as fine as possible. As a result, the lazy representation of a

complex object such as {{1, 2}, {3, 4, 5}} in the 1994 old prototype was a

function f1 that when applied to the unit object () returned the token { and a

function f2. The function f2 when applied to () returned the token { and a function

f3. The function f3 when applied to () returned the token 1 and a function f4.

And so on. This was clumsy and inefficient. Furthermore, its enforced linearity as

a list of tokens was completely at odd with the inherent tree-like nested nature of

Kleisli’s data model. Thus many “lazy” operators of CPL in the old 1994 prototype

of Kleisli had complicated implementation and high overhead.

The current release of Kleisli has a much better implementation of laziness that is

simpler, more efficient, more flexible, and more natural. In this new implementation,

a set is represented in a tree-like fashion, where branches that are lazy and branches

that are not lazy can be freely mixed. This representation does not have the

inconveniently imposed linearity of the tokens of the 1994 old prototype. Thus,

many operators in the new Kleisli have implementations that work uniformly over

objects that are lazy and objects that are not lazy.

6.2 Concurrency

The 1994 old prototype was strictly sequential. It did not exploit network latency

inherent in access to remote data sources. It did not exploit parallelism made possible

by using several remote data sources, which usually resided on distinct independent

servers. It did not exploit parallelism even when it was run on a large machine with

multiple processors.

The current release of Kleisli is inherently concurrent. It is able to automatically

overlap the requests it dispatches to a remote source, as soon as the source is free,

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

48 L. Wong

without needing to wait until it has completely received and processed the previous

reply from the remote source. (Note that replies from the kind of remote sources

accessed by Kleisli are usually sets containing many elements that can be processed

in a data-parallel manner.) It aggressively exploits the parallelism made possible by

sending requests to multiple remote data sources simultaneously and by scheduling

tasks to run on multiple processors. Recall from section 5 that a simple two-fold

concurrency on sortez produced a near two-fold increase in query performance.

Kleisli and many of its sources are typically run on Enterprize-level servers with

large memory and many processors. These machines can easily sustain an order of

magnitude more concurrency. As many queries handled by Kleisli are inherently data

parallel, this increase in concurrency typically translates to an order of magnitude

increase in query performance.

6.3 Types

The type system of the 1994 old prototype was poorly implemented. Its treatment

of record types was the main source of inefficiency. Record types were implemented

based on Remy’s representation (Remy, 1992; Wong, 1995a). If this was properly

exploited, it would be possible to test within constant time whether two record types

had the same fields; and it would be possible to extract within constant time the type

of any given field of a record type. However, in the 1994 old prototype the author

failed to properly exploit this representation. In fact, whenever a record type was

used, it was first (unnecessarily) converted from Remy’s representation into a list of

field name-field type pairs; and whenever a record type was stored, it was always

(unnecessarily) recalculated from the list representation into the Remy representation

at great cost. The current release of Kleisli has a completely overhauled type system

and has fully rectified this mistake. The difference in the type inference performance

of the two implementations is very significant. In particular, those examples that

Kosky (1996) reported to take hours to infer their types using the old prototype, took

only minutes using the current implementation on a much less powerful machine.

Besides improvement in type inference performance, the type system of the current

release of Kleisli also has more functionalities than the old 1994 prototype. The old

prototype did not allow the introduction of user-defined abstract data type. It did

not support subtyping. It did not support “tuple” type variables. The current release

of Kleisli has all of these features. “Tuple” type variables have been very useful for

implementing functions on arrays. However, abstract data type and subtyping has

not been used in any of our bioinformatics applications.

The old 1994 prototype also did not make use of meta information of the input-

output type of a server when such information was available to achieve better type

safety. The current release of Kleisli makes use of such information as much as

possible. Note that the output type of a server is usually dependent on the input

request. For example, the output type of a relational database server depends upon

the input SQL query. As each relational database server can in principle produce an

infinite number of different types, it is in general not possible to have one separate

strongly-typed interface function for each possible input-output type of a server.

Therefore, it is often more practical to sacrifice some type safety in exchange for a

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 49

small number of interface functions for each server. A type system that is able to

type check a function based on its actual supplied input at compile time can recover

some of the type safety lost in this compromise. The type system of the current

release of Kleisli has this capability.

Example 6.1

Consider the following CPL program, where gdb is a connection to the relational

database GDB (Pearson et al., 1992) containing human genome mapping information

from section 5.

primitive locus-sym ==

process "select id = x.#locus_id, sym = x.#locus_symbol

from locus x

where 1 = 1"

using gdb;

The old 1994 prototype would accept it as typeable and produces {’’1}, meaning

a polymorphic set whose element type can be instantiated to any type. This was not

type safe in two ways. First, obviously, locus-sym could only be safely used as a

set of records, each having a #id field and a #sym field. Secondly, it could only run

if the locus table in GDB indeed had these two fields.

In constrast, the current release of Kleisli would interrogate the catalogue in-

formation from GDB. If locus indeed had the two required fields, then it would

produce the type {(#id: ’’4, #sym: ’’3)}, which would ensure that locus-sym

could only be used as a set of records, each having a #id field and a #sym field. This

checking is possible because all relational database system keeps a “catalogue” that

provides various meta information on its tables, such as the names of columns, the

availability of indices on columns, expected sizes, etc. �

In fact, the current release of Kleisli can figure out the proper output type of a

server even when the input value is not fully supplied at compile time. The necessary

meta information needed to achieve this capability, if available, is recorded by the

Driver Manager Module depicted in section 2.1 when a driver is registered into

Kleisli.

Example 6.2

Let us use the interface to scop from section 3.3 for illustration. Consider the

following CPL program:

primitive S1 == \x1 => process x1 using scop;

primitive S2 == \x2 => process <#sidinfo: x2> using scop;

primitive S3 == \x3 => process <#numsid: x3> using scop;

The type produced for S1 is <#sidinfo: string, #sidallinfo: unit, #lssid:

unit, #numsid: string, #pdbsid: string> -> {’’3}. Thus, x1 is one of four

possible variants, representing the four possible kinds of requests supported by scop.

The output type of S1 is a polymorphic set, as without knowing the actual request

type of x1, it is not possible to provide more information.

The type produced for S2 is string -> {(#sid: string, #pdb: string, #num:

string, #region: string, #type: (#cl: string, #cf: string, #sf: string,

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

50 L. Wong

#fa: string, #sp:string), #desc: (#cl: string, #cf: string, #sf:string,

#fa: string, #dm: string, #sp: string))}. The context <#sidinfo: x2> is

sufficient for the current release of Kleisli to determine that S2 is a function that

sends a request for a scop entry corresponding to the input sid x2. It is unnecessary

to know the actual value of x2. The output type of S2 is therefore the type of a

scop entry, which is available as a piece of meta information to Kleisli.

Similarly, the type produced for S3 is string -> {string}. The context

<#numsid: x3> is sufficient for the current release of Kleisli to determine that

S3 is a function that sends a request for all sid ’s of scop entries belonging the the

input scop classification x3. The output type of S3 is thus that of a set of sid ’s, which

is available to Kleisli as a piece of meta information and happens to be {string}.

�

6.4 Optimization

The optimizer of the 1994 old prototype was simple minded. It had only one phase,

one rule base, and one rule application strategy that kept rewriting a query in a

top-down manner using rules in the rule base until a normal form was reached.

It also had no support routines for analysis and manipulation of abstract syntax

objects. In contrast, the current release of Kleisli has a more matured optimizer.

As mentioned in section 4.3, it has an extensible number of phases, each with its

own rule base and rule application strategy. In addition, it has adequate support

for analysis and manipulation of abstract syntax objects, such as (conservative)

testing of equivalences and so on. The simple-minded rigidity of the old optimizer

was responsible for several further shortcomings, to be described shortly, which are

overcome by the flexibility of the current optimizer.

As said earlier, the old prototype had only one rule application strategy. Further-

more, it was not implemented in such a way new rule application strategies could

be easily produced. In contrast, as shown in section 4.3, the new optimizer carefully

divided the implementation of strategies into a common traversal component and

an individually-specialized control component. As a result, it is relatively simple to

generate new strategies in the new optimizer.

Many important optimization rules were also missing from the old prototype. For

example, it did not have rules for join re-ordering and for migrating joins across

two distinct relational databases. Both of these rules and several others are present

in the new optimizer. The new optimizer thus is able to produce significantly better

optimized queries that involve more than two relational databases. Incidentally, the

example in section 5 also involved a join across two different relational databases

and thus could not be optimized by the old prototype.

The old prototype needed many rules to accomplish some optimizations due to its

rigidity of having only one rule application strategy and one rule base. For example,

it needed more than thirty rules to specify how to migrate selections, projections,

and joins to a single external relational database system, as shown in the author’s

1994 thesis (Wong, 1994). In contrast, the new optimizer has only three rules to

accomplish these three optimizations, as shown in section 5.5 of (Wong, 1995c).

Moreover, exploiting the ContextSensitive rule generator shown in Example 4.3,

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 51

each of these three rules in the new optimizer is not much more complicated than

any of the corresponding 30-plus rules in the old prototype! Let us use the rule

for migrating projections for illustration. A special case of this rule is to rewrite

{ x.#name | \x <- process "select * from T x where 1 = 1" using A } to

{ x.#name | \x <- process "select name = x.name from T x where 1 = 1"

using A }, assuming A connects to a SQL database. In the original query, the entire

table T has to be retrieved. In the rewritten query, only one column of that table

has to be retrieved. More generally, if x is from a relational database system and

every use of x is in the context of a field projection x.#l, these projections can

be “pushed” to the relational database so that unused fields are not retrieved and

transferred.

Example 6.3

The rule for migrating projections to a relational database is implemented by

MigrateProj below. The rule requires a function FullyProjected x N that traverses

an expression N to determine whether x is always used within N in the context of a

field projection and to determine what fields are being projected; it returns NONE if

x is not always used in such a context; otherwise, it returns SOME L, where the list

L contains all the fields being projected. This function is implemented in a simple

way using the ContextSensitive rule generator from Example 4.3.

fun FullyProjected x N =

let val (Count, Projs) = (ref 0, ref [])

fun FindProjs (Variable y) = (if x = y then inc Count else (); NONE)

| FindProjs (Proj (L, Variable y)) =

(if x = y then Projs := L :: (!Projs) else (); NONE)

| FindProjs _ = NONE

in ContextSensitive FindProjs BottomUpOnce N;

if length (!Projs) = !Count then SOME (!Projs) else NONE

end

Recall from section 4.2 that process M using S is represented in the NRC

Module as a SYN object Read(S , p, M), where p is a priority to be assigned by

Kleisli. The MigrateProj rule is defined below. The function SQL.PushProj is one

of the many support routines available in the current release of Kleisli that handle

manipulation of SQL queries and other SYN abstract syntax objects.

fun MigrateProj (ExtSet (N, x, Read (S, p, String M))) =

if Annotations.IsSQL S (* test if S connects to a SQL server *)

then case FullyProjected x N (* test if x is always in a projection *)

of SOME Projs => SOME

(ExtSet (N, x, Read (S, p, String (SQL.PushProj Projs M))))

| NONE => NONE

else NONE

| MigrateProj _ = NONE

This implementation of MigrateProj requires M to be a string. The actual

implementation in the new optimizer allows M to be any SYN object (Wong, 1995c).

�

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

52 L. Wong

6.5 Drivers

The 1994 old prototype had only two drivers. The first was a driver for the ASN.1

version of Entrez. The second was a driver for Sybase database systems. Both

drivers were developed by Kyle Hart. These two drivers provided the old prototype

access to a very small number of external sources, greatly limiting the number of

bioinformatics problems that it could be directly applied to.

The current release of Kleisli provide drivers for more than sixty different kinds

of bioinformatics sources, covering a significant proportion of the currently publicly

available bioinformatics sources. Such a significant coverage of bioinformatics tools

and databases makes the current version of Kleisli directly applicable to a much

larger number of bioinformatics integration problems.

6.6 Interfaces

The 1994 old prototype came with only one interface: the high-level query language

CPL. This is adequate if one is only interested in database-style queries. However, it

is important that additional interfaces to Kleisli become available.

A group of our users are traditional database programmers who prefer the more

familiar syntax of SQL to the more “mathematical” syntax of CPL. As it is well

known (Date, 1984) that SQL is a poorly designed query language despite its

popularity, the author resisted the demand of these users for the last three years.

However, the author recently gave in partially. The current release of Kleisli provides

a second high-level query language sSQL (short for simplified SQL), whose syntax

is a sanitized version of SQL. sSQL is described in full by Wong (1998b). It is

implemented in Kleisli by translating to NRC, just like CPL. sSQL uses SQL-

like constructs such as select-from-where, select-distinct-from-where, select-

from-where-order by, select-distinct-from-where-order by, etc. instead of the

comprehension of CPL. However, sSQL does not use SQL-like syntax for grouping

and aggregate functions. These special grouping and aggregate function constructs

are needed in SQL because SQL’s data model does not allow nesting, which is not

the case in sSQL.

Another group of our users are non-programmers who prefer to specify queries

through a graphic interface. The current release of Kleisli has an experimental

graphic interface called QUICK (Tan et al., 1998) that allows queries to be specified

by pointing and clicking on a graphic representation of data sources. A more robust

and powerful version of QUICK has already been designed and will be released at

end of 1999.

Many of our users also want to reformat the output produced by Kleisli for

viewing with a web browser. The current release of Kleisli comes with several

additional interfaces that integrate its data model, exchange format, and other

facilities to the two most popular programming languages for the web: Java and

Perl. A description of these interfaces is given by Chen and Wong (1998). These

interfaces allow a Java or Perl programmer to directly access Kleisli, CPL, or sSQL,

and manipulate the results as native complex objects of Java or Perl, as opposed

to as raw strings. He can thus easily reformat the output produced by Kleisli for

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 53

viewing with his web browser or for other purposes. Similar interfaces to other

programming languages have also been planned.

7 Conclusion

The Kleisli system and its high-level query language CPL embody many advances

made in database query languages and in functional programming. It represents a

significant deployment of functional programming in an industrial strength prototype

that has made significant impact on data integration in bioinformatics (Benton, 1996;

Karp, 1996; Baker and Brass, 1998). Indeed, since the early Kleisli prototype was

applied to bioinformatics (Hart et al., 1994b), it has been used to efficiently solve

many real-life data integration problems in bioinformatics (Baker et al., 1998; Chen

et al., 1998a; Chen et al., 1998b; Chen et al., 1998c). To date, thanks to the use of

CPL, we do not know of another system that can express general bioinformatics

queries as succintly as Kleisli.

There are several key ideas behind the success of the system. The first is its use

of complex object data model where sets, bags, lists, records and variants can be

flexibly combined. The second is its use of a high-level query language CPL which

allows these objects to be manipulated easily. The third is its use of a self-describing

data exchange format, which serves as a simple conduit to external data sources. The

fourth is its query optimizer, which is capable of many powerful optimizations. The

influence of functional programming research on these ideas was already described.

There is one last reason behind the success of the system. In spite of the so-

phistication of the Kleisli system, it has a remarkably compact implementation,

consisting of about 45,000 of codes in Standard ML of New Jersey. This compares

well to the 1,000,000 lines of C codes for a typical full-blown commercial database

system such as Oracle, even after taking into consideration that a large proportion

of these 1,000,000 lines are devoted to transaction control, disk management, and

user interfaces. The implementor (this author) has no doubt that without this robust

platform of functional programming, it would have demanded much more effort in

implementing Kleisli.

Acknowledgements

The author designed and implemented the first prototype of Kleisli/CPL in 1994,

while he was at the University of Pennsylvania. Peter Buneman, Val Tannen, Leonid

Libkin and Dan Suciu, collaborated with him on query language theory and on foun-

dational issues of CPL. Susan Davidson and Chris Overton introduced the author

to problems in bioinformatics. Kyle Hart helped him in applying Kleisli to address

his first bioinformatic integration problem. He re-designed and re-implemented the

entire system in 1995, when he returned to the Institute of Systems Science (now

renamed Kent Ridge Digital Labs, following its corporatization.) The new system,

which is in production use in the pharmaceutical industry, has many new imple-

mentation ideas, has much higher performance, is much more robust, and has much

better support for bioinformatics. Desai Narasimhalu supported its development in

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

54 L. Wong

Singapore. Oliver Wu, Jing Chen and Jiren Wang added much to its bioinformat-

ics support under funding from the Singapore Economic Development Board. The

author has begun seriously using Kleisli in bioinformatics himself towards end of

1997. Nam-Hai Chua of the Rockefeller University, Anthony Ting of the Institute

of Molecular and Cell Biology, and Daphna Strauss of Kent Ridge Digital Labs

(now at the Israel Embassy in Moscow) taught him almost everything he knows on

the biology relevant to this exciting subject. The author is grateful to all of them

for their contributions. He would also like to thank Phil Wadler for bringing Mike

Spivey’s work to his attention, for encouraging him to write this article, and for

suggestions that much improved the presentation of this article.

References

Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers: Principles, Techniques, and Tools.

Addison-Wesley.

Altschul, S. F. and Gish, W. (1996). Local alignment statistics. Methods in Enzymology, 266,

460–480.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman,

D. J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database

search programs. Nucleic Acids Research, 25(17), 3389–3402.

Baker, P. G. and Brass, A. (1998) Recent development in biological sequence databases.

Current Opinion in Biotechnology, 9, 54–58.

Baker, P. G., Brass, A., Bechhofer, S., Goble, C., Paton, N. and Stevens, R. (1998) TAMBIS –

transparent access to multiple bioinformatics information sources. Proc. 6th Int. Conf. on

Intelligent Systems for Molecular Biology, pp. 25–34.

Benton, D. (1996) Bioinformatics – principles and potential of a new multidisciplinary tool.

Trends in Biotechnology, 14 (August), 261–272.

Breazu-Tannen, V. and Subrahmanyam, R. (1991) Logical and computational aspects of

programming with Sets/Bags/Lists. LNCS 510: Proc. 18th International Colloquium on

Automata, Languages, and Programming, pp. 60–75. Springer-Verlag.

Breazu-Tannen, V., Buneman, P. and Naqvi, S. (1991) Structural recursion as a query

language. Proc. 3rd Int. Workshop on Database Programming Languages, pp. 9–19. Morgan

Kaufmann.

Buneman, P., Naqvi, S., Tannen, V. and Wong, L. (1995) Principles of programming with

complex objects and collection types. Theoretical Computer Science, 149(1), 3–48.

Burks, C., Cinkosky, M. J., Fischer, W. M., Gilna, P., Hayden, J. E., Keen, G. M., Kelly,

M., Kristofferson, D. and Lawrence, J. D. (1992) GenBank. Nucleic Acids Research,

20(Supplement), 2065–2069.

Cattell, R. G. G. (ed). (1996) The Object Database Standard: ODMG-93. Morgan Kaufmann.

Chen, J. and Wong, L. (1998) The Kleisli/Perl Reference Manual: A data exchange format

and some supporting tools. Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore

119613.

Chen, J., Chua, N.-H., Strauss, D. and Wong, L. (1998a) Extracting Kozak consensus sequence

using Kleisli. Proc. 1st Int. Conf. on Bioinformatics of Genome Regulation and Structure, pp.

218–223.

Chen, J., Zhang, L. and Wong, L. (1998b) A protein patent query system powered by Kleisli.

Proc. ACM SIGMOD International Conference on Management of Data, pp. 593–595.

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

Kleisli 55

Chen, J., Strauss, D. and Wong, L. (1998c) Using Kleisli to bring out features in BLASTP

results. Genome Informatics 1998, pp. 102–111. Tokyo, Japan: Universal Academy Press.

Codd, E. F. (1970) A relational model for large shared data bank. Comm. ACM, 13(6),

377–387.

Date, C. J. (1984) A critique of the SQL database language. SIGMOD Record, 14(3), 8–52.

Davidson, S., Overton, C., Tannen, V. and Wong, L. (1997) BioKleisli: A digital library for

biomedical researchers. Int. J. Digital Libraries, 1(1), 36–53.

Dong, G., Libkin, L. and Wong, L. (1997) Local properties of query languages. Proc. 6th Int.

Conf. on Database Theory, pp. 140–154.

Frakes, W. B. and Baeza-Yates, R. (1992) Information Retrieval: Data Structures and Algo-

rithms. Prentice Hall.

Goldberg, A. and Paige, R. (1984) Stream processing. Proc. ACM Symposium on LISP and

Functional Programming, pp. 53–62.

Hart, K. W., Searls, D. B. and Overton, G. C. (1994a) SORTEZ: A relational translator for

NCBI’s ASN.1 database. Computer Applications in the Biosciences, 10(4), 369–378.

Hart, K., Wong, L., Overton, C. and Buneman, P. (1994b) Using a query language to

integrate biological data. Abstracts of 1st Meeting on the Interconnection of Molecular

Biology Databases.

ISO. (1987) Standard 8824. Information Processing Systems. Open Systems Interconnection.

Specification of Abstraction Syntax Notation One (ASN.1).

Karp, P. D. (1996) Database links are a foundation for interoperability. Trends in Biotech-

nology, 14, 273–279.

Kosky, A. (1996) Transforming Databases with Recursive Data Structures. PhD thesis, De-

partment of Computer and Information Science, University of Pennsylvania.

Leser, U., Lehrach, H. and Crollius, H. R. (1998) Issues in developing integrated genomic

databases and application to the human X chromosome. Bioinformatics, 14(7), 583–590.

Libkin, L. and Wong, L. (1997) Query languages for bags and aggregate functions. J. Computer

& System Sci. 55(2), 241–272.

Litwin, W., Mark, L. and Roussopoulos, N. (1990) Interoperability of multiple autonomous

databases. ACM Comput. Surv. 22(3), 267–293.

Lodish, H., Baltimore, D., Berk, A., Zipursky, S. L., Matsudaira, P. and Darnell, J. (1995)

Molecular Cell Biology. W. H. Freeman.

Murzin, A., Brenner, S. E., Hubbard, T. and Chothia, C. (1995) SCOP: A structural classifi-

cation of protein database for the investigation of sequences and structures. J. Molecular

Biology, 247, 536–540.

National Center for Biotechnology Information. (1992) NCBI ASN.1 Specification. Revision

2.0.

Ngu, A., Yan, L. and Wong, L. (1993) Heterogeneous query optimisation using maximal

subqueries. Proc. 3rd Int. Symposium on Database Systems for Advanced Applications, pp.

413–420.

Ohori, A., Buneman, P. and Breazu-Tannen, V. (1989) Database programming in Machiavelli,

a polymorphic language with static type inference. Proc. ACM-SIGMOD International

Conference on Management of Data, pp. 46–57.

Papakonstantinou, Y., Garcia-Molina, H. and Widom, J. (1995) Object exchange across

heterogenous information sources. Proc. IEEE Int. Conf. on Data Engineering, pp. 251–260.

Paulson, L. C. (1983) A higher-order implementation of rewriting. Science of Computer

Programming, 3, 119–49.

Pearson, P., Matheson, N., Flescher, N. and Robbins, R. J. (1992) The GDB human genome

data base anno 1992. Nucleic Acids Research, 20, 2201–2206.

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

56 L. Wong

Pearson, W. R. (1995) Comparison of methods for searching protein sequence databases.

Protein Science, 4, 1145–1160.

Remy, D. (1989) Typechecking records and variants in a natural extension of ML. Proc. 16th

Symposium on Principles of Programming Languages, pp. 77–88.

Remy, D. (1992) Efficient representation of extensible records. In: Lee, P., editor, Proc. ACM

SIGPLAN Workshop on ML and its Applications, pp. 12–16.

Schuler, G. D., Epstein, J. A., Ohkawa, H. and Kans, J. A. (1996) Entrez: Molecular biology

database and retrieval system. Methods in Enzymology, 266, 141–162.

Selletin, J. and Mitschang, B. (1998) Data-intensive intra- & internet applications – Expe-

riences using Java and CORBA in the World Wide Web. Proc. 14th IEEE International

Conference on Data Engineering, pp. 302–311.

Siegel, J. (1997) CORBA: Fundamentals and Programming. John Wiley.

Spivey, M. (1990) A functional theory of exceptions. Science of Computer Programming, 14,

25–42.

Suciu, D. (1997) Bounded fixpoints for complex objects. Theoretical Computer Science,

176(1–2), 283–328.

Suciu, D. and Wong, L. (1995) On two forms of structural recursion. LNCS 893: Proc. 5th

International Conference on Database Theory, pp. 111–124. Prague: Springer-Verlag.

Tan, W. C., Wang, K. and Wong, L. (1998) A graphical interface to genome multidatabases.

J. Database Management, 9(1), 24–32.

Ullman, J. D. (1989) Principles of Database and Knowledgebase Systems II: The New Tech-

nologies. Computer Science Press.

Wadler, P. (1992) Comprehending monads. Mathematical Structures in Computer Science, 2,

461–493.

Wadler, P. (1998) Functional programming: An angry half-dozen. SIGPLAN Notices, 33(2),

25–30.

Walsh, S., Anderson, M. and Cartinhour, S.W. (1998) ACEDB: A database for genome

information. Methods Biochem Anal. 39, 299–318.

Wong, L. (1994) Querying Nested Collections. PhD thesis, Department of Computer and

Information Science, University of Pennsylvania.

Wong, L. (1995a) An introduction to Remy’s fast polymorphic projection. ACM SIGMOD

Record, 24(3), 34–39.

Wong, L. (1995b) The Kleisli Query System Reference Manual. Kent Ridge Digital Labs, 21

Heng Mui Keng Terrace, Singapore 119613.

Wong, L. (1995c) The Kleisli/CPL Extensible Query Optimizer Programmer Guide. Kent Ridge

Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613.

Wong, L. (1998a) The Collection Programming Language Reference Manual. Kent Ridge

Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613.

Wong, L. (1998b) The Simplified SQL Reference Manual. Kent Ridge Digital Labs, 21 Heng

Mui Keng Terrace, Singapore 119613.

https://doi.org/10.1017/S0956796899003585 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003585

