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Abstract. We give a fairly complete account which first shows that the solution to the
inner model problem for one supercompact cardinal will yield an ultimate version of L and
then shows that the various current approaches to inner model theorymust be fundamentally
altered to provide that solution.

§1. Introduction. The Inner Model Program began with Gödel’s discov-
ery of L which in the modern view is the first inner model. Of course it
was Scott’s Theorem, that if V = L then there are no measurable cardinals,
which set the stage for the necessity of the Inner Model Program.
By the early 1970s, the problem to extend the Inner Model Program to
the level of supercompact cardinals had emerged as a key problem and the
expectationwas that in solving this problem thewaywould be open to extend
the solution to much stronger large cardinals. The constructions of Kunen,
solving the inner model problem for measurable cardinals, were generalized
to solve the inner model problem at the level of Woodin cardinals in series
of results driven primarily by seminal constructions of Mitchell and Steel
and building on earlier work of Mitchell which had solved the inner model
problem for strong cardinals.1

The levels of Woodin cardinals represent key stages for the inner
model program because the internal definability of the wellordering of the
reals becomes progressively more complicated through the emergence of
determinacy consequences.
By the year 2000, the Inner Model Program had been unconditionally
extended by Neeman, [14], to the level of Woodin cardinals which are limits
of strong cardinals and conditionally extended, [18], to the level of super-
strong cardinals. The latter constructions require not only large cardinal
hypotheses (an obvious necessity) but also iteration hypotheses which are
abstract combinatorial hypotheses for iterating countable elementary sub-
structures of rank initial segments of V . These basic hypotheses were first
defined and analyzed by Martin and Steel.
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2 W. HUGHWOODIN

The next advance was the extension of the Inner Model Program to the
finite levels of supercompact cardinals, [24], again assuming the (same)
Iteration Hypothesis that the earlier constructions were conditioned on.
About the same time in a decadal sense, there was a rather unexpected dis-
covery. This was that if one could extend the Inner Model Program to the
level ofone supercompact cardinal then subject toavery general conditionon
the relationship of the supercompact cardinal of the innermodel constructed
and supercompact cardinals in V , the inner model constructed must be an
ultimate version of L. In particular, the Scott Effect would no longer apply.
This changed the entire framework for the Inner Model Program; from
a program of the incremental understanding of large cardinals through the
constructions of generalizations of L withV forever hopelessly out of reach
because of Scott’s Theorem and its descendents, into a program for perhaps
understanding V itself.
The point here is that if there is an ultimate version of L which is compat-
ible with all large cardinals and which must always exist in a version that is
very close to V , then perhaps there is some version of an axiom that V is an
ultimate version of L which is arguably true.
In fact a candidate for exactly such an axiom has been isolated, this is the
axiom V = Ultimate-L, implicit in [20] and formally defined in [24].
This axiom strongly couples the width of the universe of sets to its height
since in the context of the axiom V = Ultimate-L, one cannot change the
width using Cohen’s method of forcing without then changing the height. In
particular, the axiom V = Ultimate-L renders Cohen’s method of forcing
completely useless as a method for establishing independence from the
resulting conception of the universe sets.
Coincident with these developments was another unexpected theorem.
This is the HOD Dichotomy Theorem of [20] which is presented here in a
more elegant formasTheorem3.39. This theorem is arguably just an abstract
generalization of Jensen’s covering lemma. For this one simply recasts the
covering lemma as the Jensen Dichotomy Theoremwhich shows that V must
either be very close to L or very far from L.
The HOD Dichotomy Theorem generalizes this to HOD, showing that
if there is an extendible cardinal then V must be either very close to HOD
or very far from HOD. The existence of Ultimate-L would provide the
explanation showing that in fact, unlike the Jensen Dichotomy Theorem,
the HODDichotomy Theorem is not a dichotomy theorem sinceHODmust
be close to V or equivalently that the “far” option is vacuous.
Of course HOD is not canonical in the way that L is since one can easily
alter HOD by forcing. But that is not really relevant. The HOD Dichotomy
Theorem, which is not a difficult theorem to prove, establishes an unexpected
and deep connection between V and definability.
To illustrate, one curious corollary of the HOD Dichotomy Theorem is
that if � is an extendible cardinal then � must be a measurable cardinal in
HOD, see Theorem 3.40. Without the hypothesis that � is an extendible car-
dinal, this conclusionneednot hold even if � is assumed tobe a supercompact
cardinal.
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IN SEARCH OF ULTIMATE-L 3

But maybe this is all just evidence that the inner model program cannot be
extended to supercompact cardinals and moreover that there is an anti-inner
model theorem.
Reinforcing this latter speculation are two points. First, the Jensen
Dichotomy Theorem is a true dichotomy theorem since the existence of
Silver’s 0#, which is implied by the existence of a measurable cardinal,
implies V is very far from L. So perhaps the HOD Dichotomy Theorem
is also a true dichotomy theorem and we simply have not yet discovered
what plays the role of 0#.
Now if the HOD Dichotomy Theorem is not a dichotomy theorem
then one obtains a new generation of inconsistency results for the large
cardinal hierarchy in the setting where the Axiom of Choice fails. This
includes amild strengthening ofReinhardt cardinals and it includes Berkeley
cardinals.
Further one also obtains, but now in the context of the Axiom of
Choice, that what seem like natural generalizations of axioms of definable
determinacy are also false if sufficient large cardinals are assumed to exist.
Thus, and this is the second point, one could argue that it is quite rea-
sonable to expect that there are axioms which play the role of 0# but in the
context of the HOD Dichotomy.
In Section 2 we give a more detailed overview of this presentation and
this brings me to a rather important underlying point. This point concerns
the status of the Ultimate-L Project which is the program to prove the
Ultimate-L Conjecture.
The Ultimate-L Conjecture, as defined in a slightly weaker form on
page 108 in comparison to the original version implicit in [20] and defined
in [24], is in essence three interrelated conjectures: first that there is no
anti-inner model theorem, second that the HOD Dichotomy Theorem is
not a genuine dichotomy theorem, and third that (assuming sufficient large
cardinals) Ultimate-L exists in close proximity to V .
The reference [25] is a manuscript in preparation with the goal of showing
that if κ is a huge cardinal then the Ultimate-L Conjecture holds in Vκ+1 in
a very slightly weakened form.2

The issue of course is that until the manuscript is in final form, it is just a
work in progress, no matter how confident one is of the eventual outcome.
Given the series of unexpected events to date on this subject, an abundance
of caution seems prudent here. The approach in [25] is discussed in a bit
more detail at the end of Section 2 and then again on page 93, in the context
of the obstructions identified in this account.
Why then write this account now, before these issues are resolved? At the
very least, something noteworthy has happened. The collective impact of
all the obstructions which are the focus of this account, is that there are
really very few mathematical options now for the form that any proof of
the Ultimate-L Conjecture must take. This was not the case before and with
hindsight that was a part of the whole problem.

2Where the condition of weak Σ2-definability is dropped.
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4 W. HUGHWOODIN

Thus even if there are more surprises to come, this account presents a
current snapshot of what is surely a critical and interesting point in the final
story.

§2. Overview. This is an expanded version of the material presented first
in a tutorial series of four lectures at the 19th Midrasha Mathematicae
Meeting held at the Hebrew University and hosted by the Institute for
Advanced Studies. I would like to thank the organizers and the IAS for
their efforts in arranging the meeting and providing me the opportunity to
give this lecture series. Also I wish to thank the participants for their close
attention during the lectures.
Part of this material was given a second time in a week long tutorial series
in the Summer School in Mathematical Logic held in Singapore in June,
2016, and hosted by the Institute for Mathematical Sciences (IMS) of the
National University of Singapore. Here again I owe a considerable debt to
the participants.
The purpose of this article, which was also the goal of the lectures, is
to provide a fairly direct and complete account which first shows that the
solution to the inner model problem for one supercompact cardinal will
yield an ultimate version of L and then shows that the various current
approaches to inner model theory must be fundamentally altered to provide
that solution.
We examine the current approaches in a progression starting with the
natural generalizations of L[U ] and ending with the modern framework
based on partial extender models. This involves introducing many of the
central notions of inner model theory.
The material from Sections 3 and 4 is essentially all from [20] though the
presentation is simplified quite a bit and some of the theorems have been
strengthened. The material from Sections 5 and 6 is new and combined with
the material of Section 4 sets the stage for [25].
In fact, there are several changes here from the material given in the
Midrasha Mathematicae lectures, particularly in Section 5. This was pri-
marily driven by the goal to produce a version of Theorem 5.35 which could
be used in [25].
A substantial portion of the final section is also new and deals with vari-
ous possible formulations of the axiom, V = Ultimate-L. This revision of
the material from the Midrasha Mathematicae lectures reflects more recent
results from [25] and highlights how the AD+-theory of determinacy enters
the story by making possible a formulation of the axiom V = Ultimate-L
which does not involve the detailed level-by-level construction of the actual
model, or even the definitions of those levels.
It is interesting to note that for many of the standard generalizations of
L which have been identified and studied, for example the partial extender
models of Mitchell-Steel, the internal axiomatic characterization is not in
general known once the models pass the level of having Woodin cardinals.
There are many reasons for this and not the least of these is the surprising
fact that for the Mitchell-Steel models, most of the models are nontrivially
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IN SEARCH OF ULTIMATE-L 5

the generic extension of another such model (if these models are simply
assumed to be iterable), one just needs that within the models there is at
least one Woodin cardinal, [24].
The three sections, Sections 4, 5, and 6, indicate critical constraints which
must be met and this turns out to provide sufficient information to convinc-
ingly predict what must happen and how. Part of this is what was expected
but a significant part was completely unexpected and this concerns the issue
of whether a construction of a fine-structural hierarchy based only on a
general iteration hypothesis for V , could ever be vacuous. In fact what we
predict happens is much more extreme.
First, assuming the existence of a huge cardinal, the Weak (�1 + 1)-
Iteration Hypothesis is consistently false and moreover the Weak Unique
Branch Hypothesis is outright false.
These iteration hypotheses are defined in Section 4.1 and areweak versions
of what have become the standard iteration hypotheses used when outright
constructions (based on just large cardinal hypotheses) are not known.
More surprising is the reason. This happens because otherwise one can
prove the existence of fine-structural models and contradict the fundamental
obstruction identified in Section 5.
The models constructed for this purpose are extender models and they
are in the hierarchy of nonstrategic-extender models since no additional
predicate for iterability is added. In particular, even though the models
are iterable, the iteration strategy is not added to the model. This is the
traditional form of the fine-structural generalizations of L.
Thus I predict that a backgrounded construction of fine-structural models
which succeeds based on what seems to be a natural iteration hypothesis can
be vacuous.
The second prediction emerging in [25] is that the essential core of the
Ultimate-L Conjecture holds in Vκ+1 if κ is a huge cardinal. More precisely,
if κ is a huge cardinal then there exists a transitive setM such that

(1) M � V = “Ultimate-L”,
(2) OrdM = κ andM ⊂ HODVκ ,
(3) For some � < κ, (Vκ,M ) � “M is a weak extender model, for � is
supercompact.”

So in summary, I believe all the obstacles, along with their resolutions,
have been finally identified and as a result it is now possible to prove that the
core elements of Ultimate-L Conjecture, as specified above, hold in Vκ+1 if
κ is a huge cardinal.
The methodology is to build the necessary witnesses for this through
the construction of extender models in the hierarchy of strategic-extender
models. This is the hierarchy of (iterable) extender models where eachmodel
is constructed from two predicates, one for the extender sequence and one
for the iteration strategy.
The immediate question that this raises is how the construction of the
strategic-extender models necessary to witness that the (strictly speaking,
“weak”) Ultimate-L Conjecture holds in Vκ+1 can possibly succeed when
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6 W. HUGHWOODIN

the construction of the simpler nonstrategic-extender models must fail since
it is the construction of the latter which leads to the indicated contradiction.
The answer lies again in the problem of iterability. The construction of the
strategic-extender models succeeds because one can prove that the models
are iterable which one cannot do in the nonstrategic case. This is enabled
by connecting with the general theory of AD+-models and that connection
does not exist in the nonstrategic case. This connection is through theHOD’s
as computed within the AD+-models which in the relevant cases one verifies
is a strategic-extender model as part of the induction.
The main obstacle to proving the Ultimate-L Conjecture in light of the
obstructions identified here, is finding the technical reasonwhy the hierarchy
must transition from the non-strategic extender hierarchy to the strategic
extender hierarchy.
This is compounded by the methodology which the obstructions indicate
must be used, specifically the one-sided comparison of structures against
backgrounded structures.
But this is only a mystery if one accepts that no vacuous construction is
possible because the iteration hypotheses one naturally usesmust be provable.
It is after surrendering on this point that the picture becomes what seems
now so obvious: there is no obstacle here since the iteration hypotheses are
false and this is because there are vacuous constructions.
Perhaps in the ideal world, this article would have been written a year from
now after [25] was completely finished, thoroughly checked, and circulated.
Of course then it would probably be a very different article and in any case,
that is not this world andmaking the predictions detailed above seems really
the only option, short of saying nothing.

§3. Weak extender models, universality, and the HOD Dichotomy.
3.1. Supercompactness. We begin by reviewing the basic notions related
to supercompact cardinals. Further details and the history of the develop-
ment can be found in [6].

Definition 3.1. Suppose that κ is a regular cardinal and that κ < �.

(1) Pκ(�) = {� ⊂ � | |�| < κ}.
(2) Suppose that U ⊆ P

(
Pκ(�)

)
is an ultrafilter.

a) U is fine if for each α < �,

{� ∈ Pκ(�) |α ∈ �} ∈ U.

b) U is normal if for each function

f : Pκ(�)→ �

such that
{� ∈ Pκ(�) |f(�) ∈ �} ∈ U,

there exists α < � such that

{� ∈ Pκ(�) |f(�) = α} ∈ U.
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IN SEARCH OF ULTIMATE-L 7

Definition 3.2. Suppose that κ is an uncountable regular cardinal. Then
κ is a supercompact cardinal if for each � > κ there exists an ultrafilter U on
Pκ(�) such that
(1) U is κ-complete,
(2) U is a normal fine ultrafilter.

The following basic lemma gives the connection between the two common
formulations of supercompactness. One can require that the transitive class
M and the embedding j each be Σ2-definable in V from parameters.
Lemma 3.3. Suppose κ is an uncountable regular cardinal. Then the
following are equivalent.
(1) κ is a supercompact cardinal.
(2) For each � > κ, there exists an elementary embedding

j : V →M
such that CRT(j) = κ, j(κ) > �, and such thatM� ⊂M .

Proof. Suppose κ is supercompact and � > κ. Let U be a κ-complete
normal fine ultrafilter on Pκ(�). Let

j : V →M ∼= Ult(V,U )
be the ultrapower embedding. Thus
(1.1) j[�] ∈M and j[�] ∈ j(Pκ(�)),
(1.2) M = {j(f)(j[�]) |f ∈ V }.
Suppose h : �→M . For each α < �, let

fα : Pκ(�)→ V
be a function such that h(α) = j(fα)(j[�]). The function fα exists by (1.1)
and (1.2).
For each � ∈ Pκ(�) let

g� : � → V
be the function defined by g�(α) = fα(�). Finally define

f : Pκ(�)→ V
by f(�) = g� . Thus

j(f)(j[�]) : j[�]→M
and

j(f)(j[�]) ◦ j|� = h.
Therefore h is definable inM from j(f)(j[�]) and so h ∈M .
This proves that (1) implies (2). Now suppose that � > κ and that

j : V →M
is an elementary embedding such that CRT(j) = κ, j(κ) > �, and such that
M� ⊂M . Thus

j[�] ∈ j
(
Pκ(�)

)
.

Let U be the set of all A ⊂ Pκ(�) such that
j[�] ∈ j(A).

Then U is a κ-complete normal fine ultrafilter on Pκ(�). �
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8 W. HUGHWOODIN

We shall need a specific variation of Solovay’s Lemma on sets of measure
one for normal fine κ-complete ultrafilters onPκ(�) where � > κ is a regular
cardinal.

Lemma 3.4 (Solovay’s Lemma). Suppose that κ < � are regular cardinals
and < is a wellordering of H (�+). Then there exists a set X ⊂ Pκ(�) such
that the following hold.

(1) Suppose U is a κ-complete, normal, fine, ultrafilter on Pκ(�). Then
X ∈ U .

(2) Suppose �, � ∈ X and sup(�) = sup(�). Then � = �.
(3) X is uniformly definable in (H (�+), <) from κ.

Proof. Let S = {α < � | cof(α) = �} and let
〈Sα : α < �〉

be the <-least partition of S into � many stationary sets. Finally let X be
the set of all � ∈ Pκ(�) such that
(1.1) � < cof(sup(�)) < κ,
(1.2) � is the set of α < sup(�) such that Sα ∩C �= ∅ for all closed cofinal

subsets of sup(�).

Then using the ultrapower embedding

j : V →M ∼= Ult(V,U )
given by U , it follows that j[�] ∈ j(X ) and so X witnesses the lemma. �

3.2. Weak extender models. The Inner Model Problem for supercompact
cardinals has been a fundamental open problem for 40 years. Given the
first solution of the inner model problem for measurable cardinals, this is
the inner model L[U ] defined and analyzed in seminal work of Kunen, [7],
and then Silver, a natural requirement for the solution at the level of a
supercompact cardinal is that it should yield, or at least be compatible with,
a weak extender model as defined below.
The original motivation here was to develop the theory of such weak
extender models in order to either discover the relevant clues as to how to
construct the fine-structural versions of such inner models, or conversely to
conclude that the program cannot in general succeed. The latter would be
an anti-inner model theorem.

Definition 3.5. A transitive classN � ZFC is a weak extender model, for
� is supercompact if for every 	 > � there exists a �-complete normal fine
measure U on P�(	) such that
(1) N ∩ P�(	) ∈ U ,
(2) U ∩N ∈ N .

Analyzing covering properties between transitive models of ZFC has long
been a fruitful subject of study. Such notions arise naturally between V and
its generic extensions, and between V and canonical inner models of V ,
such as L.
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IN SEARCH OF ULTIMATE-L 9

Definition 3.6 (Hamkins [3]). Suppose N is a transitive class and that �
is a regular cardinal. Then N has the �-covering property if for each � ⊂ N
such that |�| < �, there exists � ∈ N such that
(1) � ⊂ �,
(2) |�| < �.
Remark 3.7. V has the �-covering property in V [G ] whenever G is
V -generic for a partial order P which is (<�)-cc in V .

Lemma 3.8. Suppose that N is a weak extender model, for � is supercom-
pact. Then N has the �-covering property.
Proof. Let � ⊂ N be a set with |�| < �. Since

N � ZFC,
we can reduce to the case that � ⊂ Ord. Let � > � be such that � ⊂ �. Let
U be a �-complete normal fine ultrafilter on P�(�) such that

N ∩ P�(�) ∈ U.
Thus since U is fine and �-complete,

{� ∈ P�(�) | � ⊂ �} ∈ U
and so there must exist

� ∈ P�(�) ∩N
such that � ⊂ �. �
Lemma 3.9. Suppose thatN is a weak extendermodel, for � is supercompact
and that 	 > � is a regular cardinal in N . Then

(
cof(	)

)V
= |	|V .

Proof. LetU be a �-complete normal fine ultrafilter onP�(	) such that
(1.1) N ∩ P�(	) ∈ U ,
(1.2) U ∩N ∈ N .
By Solovay’s Lemma applied within N , there exists a set

X ∈ N ∩ U
such that 
 is 1-to-1 on X where 
(�) = sup(�).
Let C ⊂ 	 be a closed cofinal set of ordertype

(
cof(	)

)V
.

Let
j : V →M

be the ultrapower embedding given by U . Thus j[	] is the unique element �
of j(X ) such that

sup(�) = sup(j[	]).
But C is closed cofinal in 	 and so

sup(j[	]) ∈ j(C ).
Therefore

{� ∈ X | sup(�) ∈ C} ∈ U.
Further, since U is fine,

∪{� ∈ X | sup(�) ∈ C} = 	.
Therefore |	|V = |C |V · � = (cof(	))V · �.
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10 W. HUGHWOODIN

Finally 	 is a regular cardinal in N and N has the �-covering property
and so

(cof(	))V ≥ �.
Thus |	|V = |C |V · � = (cof(	))V · � = (cof(	))V . �
Theorem 3.10. Suppose that N is a weak extender model, for � is super-
compact and that 	 > � is a singular cardinal. Then 	 is a singular cardinal in
N and

(	+)N = 	+.
Proof. If 	 is a regular cardinal in N then by Lemma 3.9, cof(	) = |	|
which contradicts that 	 is singular.
Let � = (	+)N . Then � is a regular cardinal in N and so again by
Lemma 3.9, cof(�) = |�| ≥ 	. But cof(�) is a regular cardinal and so
cof(�) > 	. This implies that � = 	+. �
3.3. Extendible cardinals andMagidor’s Lemma. Anatural strengthening
of the notion of a supercompact cardinal is given by the notion of an
extendible cardinal. Again [6] is an excellent reference for further details,
both historical and mathematical.

Definition 3.11. Suppose that � is a cardinal. Then � is an extendible
cardinal if for each � > � there exists an elementary embedding


 : V�+1 → V
(�)+1
such that CRT(
) = � and 
(�) > �.

Lemma 3.12 (Magidor, [9]). Suppose that � is a regular cardinal. Then the
following are equivalent.
(1) � is supercompact.
(2) For each � > � there exist �̄ < �̄ < � and an elementary embedding


 : V�̄+1 → V�+1
such that CRT(
) = �̄ and such that 
(�̄) = �.

Lemma 3.13. Suppose that N is a weak extender model, for � is supercom-
pact. Then for each � > � and for each a ∈ V�, there exist �̄ < �̄ < �, ā ∈ V�̄,
and an elementary embedding


 : V�̄+1 → V�+1
such that the following hold.
(1) CRT(
) = �̄, 
(�̄) = �, and 
(ā) = a.
(2) 
(N ∩ V�̄) = N ∩ V�.
(3) 
|(N ∩ V�̄) ∈ N .
Proof. By increasing � and replacing a by the pair (a, �) if necessary, we
can reduce to the case that

� = |V�|
and that cof(�) = �. Thus |N ∩ V�|N = �. Fix a bijection

� : �→ N ∩ V�
such that � ∈ N .
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IN SEARCH OF ULTIMATE-L 11

Let U be a �-complete normal fine ultrafilter on P�(�) such that
(1.1) N ∩ P�(�) ∈ U ,
(1.2) U ∩N ∈ N .
For each � ∈ P�(�), let

X� = {�(α) |α ∈ �} .
Let Z be the set of all � ∈ P�(�) such that

X� ≺ N ∩ V�.
Thus Z ∈ U . For each � ∈ Z, letM� be the transitive collapse of X� . The
key claim is as follows:
(2.1) {� ∈ Z |M� = N ∩ Vα where α is the ordertype of �} ∈ U .
This follows easily by working in N and considering the ultrapower
embedding,

jW : N →MW ∼= Ult(N,W ),
whereW = U ∩N . The relevant points are as follows:
(3.1) jW [�] ∈MW ,
(3.2) W = {A ⊂ Pκ(�) ∩N |A ∈ N and jW [�] ∈ jW (A)}.
Now let

jU : V →MU ∼= Ult(V,U )
be the ultrapower embedding (now computed in V ). Thus since |V�| = �
and since cof(�) = �,

(MU )V�+1 ⊂MU
and so jU |V�+1 ∈MU . Further by (2.1),

jU (N ∩ V�) ∩ V� = N ∩ V�.
Thus the following hold where as usual jU (N ) denotes that class

jU = ∪{jU (N ∩ Vα) |α ∈ Ord} .
(4.1) jU |(N ∩ V�) ∈ jU (N ).
(4.2) (cof(�))N < �.
(4.3) jU |(N ∩ V�+1) ∈ jU (N ) (since jU [�] ∈ jU (N )).
(4.4) jU (N ) ∩ V� = N ∩ V�.
Note that (4.1)–(4.4) imply that the conclusion of the lemma holds for
(jU (a), jU (�)) in MU for jU (N ). Therefore the conclusion of the lemma
holds in V for (a, �) relative to N . �
3.4. Elementary embeddings of weak extender models. We now prove that
if � is an extendible cardinal and N is a weak extender model, for � is super-
compact, then N has a remarkable closure property relative to elementary
embeddings of N with critical point of at least �.
This theorem is in a natural sense a strong generalization of the following
corollary of a theorem of Dodd and Jensen. By a recent result of Jensen and
Steel, the analogous theorem holds for essentially all large cardinal notions
below the level of a Woodin cardinal. Here we focus on singular cardinals
in V and N simply because of the conclusion of Theorem 3.10.
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Theorem 3.14 (after Dodd–Jensen). Suppose that N � ZFC is an inner
model such that

	+ = (	+)N

for a proper class of singular cardinals which are singular in N . Suppose in
V there is a measurable cardinal. Then in N , there is an inner model with a
measurable cardinal.
Theorem 3.14 is just one of a series of theorems which show that if
N � ZFC is an inner model such that

	+ = (	+)N

for a proper class of singular cardinals which are singular in N , then N
has inner models for various large cardinal hypotheses that hold in V .
For such inner models N which are constructed as enlargements of L, the
large cardinal hypotheses which can hold in V cannot exceed the level of
large cardinal hypotheses which hold inN . At levels beyond that of aWoodin
cardinal, the precise generalizations involve some version of correctness or
iterability.
By Theorem 3.10, ifN is a weak extender model for the supercompactness
of �, then

	+ = (	+)N

and 	 is singular in N , for all singular cardinals 	 > �.
Therefore, Theorem 3.14 and its generalizations suggest that N should
contain inner models of any large cardinal hypothesis which holds in V
and moreover if N is actually an enlargement of L then these large cardinal
hypotheses should hold in N .
In fact we obtain much more and we shall prove two versions of this,
Theorem 3.15 and the more general Theorem 3.26 which is formulated in
terms of extenders.
Theorem 3.15. Suppose that N is a weak extender model, for � is
supercompact and 	 > � is a cardinal in N . Suppose that

j : H (	+)N → H (j(	)+)N

is an elementary embedding such that � ≤ CRT(j). Then j ∈ N .
Proof. Fix � > j(	) such that � = |V�|. Letting a = j, by Lemma 3.13,
there exist �̄ < �̄ < �, ā ∈ V�̄, and an elementary embedding


 : V�̄+1 → V�+1
such that the following hold.
(1.1) CRT(
) = �̄, 
(�̄) = �, and 
(ā) = a.
(1.2) 
(N ∩ V�̄) = N ∩ V�.
(1.3) 
|(N ∩ V�̄) ∈ N .
Thus ā = j̄ where

j̄ : H (	̄+)N → H (j̄(	̄)+)N .
It suffices to prove the following:
(2.1) j̄ ∈ N ;
since 
(j̄) = j and since 
|(N ∩ V�̄) ∈ N .
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Let

E =
{
(A, �) |A ∈ P(	̄) ∩N, � < j̄(	̄), and � ∈ j̄(A)

}
.

We prove that E ∈ N . This implies that
j̄|
(
P(	̄) ∩N

)
∈ N,

which implies that j̄ ∈ N .
The key point is as follows:

(3.1) 
|
(
H (	̄+)

)N ∈
(
H (	+)

)N
.

This is because 
|(N ∩ V�̄) ∈ N noting that
(
H (	+)

)N
is closed under

	-sequences in N .
Let


∗ = 
|
(
H (	̄+)

)N ∈
(
H (	+)

)N
.

Thus 
∗ ∈
(
H (	+)

)N
and so 
∗ ∈ dom(j).

Now fix A ∈ P(	̄) ∩N and � < j̄(	̄). Thus
� ∈ j̄(A) ⇐⇒ 
(�) ∈ 
(j̄)(
(A))

⇐⇒ 
(�) ∈ j(
(A))
⇐⇒ 
(�) ∈ j(
∗(A))
⇐⇒ 
(�) ∈ j(
∗)(j(A)) = j(
∗)(A).

Thus E can be computed from 
|j̄(	̄) and j(
∗). Both these functions are
in N and so E ∈ N . �
We recall the large cardinal hypothesis that κ is n-huge.

Definition 3.16. Suppose n < �. Then κ is n-huge if there exists an
elementary embedding

j : V →M
such that CRT(j) = κ and such thatMκn ⊂M where

〈κi : i < �〉
is the sequence where κ0 = κ = CRT(j) and for all i < �, κi+1 = j(κi ).

Note that κ is 0-huge if and only if κ is a measurable cardinal. However if
κ is 1-huge then in Vκ there are extendible cardinals and much more.
The following typical corollary of Theorem 3.15 illustrates the uni-
versality, for large cardinal hypotheses, of weak extender models for
supercompactness.
Theorem 3.17. Suppose thatN is a weak extendermodel, for � is supercom-
pact. Suppose that for each n < �, there is a proper class of n-huge cardinals.
Then in N , for each n < �, there is a proper class of n-huge cardinals.
Theorem 3.18 (Kunen, [8]). Suppose that � is a cardinal. Then there is no
nontrivial elementary embedding

j : V�+2 → V�+2.
Proof. Let j be given.Note thatV�+2 is logically equivalent toH (|V�+1|+)
and so j yields an elementary embedding
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 : H (�++)→ H (�++).
Note that 
(�) = � and 
(�+) = �+.
Let S = {α < �+ | cof(α) = �} and let 〈Sα : α < �+〉 be a partition of S
into stationary sets. Let

〈Tα : α < �+〉 = 
(〈Sα : α < �+〉).
Let C = {α ∈ S | 
(α) = α}. Thus C is �-closed and cofinal in �+. By the
elementarity of 
, for each α < �+, Tα is a stationary subset of S and so for
each α < �+,

C ∩ Tα �= ∅.
Let κ = CRT(
) and choose

� ∈ C ∩ Tκ.
Finally choose 
 < �+ such that � ∈ S
 . Then

� = 
(�) ∈ 
(S
) = T
(
).
This implies 
(
) = κ which contradicts that κ = CRT(
). �
Theorem 3.19. Let N be a weak extender model, for � is supercompact.
Then there is no nontrivial elementary embedding j : N → N such that
� ≤ CRT(j).
Proof. By Theorem 3.15, for each κ > �, j|(N ∩ Vκ+1) ∈ N . Thus j is
amenable toN and in particular there must exist a cardinal � ofN such that
CRT(j) < �, j(�) = �, and such that

j|(V�+2 ∩N ) ∈ N.
This contradicts Kunen’s Theorem. �
3.5. Extenders. For our purposes, the theory ZF\Powerset is formulated
with the Collection Axiom in place of the Replacement Axiom. Over this
base theory, the various formulations of the Axiom of Choice are not all
equivalent, and the Wellordering Principle is the strongest among the usual
variations. Thus we define ZFC\Powerset to be the theory ZF\Powerset
(with the Collection Axiom) together with the Wellordering Principle.
The issue which arises from which formulation of the Axiom of Choice
to use is the following. Suppose that M and N are transitive models of
ZFC\Powerset and that


 :M → N
is an elementary embedding which is cofinal in the sense that N =
∪{
(a) | a ∈M}. Suppose 
 is the identity on the ordinals. Must 
 be
the identity?
If one uses theWellordering Principle, then the answer is yes, 
must be the
identity. If however one uses the usual formulation of the Axiom of Choice
then the answer is no, 
 need not be the identity. We give an example.
Let L[G ] be a generic extension of L for adding �L2 many Cohen reals
and let L[G ][g] be a generic extension of L[G ] for adding �L2 -many Cohen
reals.
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Now define
M = L�L2 (R

L[G ])[G ]
and define

N = L�L2 (R
L[G ][g])[G ][g],

where each is viewed as a transitive set. Thus in each case we are constructing
over the reals from an additional predicate. Note that P(�) exists in both
M and N but for example, P(�1) does not exist in eitherM or N .
It follows by the homogeneity of Cohen forcing that both M and N are
models ZFC\Powerset with the usual formulation of the Axiom of Choice
and that the natural map


 :M → N,
where 
(RM ) = RN is an elementary embedding.
Finally for purposes of constructing inner models, one is really only inter-
ested transitivemodels ofZFC\Powersetwhich are of the formLα [P], and in
this situation the various possible formulations of ZFC\Powerset discussed
above, are all equivalent.

Definition 3.20. Suppose that M and N are transitive models of
ZFC\Powerset and that


 :M → N
is an elementary embedding. Then 
 is cofinal if

N = ∪{
(a) | a ∈M} .
Definition 3.21. Suppose that M and N are transitive models of
ZFC\Powerset and that


 :M → N
is a cofinal elementary embedding which is not the identity.
Let κ = CRT(
) and suppose that � ∈ OrdN . Let �̂ be least such that

� ≤ 
(�̂).
For each a ∈ [�]<�, let

Ea =
{
A ∈ N ∩ P

(
[�̂]|a|

)
| a ∈ 
(A)

}
.

Let E = 〈Ea : a ∈ [�]<�〉. Then
(1) E is anM -extender.
(2) � is the length of E.
(3) κ is the critical point of E.

Definition 3.22. Suppose thatM is a transitive model of ZFC\Powerset
and that

E = 〈Ea : a ∈ [�]<�〉
is anM -extender. Then

Ult0(M,E) = lim
a∈[�]<�

Ult0(M,Ea).

Remark 3.23. Following the conventions in inner model theory we use
the notation Ult0(M,E) instead of Ult(M,E). The reason is that in the
general case whereM is not assumed to be a model of ZFC\Powerset there
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can exist more complicated ultrapowers which one can define, these include
the fine-structural ultrapowers Ultn(M,E).

Lemma 3.24. Suppose thatM is a transitive model of ZFC\Powerset and
that

E = 〈Ea : a ∈ [�]<�〉
is anM -extender. Then
(1) Ult0(M,E) is wellfounded.
(2) LetME be the transitive collapse of Ult0(M,E) and let


E :M →ME
be the ultrapower embedding. Then
(a) 
E is a cofinal elementary embedding.
(b) CRT(
E) < � < Ord

ME .
(c) Let F be theM -extender of length � given by 
E . Then F = E.

The following theorem, which is the Universality Theorem for weak exten-
der models, is the general version of Theorem 3.15 and this is formulated
simply in terms of N -extenders with no assumptions whatsoever on the
strength of the extenders.
This version of universality is optimal in that it characterizes when an
N -extender (which has large enough critical point) must belong to N in the
simplest possible terms.

Remark 3.25. We note that Theorem 3.26 implies Theorem 3.15. The
only issue is that given

j : H (	+)N → H (j(	)+)N

as in the hypothesis of Theorem 3.15 and letting E be theH (	+)N -extender
of length j(	) given by j, one must verify Ult0(N,E) is wellfounded so that
E is also an N -extender.
The point here is that if


E : N →ME ∼= Ult0(N,E)
is the ultrapower embedding then


E |H (	+)N = j,
and so for each A ∈ P(	) ∩N , 
E(A) ∈ N .
The wellfoundedness of Ult0(N,E) follows by using j and appealing to
the �-covering property of N .

Theorem 3.26 (The Universality Theorem). Suppose that N is a weak
extender model, for � is supercompact and that E is an N -extender of length
� with critical point κE ≥ �. Let


E : N →ME ∼= Ult0(N,E)
be the ultrapower embedding. Then the following are equivalent.
(1) For each A ⊂ �, 
E(A) ∩ � ∈ N .
(2) E ∈ N .
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Proof. Trivially (2) implies (1) and so it suffices to prove (1) implies (2).
The proof that (1) implies (2) is just a reworking of the proof of
Theorem 3.15.
Let � be least such that 
E(�) ≥ �. Thus � is a cardinal of N . Fix � > �
such that � = |V�| and such that cof(�) > �. Thus


E(�) = �.

By Lemma 3.13, there exist �̄ < �̄ < �, Ē ∈ V�̄, and an elementary
embedding


 : V�̄+1 → V�+1
such that the following hold.

(1.1) CRT(
) = �̄, 
(�̄) = �, and 
(Ē) = E.
(1.2) 
(N ∩ V�̄) = N ∩ V�.
(1.3) 
|(N ∩ V�̄) ∈ N .
Thus Ē is anN -extender. Let �̄ be the length of Ē, let


Ē : N → Ult0(N, Ē)
be the ultrapower embedding, and let �̄ be least such that 
Ē(�̄) ≥ �̄. Thus
(2.1) 
(�̄) = �,
(2.2) 
(
Ē ∩ V�̄) = 
E ∩ V�.
Let

PĒ = {(A, �) |A ∈ P(�̄) ∩N, � < �̄ and � ∈ 
Ē(A)} .
We prove that PĒ ∈ N . This implies Ē ∈ N and so E ∈ N since 
(Ē) = E.
Now fix A ∈ P(�̄) ∩N and � < �̄. We have that 
|(N ∩ V�) ∈ N and so
letting


∗ = 
|(N ∩ V�),
we have

� ∈ 
Ē(A) ⇐⇒ 
(�) ∈ 
(
Ē ∩ V�̄)(
(A))
⇐⇒ 
(�) ∈ 
E(
(A))
⇐⇒ 
(�) ∈ 
E(
∗(A))
⇐⇒ 
(�) ∈ 
E(
∗)(
E (A)) = 
E(
∗)(A).

Thus PĒ can be computed from 
|�̄ and 
E(
∗). We have 
|�̄ ∈ N but
only that


E(
∗) ∈ME ∼= Ult0(N,E).
However we only need{(

A, 
E(
∗)(A) ∩ �
)
|A ∈ P(�̄) ∩N

}
∈ N

in order to show that PĒ ∈ N .
Working in N and since we have both that 
∗ ∈ N and that �̄ < �, we can
choose Z ⊂ � such that
(3.1) Z ∈ N ,
(3.2) For all � ≤ � ≤ �,

{(A, 
∗(A) ∩ �) |A ∈ P(�̄) ∩N} ∈ L[Z ∩ �].
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But then 
E(Z) ∩ � ∈ N and so by the elementarity of 
E ,{(
A, 
E(
∗)(A) ∩ �

)
|A ∈ P(�̄) ∩N

}
∈ L[
E(Z) ∩ �] ⊂ N.

This proves Ē ∈ N and so E ∈ N . �
Remark 3.27. Suppose that E is an L-extender of length �. Then

L ∼= Ult0(L,E),
and so 
E(A) ∈ L for all A ∈ L.
As a corollary of Theorem 3.26, we obtain the direct transference of
Woodin cardinals to weak extender models for supercompactness. This
easily generalizes to the appropriate versions of essentially any current large
cardinal hypothesis.

Theorem 3.28. Suppose that N is a weak extender model, for � is super-
compact and that � > � is a Woodin cardinal. Then � is a Woodin cardinal
in N .
Proof. By the definition of a Woodin cardinal, � is a Woodin cardinal if
for all A ⊂ V� , there exists � < κ < � such that for all κ < � < � with
|V�| = �, there is a V -extender E such that
(1.1) CRT(jE) = κ, LTH(E) = �, and jE(κ) > �,
(1.2) V� ⊂ME and jE(A ∩ Vκ) ∩ V� = A ∩ V�,
where

jE : V →ME ∼= Ult0(V,E)
is the ultrapower embedding.
But then for all A ∈ P(V�) ∩ N , there exists � < κ < � such that for all
κ < � < � with |V�| = �, there is an N -extender E such that
(2.1) CRT(jE) = κ, LTH(E) = �, and jE(κ) > �,
(2.2) jE(N ∩ Vκ) ∩ V� = N ∩ V�,
(2.3) V� ∩N ⊂ME and jE(A ∩ Vκ) ∩ V� = A ∩ V�,
where

jE : N →ME ∼= Ult0(N,E)
is the ultrapower embedding.
By Lemma 3.26 and with E as above, (E|�)|N ∈ N for all � < � (since
κE = κ > �) and so since � can be chosen cofinally large in �, � is a Woodin
cardinal in N . �
Definition 3.29. (1) E is an extender if E is a V -extender.
(2) An extender, E, of length � is �-complete if

�� ⊆M,
whereM = Ult0(V,E).

Suppose that E is an extender with critical point κ, P ∈ Vκ, and G ⊆ P is
V -generic. Then E naturally defines an extender in V [G ] and

(jE)V [G ]|V = (jE)V .
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Lemma 3.30. Suppose that � < κ, E is an extender which is �-complete
with critical point κ, and that

j : V →M ⊆ V [G ]
is a generic elementary embedding such that
(i) M = {j(f)(α) | α < � and f ∈ V },
(ii) G is V -generic for some partial order P ∈ V such that |P| ≤ � in V .
Then (jE)V [G ]|M = (jF )M where F = j(E).
Proof. By (i),M = Ult0(V,H ) where H is a V -extender of length �.
Let � = LTH(E) and for each a ∈ [�]� let Ea be the ultrafilter,

Ea =
{
A ⊆ [�̂]� |a ∈ jE(A)

}
,

where �̂ = min {	 | � ≤ jE(	)}.
Since E is �-complete for each a ∈ [�]� , a ∈ Ult0(V,E) and so Ea is
defined.
Suppose that a ⊆ b and b ∈ [�]�. Then there is a natural elementary
embedding,

ja,b : Ult0(V,Ea)→ Ult0(V,Eb).
This defines a directed system indexed by the directed set, ([�]� ,⊆) with
limit, Ult0(V,E).
This is just the usual analysis of Ult0(V,E) as the limit of a directed system
of ultrapowers except here the underlying directed set is ([�]�,⊆) instead of
the directed set, ([�]<�,⊆).
Let X = [�̂]� . For each a ∈ [�]�, Ea ⊆ P(X ) and Ea is an ultrafilter on
X . Fix a ∈ [�]�.
We first show the following. Suppose that

f : X →M
is a function in V [G ]. Then there exists a function

f∗ : j(X )→M
such that f∗ ∈M and such that

{y ∈ X |f(y) = f∗(j(y))} ∈ (Ea)G,
where (Ea)G is the ultrafilter in V [G ] generated by Ea .
Fix f and work in V [G ]. For each y ∈ X there exists a pair (gy, αy)
such that

(1.1) αy < �,
(1.2) gy ∈ V ,
(1.3) f(y) = j(gy)(αy).

This defines a function
F : X → V,

where for all y ∈ X , F (y) = (gy, αy).
Since Ea is κ-complete and since |P|V ≤ � < κ, it follows that there exists
Z ∈ Ea and there exists α < � such that
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(2.1) F |Z ∈ V ,
(2.2) αy = α for all y ∈ Z.
Define

f∗ : j(X )→M
by f∗(t) = 0 if t /∈ j(Z) and if t ∈ j(Z) then

f∗(t) = j(F )t(α),

where for each y ∈ X , Fy = gy .
Thus for each y ∈ Z,
f∗(j(y)) = j(F )j(y)(α) = (j(Fy))(α) = (j(gy))(α) = (j(gy))(αy) = f(y),

and so f∗ is as required.
What we have done is show that for each a ∈ [�]� the lemma holds with
E replaced by Ea . This special case is due to Steel.
Now we use the hypothesis that E is �-complete. Suppose b ∈ j([�]�).
Then there exists α < � and a function

g : � → [�]�

such that j(g)(α) = b noting that � ≤ j(�). Let a = ∪{g(
) | 
 < �}. Thus
a ∈ [�]�, a ∈ V and b ⊆ j(a).
Thus {

j(a) | a ∈ [�]�
}

is cofinal in the directed set, {
a |a ∈ j([�]�)

}
,

and so Ult0(M,j(E)) is the limit of Ult0(M,j(Ea)) over the directed
set ([�]� ,⊆)V and the lemma follows by the correspondence of functions
established above. �
There is a useful corollary of Lemma 3.30 which allows one to generate a
variety of weak extender models for the supercompactness of some cardinal
�, and which have various other properties.
The main motivation for this is to show that weak extender models for
supercompactness need not be so close toV as to render the notion useless as
a requirement for inner model theory at the level of supercompactness. The
latter is a natural speculation given for example the Universality Theorem,
Theorem 3.26.
The generic elementary embeddings given by the Stationary Tower at
Woodin cardinals � < κ give many examples of j which satisfy the condi-
tions of Lemma 3.31 and with any given uncountable regular cardinal below
κ as the critical point.
However, we shall only use Lemma 3.31 (with the partial order P trivial
so that V = V [G ]) to obtain Lemma 3.32 which shows that Lemma 3.19 is
optimal.
Lemma 3.31. Suppose that � < κ, κ is supercompact, and that

j : V →M ⊆ V [G ]
is a generic elementary embedding such that
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(i) M = {j(f)(α) | α < � and f ∈ V },
(ii) G is V -generic for some partial order P ∈ V such that |P| ≤ � in V .
Then in V [G ],M is a weak extender model, for κ is supercompact.
Proof. By Lemma 3.30, for each extender E ∈ V , if (in V ),
(1.1) P ∈ VCRT(E),
(1.2) �(E) = LTH(E),
(1.3) cof(LTH(E)) > �,
then in V [G ], EG ∩M ∈M where EG is the extender in V [G ] generated by
E. The point is that E is �-complete and so by Lemma 3.30,

j(E) = EG ∩M.
Since κ is supercompact in V , the class of all such extenders, EG , witnesses
that κ is supercompact in V [G ]. The corollary follows. �
Lemma 3.32 shows that the restriction on critical points in Theorem 3.19
is necessary and in addition, combined with Theorem 3.45 shows that the
case where N = HOD is quite different.
Lemma 3.32. Suppose that � is a supercompact cardinal. Then there is a
weak extender model, N , for � is supercompact such that for each � there is a
nontrivial elementary embedding

j : N → N
with CRT(j) < � such that j(�) = �.
Proof. Let κ < � be a measurable cardinal and let U be a normal
κ-complete uniform ultrafilter on κ. Let 〈(Mn,Un, jn,n+1) : n < �〉 be
the iteration of (V,U ) of length �. Thus
(1.1) (M0, U0) = (V,U ).
(1.2) Mn+1 = Ult0(Mn,Un) and jn,n+1 : Mn → Mn+1 is the ultrapower

embedding.
(1.3) Un+1 = jn,n+1(Un).
Let

M� = lim
n<�
Mn

be the direct limit under the composition of the elementary embeddings,

〈jn,n+1 : n < �〉.
ThusM� is wellfounded and so for each � ∈ Ord,

jn,n+1(�) = �

for all sufficiently large n < �.
Define N =M� and let

j0,� : V → N
be the associated elementary embedding.
Let � = j0,�(κ). Then � < (2κ)+ < � and

N = Ult0(V,E),

where E is the extender of length � given by j0,� .
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Thus N is a weak extender model, for � is supercompact by Lemma 3.31
(with P trivial so that V = V [G ]).
Finally for all n < �, jn,n+1(N ) = N and so for all � ∈ Ord, for all
sufficiently large n < �, jn,n+1|N yields an elementary embedding

j : N → N
such that j(�) = �, and this proves the lemma. �
3.6. The HOD Dichotomy Theorem. Jensen’s Covering Lemma is natu-
rally formulated as a dichotomy theorem:
Theorem 3.33 (Jensen). One of the following holds.
(1) Suppose 	 is a singular cardinal. Then 	 is singular inL and 	+ = (	+)L.
(2) Every uncountable cardinal is inaccessible in L.
The following theorem is arguably an abstract generalization of the Jensen
Covering Lemma when stated as above in the form of a dichotomy theorem.
We shall prove a strong version of Theorem 3.34 as the HOD Dichotomy
Theorem, Theorem 3.39 below.
Theorem 3.34. Assume that � is an extendible cardinal. Then one of the
following holds.
(1) For every singular cardinal 	 > �, 	 is singular in HOD and
(	+)HOD = 	+.

(2) Every regular cardinal 	 ≥ � is a measurable cardinal in HOD.
Definition 3.35. Let � be an uncountable regular cardinal. Then � is
�-strongly measurable inHOD if there exists κ < � such that
(1) (2κ)HOD < �.
(2) There is no partition 〈Sα | α < κ〉 of cof(�) ∩ � into stationary sets
such that 〈Sα | α < κ〉 ∈ HOD.

Lemma 3.36. Suppose that � is an uncountable regular cardinal and that
F is a �-complete uniform filter on �. Let

B = P(�)/I,
where I is the ideal dual to F . Suppose that B is 	-cc for some 	 such that
2	 < �. Then |B| ≤ 2	 and B is atomic.
Proof. It suffices to prove that B is atomic. Equivalently, it suffices to
show that if A ⊆ � and A /∈ I then there exists B ⊆ A such that B /∈ I and
such that B cannot be split into 2 sets each of which is I -positive.
This in turn reduces to simply proving that B has an atom since if B is not
atomic then we can replace I by the ideal generated by I ∪ {A} where A/I
is the join in B of all the atoms of B.
Therefore we assume toward a contradiction that B has no atoms. Let

〈(Pα,Zα) : α < Θ〉
be a maximal sequence such that Θ ≤ 	 + 1 and such that for all α < 
 ,
(1.1) 2|
| < �,
(1.2) Z
 ∈ F and Z
 ⊆ Zα ,
(1.3) Pα is a partition of Z
 into I -positive sets,
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(1.4) P
 refines Pα ,
(1.5) for eachB ∈ Pα , there exist distinctX,Y ∈ P
 such thatX ∪Y ⊂ B .
For each α < Θ, |Pα | < 	 since B is 	-cc. We prove
(2.1) 2|Θ| ≥ �.
Assume toward a contradiction that 2|Θ| < �. Thus Θ < κ and so Z ∈ F
where

Z = ∩{Zα |α < Θ} .
Define an equivalence relation ∼ on Z by �1 ∼ �2 if for all α < Θ, for all
A ∈ Pα, �1 ∈ A if and only if x2 ∈ A.
We have the following:
(3.1) 2|Θ| < � and 2	 < �,
(3.2) for each α < �, |Pα | < 	.
Therefore |Z/∼| < κ. But then ZΘ ∈ F where

ZΘ = ∪{[�]∼ | � ∈ Z and [�]∼ /∈ I }
and where for each � ∈ Z, [�]∼ is the ∼-equivalence class of �.
Define PΘ = {[�]∼ | � ∈ ZΘ}. This contradicts the maximality of the
sequence

〈(Pα,Zα) : α < Θ〉.
This proves that 2|Θ| ≥ �. But this implies that Θ > 	. Fix � ∈ Z	 . For each
α < 	, let Xα ∈ Pα be such that � ∈ Xα. Thus

〈Xα : α < 	〉
is a decreasing sequence of I -positive sets and for each α < 	, Xα+1\Xα is
I -positive. This yields an antichain in B is cardinality 	 which contradicts
that B is 	-cc. �
Lemma 3.37. Assume � is �-strongly measurable inHOD. Then

HOD � � is a measurable cardinal.
Proof. Let S =

{
α < � | (cof(α))V = �

}
and let

F = {A ∈ P(�) ∩HOD |S\A is not a stationary subset of � in V } .
Thus F ∈ HOD and in HOD, F is a �-complete uniform filter on �. Since �
is �-strongly measurable in HOD, there exists 	 < κ such that in HOD:

(1.1) 2	 < �,
(1.2) P(�)/I is 	-cc where I is the ideal dual to F .
Therefore by Lemma 3.36, the Boolean algebra(

P(�) ∩HOD
)
/I

is atomic. �
Theorem 3.38. Suppose that � is an extendible cardinal. Then the following
are equivalent.
(1) HOD is a weak extender model, for � is supercompact.
(2) There exists a regular cardinal � ≥ � which is not�-strongly measurable
inHOD.
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Proof. By Theorem 3.10, (1) implies that for every singular cardinal
	 > �,

	+ = (	+)HOD

and by Lemma 3.37, this implies (2).
Thus it suffices to show that (2) implies (1).We first prove the following:

(1.1) For each α > � there exists a regular cardinal � > α such that � is
not �-strongly measurable in HOD.

Fix a regular cardinal �0 ≥ � such that �0 is not �-strongly measurable in
HOD. Let κ > �0 be such that κ > α and

Vκ ≺Σ2 V.
Thus

Vκ � “�0 is not �-strongly measurable in HOD.”
Since � is extendible, there exists an elementary embedding


 : Vκ+1 → V
(κ)+1
such that CRT(
) = � and 
(�) > κ > α. Thus

V
(κ) � “
(�0) is not �-strongly measurable in HOD.”
But

(HOD)V
(κ) ⊂ HOD
and so 
(�0) is not �-strongly measurable in HOD. This proves (1.1).
Fix κ0 > � and let κ > κ0 be such that |Vκ| = κ. Let �0 > 2κ be a regular
cardinal which is not �-strongly measurable in HOD and let � > �0 be such
that

V� ≺Σ2 V.
Thus � = |V�| and HOD ∩ V� = (HOD)V� .
Let S = {α < �0 | cof(α) = �}. Thus there exists a partition

〈Sα : α < κ〉 ∈ HOD
of S into stationary subsets of S.
Let


 : V�+1 → V
(�)+1
be an elementary embedding such that CRT(
) = � and 
(�) > �.
Let T = 
(S) and let

〈Tα : α < 
(κ)〉 = 
(〈Sα : α < κ〉).
Thus,

(2.1) 
(�0) is a regular cardinal.
(2.2) T = {α < 
(�0) | cof(α) = �}.
(2.3) 〈Tα : α < 
(κ)〉 is a partition of T into stationary sets.
(2.4) 〈Tα : α < 
(κ)〉 ∈ (HOD)V
(�) .
Let

Θ = sup {
(�) | � < �0} .
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Thus Θ < 
(�0). Let � be the set of all α < 
(κ) such that

Tα ∩ C �= ∅
for all closed cofinal subsets C ⊆ Θ. Therefore

� = {
(α) |α < κ} .
But � ∈ (HOD)V
(�) since

〈Tα : α < 
(κ)〉 ∈ (HOD)V
(�) .
This proves that


|κ ∈ (HOD)V
(�) .
But there is a bijection

� : κ → HOD ∩ Vκ
such that � ∈ (HOD)V� and so


|(HOD ∩ Vκ) ∈ (HOD)V
(�) .
Let U0 be the normal fine ultrafilter on P�(κ0) given by 
. Thus
(3.1) P�(κ0) ∩HOD ∈ U0,
(3.2) U0 ∩HOD ∈ (HOD)V
(�) ⊂ HOD.
This proves that HOD is a weak extender model, for � is supercompact. �
We now come to the HOD Dichotomy Theorem. There are various
equivalent versions but the following is sufficient for our purposes.
Theorem 3.39 (HOD Dichotomy Theorem). Suppose that � is an
extendible cardinal. Then one of the following holds.
(1) Every regular cardinal κ ≥ � is �-strongly measurable in HOD.
Further,
(a) HOD is not a weak extender for the supercompactness of any �.
(b) There is no weak extender model N for the supercompactness of
some � such that N ⊆ HOD.

(2) No regular cardinalκ ≥ � is�-strongly measurable inHOD. Further,
(a) HOD is a weak extender model for the supercompactness of �.
(b) Every singular cardinal 	 > � is singular in HOD and

	+ = (	+)HOD.

Proof. Assume toward a contradiction that κ and 	 are regular cardinals,
each greater than or equal to �, such that κ is not �-strongly measurable in
HOD and that 	 is �-strongly measurable in HOD.
Since 	 is �-strongly measurable in HOD, there exists a stationary set

S ⊂ {α < 	 | cof(α) = �}
such that
(1.1) S ∈ HOD,
(1.2) F ∩ (HOD ∩ P(	)) is an ultrafilter;
where F is the club filter (of V ) restricted to S.
Let

U = F ∩ (HOD ∩ P(	)).
Thus in HOD, U is a 	-complete, normal, uniform ultrafilter on 	.
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By Theorem 3.38, HOD is a weak extender model, for � is supercompact.
Therefore by Lemma 3.8, HOD has the �-covering property and so for each
� ∈ S,

(cof(�))HOD < �.
Thus {

� < 	 | (cof(�))HOD < �
}
∈ U.

This contradicts that inHOD,U is a 	-complete, normal, uniform ultrafilter
on 	. �
The HOD Dichotomy Theorem has an interesting corollary and a much
stronger version is given by Theorem 5.28.
Theorem 3.40. Suppose that � is an extendible cardinal. Then � is a
measurable cardinal inHOD.
Proof. By Lemma 3.37, we can reduce to the case that � is not�-strongly
measurable in HOD. But then by Theorem 3.39, HOD is a weak extender
model, for � is supercompact and so � is a supercompact cardinal in HOD. �
One can by a more careful argument generalize the previous theorem and
obtain the following variation.
Theorem 3.41. Suppose there exists an elementary embedding

j : Vκ+� → Vj(κ)+�
with CRT(j) = κ. Then there is a measurable cardinal inHOD.

3.7. TheHOD Hypothesis.

Definition 3.42 (The HOD Hypothesis). There exists a proper class of
regular cardinals � which are not �-strongly measurable in HOD.

Remark 3.43. (1) It is not known if there can exist 4 regular cardinals
which are �-strongly measurable in HOD.

(2) Suppose 	 is a singular strong limit cardinal of uncountable cofinality.
It is not known if 	+ can ever be �-strongly measurable in HOD.

The following theorem is an immediate corollary of the HODDichotomy
Theorem.
Theorem 3.44 (HOD Hypothesis). Suppose that � is an extendible
cardinal. ThenHOD is a weak extender model, for � is supercompact.
Comparing the next theorem with Lemma 3.32 shows that the case of
HOD being a weak extender model for the supercompactness of some �, is
quite different than the case of an arbitrary transitive class N .
Theorem 3.45 (HOD Hypothesis). Suppose that there is an extendible
cardinal. Then there is an ordinal � such that for all 	 > �, if

j : HOD ∩ V	+1 → HOD ∩ Vj(	)+1
is an elementary embedding with j(�) = � then j ∈ HOD.
Proof. Let � be an extendible cardinal and let �0 = �+� be the �-th
cardinal above �. Clearly (cof(�0))HOD = �. Further by Theorems 3.10
and 3.44,

(�+0 )
HOD = �+0 .
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Therefore if � < �+0 then (cof(�))
HOD < �0. Let κ0 be least such that{

� < �+0 | cof(�) = � and (cof(�))HOD = κ0
}

is stationary in �+0 .
Define � = �0 + κ0. We show that � is as required. Suppose 	 > � and

j : HOD ∩ V	+1 → HOD ∩ Vj(	)+1
is an elementary embedding such that j(�) = �. By Theorem 3.44, if j|� is
the identity then j ∈ HOD. Therefore we have only to prove that j|� is the
identity. Since κ0 < �0 and since j(�) = �, j(�0) = �0 and j(κ0) = κ0.
Clearly j induces canonically an elementary embedding

j∗ :
(
H (�++0 )

)HOD →
(
H (�++0 )

)HOD

with the property that j|�0 = j∗|�0.
Let

S =
{
� < �+0 | cof(�) = � and (cof(�))HOD = κ0

}
.

Thus since S is stationary in �+0 and since

(�+0 )
HOD = �+0 ,

there is a partition
〈Sα : α < �+0 〉 ∈ HOD

of S into stationary sets. Let

〈T
 : 
 < �+0 〉 = j∗(〈Sα : α < �+0 〉).
Note that if � ∈ S and if � is closed under j∗ then j∗(�) = �. This is because
(cof(�))HOD = κ0 and because j∗(κ0) = κ0.
Therefore for all 
 < �+0 ,T
∩S is stationary in �+0 if and only if 
 = j∗(α)
for some α < �+0 . This implies that{

j∗(α) |α < �+0
}
∈ HOD

since
{

 < �+0 |T
 ∩ S is stationary in �+0

}
∈ HOD.But by the elementarity

of j∗ and since j∗(S) = S, for all 
 < �+0 ,

HOD � “T
 ∩ S is stationary in �+0 ,”
which implies (since

{
j∗(α) |α < �+0

}
∈ HOD) that j∗|�+0 is the identity.

Thus
CRT(j) > �

and so by Theorems 3.15 and 3.44, j ∈ HOD. �
Theorem 3.46 (HODHypothesis). Suppose that there exists an extendible
cardinal. Then there is no sequence of nontrivial elementary embeddings,

ji : HOD→ HOD
such that the direct limit,

lim
i<�
ji ◦ · · · ◦ j0(HOD),

is wellfounded.
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Proof. Assume toward a contradiction that the direct limit is well-
founded. Then for every ordinal �,

ji (�) = �

for all sufficiently large i < �. Therefore by Theorem 3.45, ji must be the
identity for all sufficiently large i < �. �
Theorem 3.47 (HODHypothesis). Suppose that there exists an extendible
cardinal. Let T be the Σ2-theory of V with ordinal parameters. Then there is
no nontrivial elementary embedding,

j : (HOD, T )→ (HOD, T ).
Proof. By Theorem 3.45, there exists � ∈ Ord such that for all 	 > �, if

k : HOD ∩ V	+1 → HOD ∩ Vk(	)+1
is an elementary embedding with k(�) = �, then k ∈ HOD. Let �0 be the
least such �. Clearly �0 is definable in V and so �0 is definable in (HOD, T ).
Suppose toward a contradiction that

j : (HOD, T )→ (HOD, T )
is a nontrivial elementary embedding. Therefore j(�0) = �0 and so for all
	 > �0,

j| HOD ∩ V	+1 ∈ HOD,
which is a contradiction. �
3.8. TheHODConjecture. TheHODDichotomy Theorem together with
the speculation that there is an extension of inner model theory to the level
of supercompact cardinals suggests the following conjecture. Of course one
could modify the conjecture by replacing the theory

ZFC + “There is a supercompact cardinal”

with the theory

ZFC+ “There is an extendible cardinal”

or evenby a still stronger theory, but at this stage its seems rather unlikely that
this is actually necessary. However, the weaker conjecture obtained from the
stronger theory given by some (reasonable) large cardinal hypothesis might
be easier to prove.

Definition 3.48 (HOD Conjecture). The theory

ZFC + “There is a supercompact cardinal”

proves the HOD Hypothesis.

We end this section by listing several consequences of the HOD Conjec-
ture. These are in the context of just ZF and suggest there may be rather
surprising approximations to the Axiom of Choice which simply follow from
the existence of large cardinals (such as extendible cardinals). Details can
be found in [20]. There is a much stronger version of Theorem 3.49 in [25]
but for the purposes of this account that version is not really relevant. The
stronger version simply reduces the rank of the parameter a to nearly the
least supercompact cardinal (where supercompactness is as defined in [20]).
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Theorem 3.49 (ZF). Assume the HOD Conjecture. Suppose � is an
extendible cardinal. Then there is a transitive classM ⊆ V such that
(1) M � ZFC.
(2) M is Σ2(a)-definable for some a ∈ V�.
(3) Every set of ordinals is generic overM for some partial order P ∈ V� .
(4) M � “� is an extendible cardinal.”
Theorem 3.50 (ZF). Assume the HOD Conjecture. Suppose � is an
extendible cardinal. Then for all � > � there is no nontrivial elementary
embedding j : V�+2 → V�+2.
Theorem 3.49 suggests the following conjecture which if provable would
show an extraordinary connection between the existence of extendible
cardinals and the Axiom of Choice.

Definition 3.51 (Axiom of Choice Conjecture (ZF)). Suppose that � is
an extendible cardinal and that G ⊂ Coll(�,V�) is V -generic. Then the
Axiom of Choice holds in V [G ].

For the statement of the following theorem L(P(Ord)) denotes the
transitive class given by the union:

∪{L(P(α)) |α ∈ Ord} .
This is the smallest inner model of ZF which contains all sets of ordinals.
Theorem 3.52 (ZF). Assume the HOD Conjecture. Suppose that � is an
extendible cardinal. Then the following hold in L(P(Ord)).
(1) � is an extendible cardinal.
(2) The Axiom of Choice Conjecture.
We make a final comment. Assuming ZF, the Axiom of Choice holds if
and only if

L(P(Ord)) � Axiom of Choice.
Thus while proving the Axiom of Choice Conjecture would argue for the
Axiom of Choice just from the existence of an extendible cardinal, by
Theorem 3.52, just proving the HOD Conjecture would also suffice for
this purpose.

§4. The coding obstruction. If one can prove the following conjecture then
one verifies a minor weakening of the HOD Conjecture.
Conjecture 4.1. Suppose � is an extendible cardinal. Then there exists a
weak extender model N , for � is supercompact such that

N ⊆ HOD.
Defining a weak extender model for � is a measurable cardinal in the
natural fashion, Kunen’s theory of L[U ] yields:
Theorem 4.2 (after Kunen). Suppose that � is a measurable cardinal. Then
there exists a weak extender model N for � is measurable such that

N ⊆ HOD.
Thus one just needs to generalize Kunen’s construction of L[U ] to the
level of supercompact cardinals. The purpose of this section is to show that
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this cannot easily be done. Before giving the details we introduce the key
notion of an iteration tree which is the basis on which iterability hypotheses
are formulated. Iteration trees were first defined by Steel and the basic theory
is given in [11]. The definition we give is from [20] and is more general in
that a wider class of extenders is allowed.
Wealsoprove a preliminary positive result, Theorem4.31.This implies one
of the results implicit in [11], that assuming a natural iteration hypothesis,
Kunen’s theorem can be (directly) generalized far beyond the level of mea-
surable cardinals and up to the level of superstrong cardinals. Superstrong
cardinals are defined at the beginning of Section 5.

4.1. Iteration trees and iteration hypotheses. We review some definitions
from [20]. To be consistent with the terminology used in the fine-structure
theory of extender models, the premice of [20] we shall call coarse premice.
The definition of a coarse premouse is below.

Definition 4.3. A coarse premouse is a pair (M, �) such that M is
transitive, � ∈M , and
(1) M � ZC + Σ2-Replacement.
(2) Suppose that F :M� →M ∩Ord is definable from parameters inM ,
then F is bounded inM .

(3) � is strongly inaccessible inM .

We fix some notation.

Definition 4.4. If E is an extender, then

(1) jE : V →ME ∼= Ult0(V,E) is the ultrapower embedding.
(2) � is a generator of E if � �= jE(f)(s) for all s ∈ [�]<� and f ∈ V .
(3) �E = sup {� + 1 | � is a generator of E}.
(4) κE = CRT(E) = CRT(jE) and κ∗E = jE(κE).
(5) �(E) = sup {α |Vα ⊂ Ult0(V,E)}.
(6) �E = sup {α | jE(α) < �E}.
(7) SP(E) is the set of all cardinals 	 ≤ �E such that there is a generator �
of E such that sup(jE [	]) ≤ � < jE(	).

(8) E is �-huge if �(E) = � where � > κE is least such that jE(�) = �.

Remark 4.5. (1) Note that �(E) ≥ κE + 1, �E is a cardinal, and
�E = sup(SP(E)). However assuming for example that there is a
supercompact cardinal, it is not always that case that �E ∈ SP(E).

(2) SP(E) is the set of cardinals � for which E induces uniform ultrafilters
on �, these are the spaces associated to the (uniform) ultrafilters of E.
Every cardinal � ∈ SP(E) must have cofinality at least κE , however
SP(E) need not contain even all the regular cardinals � such that
κE ≤ � < �E .

Definition 4.6. Suppose that (M, �) is a coarse premouse. An iteration
tree, T , on (M, �) of length � is a tree order<T on � with minimum element
0 and which is a suborder of the standard order, together with a sequence

〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉
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such that the following hold.
(1) M0 =M .
(2) j	,α :M	 →Mα for all 	 <T α < �.
(3) Suppose that α + 1 < �. Then α + 1 has an immediate predecessor,
α∗, in the tree order <T and
a) Eα ∈ j0,α(M ∩ V�) and Mα � “Eα is an extender which is not
�-huge”;

b) If α∗ < α then �Eα + 1 ≤ min
{
�(E
) |α∗ ≤ 
 < α

}
;

c) Mα+1 = Ult0(Mα∗ , Eα) and

jα∗,α+1 :Mα∗ →Mα+1
is the associated embedding.

(4) If 0 < 
 < � is a limit ordinal then the set of α such that α <T 
 is
cofinal in 
 andM
 is the limit of theMα where α <T 
 relative to
the embeddings; jα,
 .

Definition 4.7. Suppose that (M, �) is a coarse premouse and that T is
an iteration tree on (M, �) with associated sequence,

〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉.
Suppose that � ∈ Ord. Then the iteration tree, T , is a (+�)-iteration tree if
for all α + 1 < �,

sup
{
�E
 |
∗ ≤ α < 


}
+ � ≤ �(Eα),

where for each 
 + 1 < �, 
∗ is the T predecessor of 
 + 1.
Remark 4.8. By the definition of an iteration tree, if 
∗ ≤ α < 
 then
necessarily

�E
 + 1 ≤ �(Eα).
Thus every iteration tree is a (+0)-iteration tree and every iteration tree of
finite length is a (+1)-iteration tree.

Definition 4.9. Suppose that (M, �) is a coarse premouse. An iteration
strategy of order �1 + 1 for (M, �) is a function I such that the following
hold.
(1) Suppose that T is an iteration tree on (M, �) of limit length such that

LTH(T ) ≤ �1. Then T ∈ dom(I ) and I (T ) is a maximal wellfounded
branch of T of limit length.

(2) Suppose that T is an iteration tree on (M, �) of limit length such
that LTH(T ) ≤ �1. Suppose that for all limit � < LTH(T ), I (T |�) =
{� < � | � <T �}. Then I (T ) is a cofinal wellfounded branch of T .

Definition 4.10. Suppose that (M, �) is a coarse premouse and that T is
an iteration tree on (M, �) with associated sequence,

〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉.
The iteration tree T is strongly closed if for all α + 1 < �:
(1) T is a (+1)-iteration tree; and
(2) LTH(Eα) is strongly inaccessible inMα and �(Eα) = LTH(Eα) inMα .
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Definition 4.11. Suppose that (M, �) is a coarse premouse. A strongly
closed iteration tree

T = 〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉
on (M, �) is a 0-strongly closed iteration tree if for all α + 1 < �,

LTH(Eα) ≤ jEα (κEα ) ,
where for each α + 1 < �,

jEα :Mα → Ult0(Mα,Eα)
is the ultrapower embedding (as computed inMα).

Definition 4.12. Suppose that (M, �) is a coarse premouse and that T is
a 0-strongly closed iteration tree on (M, �) with associated sequence,

〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉.
Then

(1) T is maximal if LTH(E
 ) ≤ κEα for all 
 < α∗ < α + 1 < �.
(2) T is strongly maximal if κ∗E
 ≤ κEα for all 
 < α

∗ < α + 1 < �.
(3) T is non-overlapping if κ∗E
 ≤ κEα for all 
 + 1 ≤T α + 1 < �.

Definition 4.13 (Weak (�1 + 1)-Iteration Hypothesis). Suppose that
(M, �) is a countable coarse premouse and that


 :M → VΘ
is an elementary embedding. Then (M, �) has an iteration strategy of order
�1 + 1 for 0-strongly closed maximal iteration trees on (M, �).

Definition 4.14 (Weak Unique Branch Hypothesis). Suppose that
(VΘ, �) is a coarse premouse that T is a countable 0-strongly closed maxi-
mal iteration tree on (VΘ, �) of limit length. Then T has at most one cofinal
wellfounded branch.

Remark 4.15. The Weak (�1 + 1)-Iteration Hypothesis and the Weak
Unique Branch Hypothesis are special cases of the fundamental iteration
hypotheses of [11]. The necessity of the restriction to strongly closed iteration
trees for the Weak Unique Branch Hypothesis is given in Theorem 4.16.
Note that 0-strongly closed iteration trees which are strongly maximal are
necessarily non-overlapping.

We give two counterexamples to the attempt of formulating variations
of the iteration hypotheses above by weakening the requirement that the
iteration trees be 0-strongly closed andmaximal. The proofs are given in [20].

Theorem 4.16. Suppose that there is a supercompact cardinal. Then there
exist an extender E such that

�E =
(
22
κ)ME

,

where κ = κE andME = Ult0(V,E), and a 0-strongly closed stronglymaximal
iteration tree
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T = 〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉

onME of length � such that

(1) κEα > κ
∗
E for all α < �,

(2) T has two wellfounded branches.
Theorem 4.17. Suppose that there is a supercompact cardinal. Then there
exist an extender E such that

�E =
(
22
κ)ME

,

where κ = κE andME = Ult0(V,E), and a 0-strongly closed stronglymaximal
iteration tree

T = 〈Mα,E
, j	,α : α < �, 
 + 1 < �, 	 <T α〉

onME of length �2 such that

(1) κEα > κ
∗
E for all α < �

2,
(2) T has only one cofinal branch and that branch is not wellfounded.

4.2. Martin–Steel extender sequences. An important precursor to the fine
structural models ofMitchell-Steel of [12] are theMartin–Steel innermodels
of [11] and these represent the natural generalization of the definition of
L[U ] to larger inner models.
Before giving the relevant definitions, we note that replacingU by a single
extender cannot work. Of course this requires being a bit careful about
defining L[E] where E is an extender.

Definition 4.18. Suppose E = 〈Ea : a ∈ [�]<�〉 is an extender. Then
L[E] denotes L[PE ] where PE = {(a, B) |B ∈ Ea}.

The following lemma shows that using just one extender cannot suffice to
generate even an inner model with 2 measurable cardinals (if that extender
is short in the sense that LTH(E) ≤ κ∗E). This may seem surprising at first
since a single extender, evenwith the requirement LTH(E) ≤ κ∗E , canwitness
the existence of large cardinals far beyond the level of a single measurable
cardinal.

Lemma 4.19. Suppose that E is an extender such that LTH(E) ≤ jE(κ)
where

jE : V →ME ∼= Ult0(V,E)
is the ultrapower embedding. Let U be the normal ultrafilter on κ given by jE .
Then L[E] = L[U ].

Using longer extenders does not really help but the requisite analysis is
more involved since if there are two measurable cardinals then there is an
extender E such that in L[E] there is an inner model with two measurable
cardinals and so

L[E] �= L[U ],
where U is the normal measure on κE given by E.
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Theorem 4.20. Suppose that F is an extender and E = F |jF (�) for some
� < jF (κF ) such that

V�+� ⊂MF ∼= Ult0(V,F ),
where � = jF (�). Then inL[E] there is no innermodel with aWoodin cardinal.

Remark 4.21. If one drops the requirement that E = F |� for some
� < �(F ) (still requiring � < jF (�) for some � < jF (κF )) then it is relatively
consistent (fromaproper class ofmeasurable cardinals) that in all set-generic
extensions of V , the following holds:

(1) For every set A, there exists an extender E such that A ∈ L[E] and
such that LTH(E) < jE(�) for some � < jE(κE).

A natural conjecture is that if sufficient large cardinals exist in V , then (1)
must hold outright in V .

Thus one really needs to consider sequences of extenders and the Martin–
Steel extender models are of the form L[Ẽ] where

Ẽ ⊆ (Ord ×Ord)× V
is a predicate defining a sequence of (total) extenders. The predicate Ẽ is
defined such that for all (α, 
) ∈ dom(Ẽ), the set,

{
a ∈ V | ((α, 
), a) ∈ Ẽ

}
,

is an extender which we denote by Eα
 . In the case of the Martin–Steel
inner models, the extender Eα
 is the extender derived from an elementary
embedding

j : V →M
such that P�(α) ⊆M and such that α < j(κ).
For (α, 
) ∈ dom(Ẽ), Ẽ|(α, 
) is the extender sequence given by restrict-
ing Ẽ to the set of all (�, 	) such that (�, 	) <L (α, 
) in the lexicographical
ordering of pairs of ordinals:

Ẽ|(α, 
) =
{
((�, 	), a) ∈ Ẽ | (�, 	) <L (α, 
)

}
;

and L[Ẽ|(α, 
)] is formally defined as L[P] where P is obtained from
Ẽ|(α, 
) in the natural fashion as defined above in the case of a single
extender.

Definition 4.22. An extender sequence,

Ẽ = 〈Eα
 : (α, 
) ∈ dom(Ẽ)〉

is aMartin–Steel extender sequence if for each pair (α, 
) ∈ dom(Ẽ):
(1) (Coherence) There exists an extender F such that
a) α < �(F ) and �(F ) is strongly inaccessible.
b) Eα
 = F |α.
c) (shortness) α ≤ jF (κF ).
d) jF (Ẽ)|(α + 1, 0) = Ẽ|(α, 
).
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(2) (Novelty) For all 
∗ < 
 , (α, 
∗) ∈ dom(Ẽ) and
Eα
∗ ∩ L[Ẽ|(α, 
)] �= Eα
 ∩ L[Ẽ|(α, 
)].

(3) (Initial Segment Condition) Suppose that

κ < α∗ < α,

where κ is the critical point associated to Eα
 .

Then there exists 
∗ such that (α∗, 
∗) ∈ dom(Ẽ) and such that
Eα

∗


∗ ∩ L[Ẽ|(α∗ + 1, 0)] = (Eα
 |α∗) ∩ L[Ẽ|(α∗ + 1, 0)].

The Martin–Steel extender models are actually defined in [11] as L[P]
where P is a predicate defined from a sequence of sets of extenders. Such
sequences are called Doddages and the approach of constructing extender
models fromDoddages has the advantage that the resulting inner model can
be ordinal definable.

Definition 4.23. A Doddage is a sequence Ẽ such that
dom(Ẽ) ⊆ Ord×Ord

and such that for all (α, 
) ∈ dom(Ẽ), Ẽ(α, 
) is a set of extenders of
length α.

Definition 4.24. Suppose that Ẽ is a Doddage. Then L[Ẽ] denotes L[PẼ ]
where PẼ is the set of all (α, 
, s, a) such that

(1) (α, 
) ∈ dom(Ẽ),
(2) s ∈ [α]<�,
(3) a ∈ E(s) for all E ∈ Ẽ(α, 
).
Suppose Ẽ is a Doddage. For each (α, 
) ∈ dom(Ẽ) we denote Ẽ(α, 
)
by Eα
 .
Definition 4.25. A Doddage,

Ẽ = 〈Eα
 : (α, 
) ∈ dom(Ẽ)〉
is a Martin–Steel Doddage if for each pair (α, 
) ∈ dom(Ẽ) and for each
extender E ∈ Eα
 ,
(1) (Coherence) There exists an extender F such that
a) α < �(F ) and �(F ) is strongly inaccessible,
b) E = F |α,
c) (shortness) α ≤ jF (κF ),
d) jF (Ẽ)|(α + 1, 0) = Ẽ |(α, 
).

(2) (Novelty) For all 
∗ < 
 , (α, 
∗) ∈ dom(E) and for all E∗ ∈ Eα
∗ ,

E∗ ∩ L[Ẽ |(α, 
)] �= E ∩ L[Ẽ |(α, 
)].
(3) (Initial Segment Condition) Suppose that

κE < α
∗ < α.

Then there exists (α∗, 
∗) ∈ dom(Ẽ) and there exists E∗ ∈ Eα∗
∗ such
that

E∗ ∩ L[Ẽ |(α∗ + 1, 0)] = (E|α∗) ∩ L[Ẽ |(α∗ + 1, 0)].
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Definition 4.26. Suppose Ẽ is a Martin–Steel Doddage. Then Ẽ is good
if for all (α, 
) ∈ dom(Ẽ), for all E0, E1 ∈ Eα
 , E0 ∩ L[Ẽ] = E1 ∩ L[Ẽ].

Theorem 4.27 (Martin–Steel). Suppose that the Weak (�1 + 1)-Iteration
Hypothesis holds and that Ẽ is a Martin–Steel Doddage such that Ẽ ∈ V� for
some strongly inaccessible Mahlo cardinal �. Then Ẽ is good.
Theorem 4.28 (Martin–Steel). Suppose that the Weak (�1 + 1)-Iteration
Hypothesis holds and that there is a supercompact cardinal. Then there exists
a Martin–Steel Doddage Ẽ such that there is a superstrong cardinal in L[Ẽ].
The following lemma follows from the definition of the coherence
condition.

Lemma 4.29. Suppose that Ẽ is aMartin–Steel Doddage, (α, 
) ∈ dom(Ẽ),
and that F is an extender of minimum length which witnesses the coherence
condition for Ẽ at (α, 
). Then κF = �F .
Remark 4.30. (1) Theorem 4.31, which is from [20], is the general-
ization of Kunen’s theorem that L[U ] is uniquely specified by the
measurable cardinal κ associated to U . We include the proof for the
sake of completeness and because it provides a good introduction to
the basic comparison arguments of inner model theory.

(2) The assumption that (Ẽ0, Ẽ1) ∈ V� for some strongly inaccessible
Mahlo cardinal � is only necessary because of how theWeak (�1 +1)-
Iteration Hypothesis is formulated. Similarly for Theorem 4.27.
One really just needs that (Ẽ0, Ẽ1) ∈ V� for some strongly
inaccessible � such that

V� � “Ẽ0 and Ẽ1 are Martin–Steel Doddages,”
which must hold if � is strongly inaccessible and Mahlo.
Alternatively, one could just assume there is a proper class of
strongly inaccessible cardinals.

Theorem 4.31. Suppose that theWeak (�1+1)-IterationHypothesis holds.
Suppose that Ẽ0 and Ẽ1 are Martin–Steel Doddages such that

dom(Ẽ0) = dom(Ẽ1)
and such that (Ẽ0, Ẽ1) ∈ V� for some strongly inaccessible Mahlo cardinal �.
Then

L[Ẽ0] = L[Ẽ1],
and moreover for all (α, 
) ∈ dom(Ẽ0), for all E0 ∈ Ẽ0(α, 
), for all
E1 ∈ Ẽ1(α, 
),

E0 ∩ L[Ẽ0] = E1 ∩ L[Ẽ1].
Proof. We sketch the proof. Fix � such that

(Ẽ0, Ẽ1) ∈ V�
and such that � is a strongly inaccessible Mahlo cardinal.
It is convenient to fix some notation. Suppose that Ẽ and F̃ are Martin–
Steel Doddages such that dom(Ẽ) = dom(F̃). Define Ẽ ≡ F̃ if

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.34


IN SEARCH OF ULTIMATE-L 37

(1.1) L[Ẽ] = L[F̃ ].
(1.2) For all (α, 
) ∈ dom(Ẽ), for all E ∈ Ẽ(α, 
), for all F ∈ F̃(α, 
),

E ∩ L[Ẽ] = F ∩ L[F̃ ].
Fix (Ẽ0, Ẽ1, �) and suppose toward a contradiction that the theorem fails.
Suppose that (VΘ, �) is a premouse such that Ẽ0 ∈ V� and such that there
exists a countable elementary substructure,

X ≺ (VΘ, �)
such that (M, �M ) has an (�1 + 1)-iteration strategy for 0-strongly closed
maximal iteration trees where (M, �M ) is the transitive collapse of X .
Thus

V� � Ẽ0 �≡ Ẽ1.
Fix a countable elementary substructure,

X ≺ (VΘ, �),
such that (M, �M ) has an (�1 + 1)-iteration strategy where (M, �M ) is the
transitive collapse of X .
By the elementarity of X , we can suppose without loss of generality that
(Ẽ0, Ẽ1, �) ∈ X . Let (ẼM0 , ẼM1 ) ∈ M be the image of (Ẽ0, Ẽ1) under the
collapsing map. Thus

M ∩ V�M � ẼM0 �≡ ẼM1 .
Fix an (�1 +1)-iteration strategy for (M, �M ) and following this strategy we
shall define two iteration trees

T = 〈MT
α , E

T

 , j

T
	,α : α ≤ �1, 
 < �1, 	 <T α〉

and
S = 〈MS

α , E
S

 , j

S
	,α : α ≤ �1, 
 < �1, 	 <S α〉

on (M, �M ) each of length �1 + 1 such that for all 
 < �1, the predecessor
of 
 + 1 relative to each of the two iteration trees is as small as possible for
that iteration tree.
To define S and T , we define a continuous increasing sequence

〈(
S , 
T ) : 
 ≤ �1〉
of pairs of ordinals and define (S|
S , T |
T ) by induction on 
 with
(0S , 0T ) = (0, 0). The limit stages are immediate. Therefore we can suppose
that 
 < �1 and that

jS0,
S :M →MS

S

and
jT0,
T :M →MT


T

are given. We define ((
 +1)S , (
+1)T ) and at the same time we will define
ES

S
if (
 + 1)S �= 
S and define ET


T
if (
 + 1)T �= 
T . It is convenient to

use the following notation. Suppose A,B are subsets of Ord×Ord, then
A ≤L B,

if A = B or if A is an initial segment of B relative to the lexicographical
order on Ord×Ord.
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Case 1. Suppose that there exists

(�, 	) ∈ jS0,
S
(
dom(ẼM0 )

)
∩ jT0,
T

(
dom(ẼM0 )

)

such that

(2.1) jS0,
S
(
dom(ẼM0 )

)
|(�, 	) = jT0,
T

(
dom(ẼM0 )

)
|(�, 	),

(2.2) there exist

ES ∈
(
jS0,
S

(
ẼM0

))
(�, 	) ∪

(
jS0,
T

(
ẼM1

))
(�, 	)

and
ET ∈

(
jT0,
T

(
ẼM0

))
(�, 	) ∪

(
jT0,
T

(
ẼM1

))
(�, 	)

such that

ES ∩MS

S ∩MT


T �= ET ∩MS

S ∩MT


T .

Let (�, 	) be the least such pair (relative the lexicographical order) and
defineES


S
to be an extender inMS


S
whichwitnesses the coherence condition

for ES relative to jS0,
S (Ẽ
M
0 ) if

ES ∈
(
jS0,
S

(
ẼM0

))
(�, 	)

orwitnesses coherence condition forES relative to jS0,
S (Ẽ
M
1 ), withLTH(E

S

S
)

as small as possible such that

LTH(ES

S ) = �(E

S

S )

and such that LTH(ES

S
) is strongly inaccessible in MS


S
. Since both

jS0,
S
(
ẼM0

)
and jS0,
S

(
ẼM1

)
are Martin–Steel Doddages in MS


S
and since

E0, E1 ∈ V�, it follows that ES

S
exists.

Similarly, define ET

T
to be an extender in MT


T
which witnesses the

coherence condition for ET relative to either jT0,
T (Ẽ
M
0 ) if

ET ∈
(
jT0,
T

(
ẼM0

))
(�, 	)

or witnesses coherence condition for ET relative to jT0,
T (Ẽ
M
1 ) otherwise,

with LTH(ET

T
) and small as possible such that

LTH(ET

T ) = �(E

T

T )

and such that LTH(ET

T
) is strongly inaccessible in MT


T
. Exactly as above,

since both jT0,
T
(
ẼM0

)
and jT0,
T

(
ẼM1

)
are Martin–Steel Doddages in MT


T

and since E0, E1 ∈ V� , it follows that ET

T
exists.

Define ((
 + 1)S , (
 + 1)T ) = (
S + 1, 
T + 1).

Case 2. Otherwise. Then

jT0,
T
(
dom(ẼM0 )

)
�≤L j

S
0,
S

(
dom(ẼM0 )

)

and
jS0,
S

(
dom(ẼM0 )

)
�≤L j

T
0,
T

(
dom(ẼM0 )

)
.

Let (�, 	)T = min
(
jT0,


(
dom(ẼM0 )

)
\jS0,


(
dom(ẼM0 )

))
and let
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(�, 	)S = min
(
jS0,


(
dom(ẼM0 )

))
\jT0,


(
dom(ẼM0 )

)
,

where in each case the minimum is relative to the lexicographical order.
Thus (�, 	)S �= (�, 	)T . There are two subcases. If (�, 	)S < (�, 	)T then
let ES


S
∈ MS


S
be an extender which witnesses the coherence condition for

some extender
E ∈

(
jS0,
S

(
ẼM0

))
((�, 	)S)

with LTH(ES

S
) as small as possible such that

LTH(ES

S ) = �(E

S

S )

and such that LTH(ES

S
) is strongly inaccessible in MS


S
. Exactly as above,

since jS0,
S
(
ẼM0

)
is a Martin–Steel Doddage in MS


S
and since E0 ∈ V� it

follows that ES

S
exists.

Define ((
 + 1)S , (
 + 1)T ) = (
S + 1, 
T ).
If (�, 	)T < (�, 	)S then let ET


T
∈ MT


T
be an extender which witnesses

the coherence condition for some extender

E ∈
(
jT0,
T

(
ẼM0

))
((�, 	)T )

with LTH(ET

T
) as small as possible such that

LTH(ET

T ) = �(E

T

T )

and such that LTH(ET

T
) is strongly inaccessible inMT


T
.

Define ((
 + 1)S , (
 + 1)T ) = (
S , 
T + 1).
This completes the definition of S and T . If at some stage 
 neither case
applies then it follows that (interchanging S and T if necessary)
(3.1) jS0,
T

(
dom(ẼM0 )

)
≤L j

T
0,
T

(
dom(ẼM0 )

)
,

(3.2) for all (�, 	) ∈ jT0,
S
(
dom(ẼM0 )

)
,

E ∩MS

S ∩MT


T = F ∩MS

S ∩MT


T ,

for all
E ∈

(
jS0,
S

(
ẼM0

))
(�, 	) ∪

(
jS0,
T

(
ẼM1

))
(�, 	)

and for all

F ∈
(
jT0,
T

(
ẼM0

))
(�, 	) ∪

(
jT0,
T

(
ẼM1

))
(�, 	).

If
jS0,
S

(
dom(ẼM0 )

)
= jT0,
T

(
dom(ẼM0 )

)
,

then either
MS

S ∩ VjS0,
S (�M ) � j

S
0,
S (Ẽ

M
0 ) ≡ jS0,
S (Ẽ

M
1 )

or
MT

T ∩ VjT0,
T (�M ) � j

T
0,
T (Ẽ

M
0 ) ≡ jT0,
T (Ẽ

M
1 )

(depending on whether jS0,
S (�M ) ≤ jT0,
T (�M ) or whether j
T
0,
T (�M ) ≤

jS0,
S (�M )) and this contradicts the choice of (M, Ẽ
M
0 , ẼM1 , �M ).

If jS0,
S
(
dom(ẼM0 )

)
is a proper initial segment of jT0,
T

(
dom(ẼM0 )

)
then it

follows that
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MS

S ∩ VjS0,
S (�M ) � j

S
0,
S (Ẽ

M
0 ) ≡ jS0,
S (Ẽ

M
1 )

and this again is a contradiction.
To see this latter claim fix (�0, 	0) ∈ jT0,
T

(
dom(ẼM0 )

)
such that

jS0,
S
(
dom(ẼM0 )

)
= jT0,
T

(
dom(ẼM0 )

)
|(�0, 	0).

Since jT0,
T
(
ẼM0

)
(�0, 	0) is defined it follows that

MT

 ∩ VjT0,
 (�M ) � “(L[Ẽ])

# and (L[F̃ ])# exist,”

where Ẽ = jT0,
T (Ẽ
M
0 )|(�0, 	0) and where F̃ = jT0,
T (Ẽ

M
1 )|(�0, 	0). Further

since (MT

T
, jT0,
T (�M )) is iterable,

(
(L[Ẽ ])#

)MT

T = (L[Ẽ ])#

and (
(L[F̃ ])#

)MT

T = (L[F̃ ])#.

Now by (3.2), it follows that

MS

S ∩ VjS0,
S (�M ) � j

S
0,
S (Ẽ

M
0 ) ≡ jS0,
S (Ẽ

M
1 )

as claimed. Therefore at every stage 
 < �1, either Case 1 holds or Case 2
holds.
Note that for each extender, E, occurring in either S or T , in the model
from which E is chosen there exists � such that

(4.1) � = |V�| and �(E) = LTH(E) = �,
(4.2) κE = �E ,
(4.3) � is not a limit of inaccessible cardinals.

To see that (4.2) holds, it suffices to see that if E is a Martin–Steel Doddage,
(α, 
) ∈ dom(E) and if F is an extender which witnesses the coherence
condition for E(α, 
) then necessarily (α, 
) ∈ jF (Vκ) where κ = κF .
This has two consequences. First, (4.1)–(4.3) imply that both S and T are
non-overlapping; in fact, for all 
1 < 
2 if 
1 +1 <S 
2 +1 then LTH(ES


1
) <

CRT(ES

2
), and similarly for T . This is a slightly stronger condition. Second,

by (4.2) both S and T are iteration trees involving only short extenders,
and so (4.1)–(4.3) imply that both S and T are (+1)-iteration trees (which
implies that they are each (+�)-iteration trees where � is the leastmeasurable
cardinal of M ). Therefore the iteration strategy fixed for (M, �M ) must
supply cofinal, wellfounded branches at all limit stages 
 ≤ �1.
We note that unlike the usual comparison arguments, it is not obvi-
ously the case that the lengths of the extenders in these iteration trees
are nondecreasing, more precisely it is not obvious that for all 
1 < 
2,
LTH(ES


1
) ≤ LTH(ES


2
). For example, suppose that ES


1
is chosen to witness

the coherence condition relative to jS0,
1 (Ẽ
M
0 ). Then there is no reason to

expect thatES

1
coheres jS0,
1 (Ẽ

M
1 ) and so at the next stage of the construction

of (S, T ) there may be an “earlier” disagreement.
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We obtain a contradiction is the usual fashion. Let

Z ≺ H (�2)
be a countable elementary substructure such that {S, T } ∈ Z. Let

bS = {
 < �1 |
 <S �1}
and let bT = {
 < �1 | 
 <T �1}. Thus bS and bT are each closed cofinal
subsets of �1. Let 
Z = Z ∩ �1. The image of (S, T ) under the transitive
collapse of Z is (S|(
Z + 1), T |(
Z + 1)).
Let N be the transitive collapse of X and let


 : N → H (�2)
invert the transitive collapse. Thus 
Z ∈ bS ∩ bT and
(5.1) 
(MS


Z
) =MS

�1
and 
|MS


Z
= jS
Z ,�1 ,

(5.2) 
(MS

Z
) =MS

�1
and 
|MS


Z
= jS
Z ,�1 .

We now come to the key points. LetαS
Z be such that 
Z = (α

S
Z )

∗ computed
relative to<S , and letαT

Z be such that 
Z = (α
T
Z )

∗ computed relative to<T .
By (5.1)–(5.2) and since the iteration trees are non-overlapping:
(6.1) For all 
 > 
Z , LTH(ES


 ) > 
Z and LTH(E
T

 ) > 
Z ;

(6.2) For all 
 > 
Z ,

MS

 ∩ V
Z+� =MS


Z
∩ V
Z+�

and
MT

 ∩ V
Z+� =MT


Z
∩ V
Z+�;

(6.3) Either

ES
αSZ

∩MS

Z

∩MT

Z
=

(
ET
αTZ

|LTH(ES
αSZ
)
)
∩MS


Z
∩MT


Z
,

or

ET
αTZ

∩MS

Z

∩MT

Z
=

(
ES
αSZ

|LTH(ET
αTZ
)
)
∩MS


Z
∩MT


Z
;

(6.4) For each α such that αS
Z < α < �1, LTH(E

S
αSZ
) < LTH(ES

α ),

(6.5) For each α such that αT
Z < α < �1, LTH(E

T
αTZ
) < LTH(ET

α ).

The third of these claims, (6.3), follows from (5.1) and (5.2) since both S
and T are non-overlapping.
To see that (6.4) holds, suppose toward a contradiction that αS

Z < α < �1
and that LTH(ES

αSZ
) ≥ LTH(ES

α ). Let α̂ be such that

(α̂)∗ = sup {
 ≤ α | 
 ∈ bS} ,
and such that α̂ + 1 ∈ bS , where (α̂)∗ is computed relative to <S . Then
α̂ ≥ α and (α̂)∗ ≥ αS

Z + 1 since α > α
S
Z and α

S
Z + 1 ∈ bS . But

CRT(ES
α̂ ) < min

{
�(ES


 ) | (α̂)∗ ≤ 
 < α̂
}
≤ LTH(ES

α ) ≤ LTH(ES
αSZ
),

and since S is non-overlapping, LTH(ES
αSZ
) ≤ CRT(ES

α̂ ). This is a contradic-

tion. The proof that (6.5) holds is similar as is the proof of (6.1). Finally (6.2)
follows from (6.1) since each of the extenders, ES


 and E
T

 , is an extender

of minimum possible length which witnesses the coherence condition for a
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Martin–Steel Doddage (such extenders cannot have length which is a limit
of inaccessible cardinals).
We fix some notation. Suppose that 
 ≤ �1 and that (�, 	) ∈
jS0,
 (dom(Ẽ0)). LetMS

Ẽ0,

(�, 	) denote the structure,

(
L
[
jS0,


(
ẼM0

)
|(�, 	)

]
, jS0,


(
ẼM0

)
|(�, 	) ∩ L

[
jS0,


(
ẼM0

)
|(�, 	)

])
,

and letMS
Ẽ1,

(�, 	) denote structure,

(
L
[
jS0,


(
ẼM1

)
|(�, 	)

]
, jS0,


(
ẼM1

)
|(�, 	) ∩ L

[
jS0,


(
ẼM1

)
|(�, 	)

])
.

Similarly, suppose that 
 ≤ �1, and that (�, 	) ∈ jT0,
(dom(Ẽ0)). Let
MT

Ẽ0,

(�, 	) andMT

Ẽ1,

(�, 	) denote the analogous structures defined relative

to T .
Let (�, 	)S ∈ jS0,αSZ (dom(Ẽ0)) be the element involved in the definition
of ES

αSZ
. By (6.4) and the fact that the extenders ES

α are chosen of minimal
length to witness the coherence condition:

(7.1) Suppose that αS
Z < α < �1. Let (�, 	) be the element of

jS0,α(dom(Ẽ0)) involved in the definition of ES
α . Then �

S < � where
(�S , 	S) = (�, 	)S .

We claim that for all 
 such that αS
Z ≤ 
 ≤ �1:

(8.1) jS0,αSZ
(dom(Ẽ0))|(�, 	)S = jS0,
(dom(Ẽ0))|(�, 	)S = jT0,
 (dom(Ẽ0))|

(�, 	)S ;
(8.2) Let (�S , 	S) = (�, 	)S , then if αS

Z < 
 ,

jS0,
 (dom(Ẽ0))|(�, 	)S = jS0,
 (dom(Ẽ0))|(�S + 1, 0)
and

jT0,
 (dom(Ẽ0))|(�, 	)S = jT0,
(dom(Ẽ0))|(�S + 1, 0);

(8.3) For all (�∗, 	∗) ∈ jS0,
(dom(Ẽ0))|(�, 	)S ,

E ∩MS

 ∩MT


 = F ∩MS

 ∩MT


 ,

for all
E ∈

(
jS0,
 (Ẽ0)

)
(�∗, 	∗) ∪

(
jS0,
(Ẽ1)

)
(�∗, 	∗)

and for all

F ∈
(
jT0,
(Ẽ0)

)
(�∗, 	∗) ∪

(
jT0,
 (Ẽ1)

)
(�∗, 	∗);

(8.4) MS
Ẽ0,

((�, 	)S) =MS

Ẽ1,

((�, 	)S) =MS

Ẽ0,αSZ
((�, 	)S) =MS

Ẽ1,αSZ
((�, 	)S);

(8.5) MT
Ẽ0,

((�, 	)S) =MT

Ẽ1,

((�, 	)S) =MT

Ẽ0,αSZ
((�, 	)S) =MT

Ẽ0,αSZ
((�, 	)S);

(8.6) MS
Ẽ0,αSZ
((�, 	)S) =MT

Ẽ1,αSZ
((�, 	)S);

(8.7)
(
MS

Ẽ0,αSZ
((�, 	)S)

)#
∈MS


 ∩MT

 .

The only potential issue is (8.7); (8.1)–(8.6) follow from (6.1)–(6.5) and
(7.1) by relatively standard arguments. The proof of (8.7) uses (8.1)–(8.6)
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and the definition of S and T . There are two additional relevant points.
First,

�1 ⊆MS
�1

and so for all a ∈MS
�1
, if

MS
�1

� “a# exists”

then a# ∈ MS
�1
(and similarly for MT

�1
). Second, if Ẽ is a Martin–Steel

Doddage and if (�, 	) ∈ dom(Ẽ) then since Ẽ(�, 	) is defined, necessarily(
L[Ẽ |(�, 	)]

)#
exists.

Similarly, let (�, 	)T ∈ jT0,αTZ (dom(Ẽ0)) be the element involved in the
definition of ET

αTZ
. By (6.5), for all 
 such that αT

Z ≤ 
 ≤ �1;

(9.1) jT0,αTZ
(dom(Ẽ0))|(�, 	)T = jT0,
 (dom(Ẽ0))|(�, 	)T = jS0,
 (dom(Ẽ0))|

(�, 	)T ;
(9.2) Let (�T , 	T ) = (�, 	)T , then if αT

Z < 
 ,

jS0,
(dom(Ẽ0))|(�, 	)T = jS0,
(dom(Ẽ0))|(�T + 1, 0),

and

jT0,
(dom(Ẽ0))|(�, 	)T = jT0,
(dom(Ẽ0))|(�T + 1, 0);

(9.3) For all (�∗, 	∗) ∈ jT0,
 (dom(Ẽ0))|(�, 	)T ,

E ∩MS

 ∩MT


 = F ∩MS

 ∩MT


 ,

for all
E ∈

(
jS0,
 (Ẽ0)

)
(�∗, 	∗) ∪

(
jS0,
 (Ẽ1)

)
(�∗, 	∗)

and for all

F ∈
(
jT0,
 (Ẽ0)

)
(�∗, 	∗) ∪

(
jT0,
 (Ẽ1)

)
(�∗, 	∗);

(9.4) MS
Ẽ0,

((�, 	)T ) =MS

Ẽ1,

((�, 	)T ) =MS

Ẽ0,αT
Z

((�, 	)T ) =MS
Ẽ1,αT

Z

((�, 	)T );

(9.5) MT
Ẽ0,

((�, 	)T ) =MT

Ẽ1,

((�, 	)T ) =MT

Ẽ0,αT
Z

((�, 	)T ) =MT
Ẽ0,αT

Z

((�, 	)T );

(9.6) MS
Ẽ0,αTZ

((�, 	)T ) =MT
Ẽ1,αTZ

((�, 	)T );

(9.7)
(
MT

Ẽ0,αTZ
((�, 	)T )

)#
∈MS


 ∩MT

 .

Using (8.1)–(8.7) and (9.1)–(9.7), the argument is now very much like the
standard arguments in a comparison proof.
By the definition of S, ES

αSZ
witnesses inMS

αSZ
the coherence condition for

ES
αSZ

|�S relative to either jS0,αSZ (Ẽ0) or j
S
0,αSZ
(Ẽ1) where as in (8.2), �S is the

first coordinate of (�, 	)S .
Similarly, by the definition of T ,ET

αTZ
witnesses inMT

αTZ
the coherence con-

dition for ET
αTZ

|�T relative to either jT0,αTZ (Ẽ0) or j
T
0,αTZ
(Ẽ1) where as in (9.2),

�T is the first coordinate of (�, 	)T .
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By (6.3), (8.1)–(8.7), and (9.1)–(9.7), and the novelty and initial segment
conditions for Martin–Steel Doddages,

�S = �T

and (�, 	)S = (�, 	)T . This implies that both ES
αSZ
and ET

αTZ
were chosen

according to (Case 1) in the construction of S and T and moreover the
corresponding stages of the construction are the same, i.e., for some 
 < �1,

(
S , 
T ) = (αS
Z , α

T
Z ).

and ((
 + 1)S , (
 + 1)T ) = (αS
Z + 1, α

T
Z + 1). But

(ES
αSZ

|�) ∩MS

S ∩MT


T = (E
T
αTZ

|�) ∩MS

S ∩MT


T ,

where � = �S = �T , and this contradicts the disagreement which must have
been satisfied in the definition of (ES


S
, ET

T
). �

4.3. Martin–Steel extender sequenceswith long extenders. Eliminating the
shortness requirement, (1c) of Definition 4.22, in the definition of Martin–
Steel extender sequences one obtains the natural extension of Martin–Steel
extender sequences to the case of long extenders.

Definition 4.32. An extender sequence,

Ẽ = 〈Eα
 : (α, 
) ∈ dom(Ẽ)〉

is a generalized Martin–Steel extender sequence if for each pair (α, 
) ∈
dom(Ẽ):

(1) (Coherence) There exists an extender F such that
a) α < �(F ) and �(F ) is strongly inaccessible,
b) Eα
 = F |α,
c) jF (Ẽ)|(α + 1, 0) = Ẽ |(α, 
).

(2) (Novelty) For all 
∗ < 
 , (α, 
∗) ∈ dom(Ẽ) and
Eα
∗ ∩ L[Ẽ|(α, 
)] �= Eα
 ∩ L[Ẽ|(α, 
)].

(3) (Initial Segment Condition) Suppose that

κ < α∗ < α,

where κ is the critical point associated to Eα
 .

Then there exists 
∗ such that (α∗, 
∗) ∈ dom(Ẽ) and such that
Eα

∗


∗ ∩ L[Ẽ|(α∗ + 1, 0)] = (Eα
 |α∗) ∩ L[Ẽ|(α∗ + 1, 0)].

4.4. Fast club forcing. We fix some notation. For each strongly inaccessi-
ble cardinal �, let Q� be the following partial order (which adds a fast club
at �). Conditions are pairs (c, X ) where c is a bounded closed subset of �
and X is a set of closed cofinal subsets of � with |X | < �.
Suppose (d,Y ), (c, X ) ∈ Q� . Then (d,Y ) ≤ (c, X ) if the following hold.
(1) c = d ∩ (sup(c) + 1) and d\c ⊆ ∩X ,
(2) X ⊆ Y .
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Thus Q� is (<�)-closed. Suppose G ⊂ Q� is V -generic and let

CG = ∪{c | (c, X ) ∈ G} .
Then CG is a closed cofinal subset of � such that for all closed cofinal sets
D ⊂ � with D ∈ V , CG\D is bounded in � (so CG is a fast club in �).
Lemma 4.33. Suppose κ is strongly inaccessible and A ⊆ κ. Suppose
G ⊂ Qκ is V -generic and in V [G ] there is a club D ⊆ CG such that

D ∩ 	 ∈ L[A]
for all 	 < κ. Then Vκ ⊂ L[A].
Proof. Fix a term � for D. By the homogeneity of Qκ, we can suppose

1 � “� ∩ 	 ∈ L[A] for all 	 < κ”
and that

1 � “� is closed, cofinal in CG .”
For each 	 < κ, let D	 be the set of (c, X ) ∈ Qκ such that

(1.1) 	 < sup(c),
(1.2) for all α < sup(c), either (c, X ) � “α ∈ �” or (c, X ) � “α /∈ �,”
(1.3) {α < sup(c) | (c, X ) � “α ∈ �”} is cofinal in sup(c).
Thus for each 	 < κ, D	 is dense in Qκ. Further D	 is (<κ)-closed. More
precisely if

〈(cα, Xα) : α < �〉
is a decreasing sequence in D	 where � < κ, then

(c, X ) ∈ D	,
where

(2.1) c = (∪{cα |α < �}) ∪ {sup (∪{cα |α < �})},
(2.2) X = ∪{Xα |α < �}.
Let D = {D	 | 	 < κ}. Thus a filter F ⊂ Qκ is D-generic if and only if for
each 	 < κ there exists (c, X ) ∈ D0 ∩ F such that 	 < sup(c).
If F is a D-generic filter let DF be the interpretation of � by F . Thus DF
is closed cofinal in κ and for all 	 < κ, DF ∩ 	 ∈ L[A]. The key claim is the
following.

(3.1) For each B ⊆ κ, there exists a pair (F0,F1) of D-generic filters such
that if

〈�α : α < κ〉
is the increasing enumeration ofDF0∩DF1 then for allα < κ,α ∈ B
if and only if

min {� ∈ DF0 | �α < �} < min {� ∈ DF1 | �α < �} .
Since for all 	 < κ, (DF0 ∩ 	,DF1 ∩ 	) ∈ L[A], (3.1) implies that for all
	 < κ, B ∩ 	 ∈ L[A] and the lemma follows.
The proof of (3.1) follows by noting the following. Suppose (c0, X0) ∈ Qκ
and that either (c0, X0) ∈ D or c0 = ∅. Then for each � < κ such that
sup(c0) < �, there exists (c1, X1) ∈ D such that
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(4.1) (c1, X1) < (c0, X0),
(4.2) � < sup(c1),
(4.3) c1 ∩ � = c0.
One uses this to construct decreasing sequences

〈(c0α, X 0α) : α < κ〉
and

〈(c1α, X 1α) : α < κ〉
of conditions in D0 by induction on α such that for all α the following
hold.

(5.1) c00 ∩ c10 = ∅.
(5.2) c0α+1 ∩ c1α+1 = c0α ∩ c1α .
(5.3) If α > 0 and α is a limit then

a) c0α = ∪
{
c0
 | 
 < α

}
∪ sup

(
∪
{
c0
 |
 < α

})
,

b) c1α = ∪
{
c1
 | 
 < α

}
∪ sup

(
∪
{
c1
 | 
 < α

})
,

c) max(c0α) = max(c
1
α),

d) if α is the �-th nonzero limit ordinal then � ∈ B if and only if
min(c0α+1\c0α) < min(c1α+1\c1α).

The filters

(6.1) F0 generated by
{
(c0α, X

0
α) : α < κ

}
,

(6.2) F1 generated by
{
(c1α, X

1
α) : α < κ

}
,

witness (3.1) since

(7.1) DF0 ∩DF1 =
{
max(c0α) |α is a nonzero limit ordinal

}
.

(7.2) DF0 ∩DF1 =
{
max(c1α) |α is a nonzero limit ordinal

}
. �

4.5. Weakly Σ2-definable inner models.

Definition 4.34. A sequence

N = 〈Nα : α ∈ Ord〉
is weakly Σ2-definable if there is a formula φ(x) such that

(1) For all 
 < �1 < �2 < �3, if (Nφ)V�1 |
 = (Nφ)V�3 |
 then

(Nφ)V�1 |
 = (Nφ)V�2 |
 = (Nφ)V�3 |
 ;
(2) For all 
 ∈ Ord, N |
 = (Nφ)V� |
 for all sufficiently large �,
where for all 	, (Nφ)V	 = {a ∈ V	 |V	 � φ[a]}.
Definition 4.35. Suppose that N ⊂ V is an inner model and N � ZFC.
Then N is weakly Σ2-definable if the sequence

〈N ∩ Vα : α ∈ Ord〉
is weakly Σ2-definable.

Remark 4.36. If P ⊂ V is a class which is Σ2-definable then the sequence
〈L[P] ∩ Vα : α ∈ Ord〉
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may not be weakly Σ2-definable. However inner models N which are
Σ2-definable are weakly Σ2-definable and as a special case HOD, being
Σ2-definable, is weakly Σ2-definable.
This implies of course that the sequence

〈HOD ∩ Vα : α ∈ Ord〉
is weakly Σ2-definable. More generally, for each α ∈ Ord, let Tα be the
Σ2-theory of V with parameters from Vα. Then the sequence

〈Tα : α ∈ Ord〉
is weakly Σ2-definable.

Remark 4.37. The increasing enumeration 〈�α : α ∈ Ord〉 of all
supercompact cardinals is weakly Σ2-definable.

Definition 4.38. Suppose that N is a transitive inner model of ZFC
which is weakly Σ2-definable and V� ≺Σ2 V . Then (N )V� denotes the union
of the sequence

〈N∗
α : α < �〉 = (Nφ)V� ,

where φ is a formula which witnesses that

〈N ∩ Vα : α ∈ Ord〉
is weakly Σ2-definable.

Remark 4.39. This is well defined in the sense that it does not depend
on the choice of the formula φ which witnesses that 〈N ∩ Vα : α ∈ Ord〉 is
weakly Σ2-definable.

Definition 4.40. A cardinal κ is a strong cardinal if for every � there is
an elementary embedding

j : V →M
such that CRT(j) = κ, j(κ) > �, and such that V� ⊂M .
Lemma 4.41. Suppose that

N = 〈Nα : α ∈ Ord〉
is weakly Σ2-definable and � is a strong cardinal. Then N ∩ V� = (N )V� .
Proof. Let φ(x) be a formula which witnesses that N is weakly
Σ2-definable.
Assume toward a contradiction thatN |� �= (N )V� . Then there exists � > �
and 
 < � such that

N |
 = (Nφ)V� |
 �= (Nφ)V� |
.
Since � is a strong cardinal, V� ≺Σ2 V and so there exists 
 < �0 < � such
that

N |
 = (Nφ)V�0 |
.
But then

(1.1) 
 < �0 < � < �,
(1.2) (Nφ)V�0 |
 = (Nφ)V� ,
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(1.3) (Nφ)V�0 |
 �= (Nφ)V� |
 ,
which is a contradiction. �
Lemma 4.42. Suppose that N is a transitive inner model of ZFC, N is
weakly Σ2-definable, � is an extendible cardinal, and that

V� ⊂ N.
Then V = N .
Proof. Let φ be a formula which witnesses that

〈N ∩ Vα : α ∈ Ord〉
is weakly Σ2-definable. Since � is a strong cardinal, by Lemma 4.41,

〈Vα : α < �〉 = (Nφ)V� .
Since � is an extendible cardinal, for a proper class of κ,

V� ≺ Vκ
and so for a proper class of κ,

〈Vα : α < κ〉 = (Nφ)Vκ .
Therefore

〈Vα : α ∈ Ord〉 = 〈N ∩ Vα : α ∈ Ord〉
and so V = N . �
Theorem 4.43. Suppose that there is an extendible cardinal. Then there is
a class-generic extension V [G ] of V in which the following hold.
(1) V [G ] = (HOD)V [G ].
(2) V [G ]	 = V	 where 	 is the least strongly inaccessible cardinal of V .
(3) Every extendible cardinal of V is an extendible cardinal in V [G ].
(4) Suppose E ⊂ Ord and � are such that the following hold.
(a) L[E] is weakly Σ2-definable.
(b) � is an extendible cardinal in V [G ].
(c) Let X ⊂ � be the set of all κ < � such that there is an elementary
embedding,

j : V [G ]�+1 → V [G ]j(�)+1
with CRT(j) = κ and j(κ) = �, where � is the least strongly
inaccessible cardinal above κ. Then there exists Y ⊂ X such that
Y ∩ � ∈ L[E] for all � < � and such that

sup(Y ) = sup(X ) = �.

Then L[E] = V [G ].
Proof. Let G be V -generic for the backward Easton iteration

〈Pα : α ∈ Ord〉,
where the following hold for each α.
(1.1) If α is strongly inaccessible and Mahlo in V Pα then

Pα+1 = Pα ∗ B ∗Q,
where B adds a Cohen generic subset to α+ and Q is the fast-club
forcing Q	 defined in V Pα∗B with 	 = α.
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(1.2) If α = 
 + 1 and 
 is strongly inaccessible and Mahlo in V P
 then

Pα+1 = Pα ∗H,
where H codes (Gα,Vα+1, 〈P� : � ≤ α〉) into the powerset function
before the next strongly inaccessible cardinal above. The set being
coded is naturally a set of ordinals by the definition of of P
+1 as
the iteration P
 ∗ B ∗Q, and so H can be chosen canonically.

(1.3) Otherwise Pα+1 = Pα.
By standard lifting arguments, every extendible cardinal of V remains
extendible in V [G ].
We note that the following must hold in V [G ] where for each strongly
inaccessible Mahlo cardinal 	 of V [G ],C	 is the fast club added byG	+1.
(2.1) Suppose that


 : V [G ]κ+1 → V [G ]
(κ)+1
is an elementary embedding such that CRT(
) < κ and such that κ is
strongly inaccessible in V [G ]. Let 	 = CRT(
). Then 
(C	) = C
(	)
and

C
(	) ∩ 	 = C	.
We have
(3.1) X ⊂ � is the set of all κ < � such that there is an elementary

embedding,
j : V [G ]�+1 → V [G ]j(�)+1

with CRT(j) = κ and j(κ) = � where � is the least strongly
inaccessible cardinal above κ.

Therefore by (2.1),
(4.1) X ⊂ C� , where C is the fast-club added by G at stage �.
Thus,
(5.1) Y is a cofinal subset of C� such that Y ∩ � ∈ L[E] for all � < �.
Since E is weakly Σ2-definable in V [G ] and since � is a strong cardinal
in V [G ], by Lemma 4.41,
(6.1) L[E] ∩ V [G ]� = (L[E])V [G ]� .
Further since � is strongly inaccessible and Mahlo in V [G ],
(7.1) V [G ]� ⊂ V [G |�].
Therefore by Lemma 4.33 and (5.1)

V [G ]� ⊂ L[E].
But then by Lemma 4.42, V [G ] = L[E]. �
Theorem 4.43 has quite a number of implications which constrain the
possibilities for defining weak extender models for supercompactness which
generalize L.
We end with this section with two theorems which deal with generalized
Martin–Steel extender sequences. The first theorem is a corollary of the
proof of Theorem 4.43 and the basic argument is given in [24]. The second
theorem is a corollary of Theorem 4.43.
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Theorem 4.44. Suppose that V = HOD and that there is an extendible
cardinal. Then there is a generalized Martin–Steel extender sequence Ẽ such
that Ẽ is Σ2-definable,

V = L[Ẽ],
and such that for each (α, 
) ∈ dom(Ẽ),

α ≤ κ∗Eα
 + 1.
Theorem 4.44 could just simply indicate that one needs additional con-
ditions in the definition of generalized Martin–Steel extender sequences
beyond the Novelty Condition and the Initial Segment Condition. The
following variation of Theorem 4.43 essentially rules this out.
Theorem 4.45. Assume that there is an extendible cardinal. Then there is
a class-generic extension V [G ] of V in which the following hold.
(1) V [G ] = (HOD)V [G ].
(2) Every extendible cardinal of V is an extendible cardinal in V [G ].
(3) Suppose that Ẽ is a generalized Martin–Steel extender sequence such
that Ẽ is Σ2-definable and such that

V [G ] �= L[Ẽ].
Then for all (α, 
) ∈ dom(Ẽ), if κEα
 is an extendible cardinal in V [G ]
then

α ≤ κ∗Eα
 + 1.
Proof. Let V [G ] be the generic extension given by Theorem 4.43.
Suppose (α, 
) ∈ dom(Ẽ), κEα
 is an extendible cardinal ofV [G ], and that

α > κ∗Eα
 + 1.

Let � = κEα
 andX ⊂ � be the set of allκ < � such that there is an elementary
embedding,

j : V [G ]�+1 → V [G ]j(�)+1
with CRT(j) = κ and j(κ) = �, where � is the least strongly inaccessible
cardinal above κ.
Let

Y =
{
κE�+1� | (� + 1, �) ∈ dom(Ẽ) and � = κ∗E�+1�

}
.

By the Novelty and Initial Segment Condition,
(1.1) sup(Y ) = �.
By the Coherence Condition, Y ⊂ X . Therefore by Lemma 4.33,
the Coherence Condition again, and the proof of Theorem 4.43, V [G ] =
L[Ẽ]. �

§5. The comparison obstruction.
Definition 5.1. A cardinal κ is superstrong if there is an elementary
embedding

j : V →M
such that CRT(j) = κ and such that Vj(κ) ⊂M .

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.34


IN SEARCH OF ULTIMATE-L 51

Theorem 4.45 arguably rules out any direct generalization of Kunen’s
L[U ] at the level of one measurable cardinal to the levels past superstrong.
The point is that if Ẽ is a generalized Martin–Steel extender sequence such
that

α ≤ κ∗Eα
 + 1
for all (α, 
) ∈ dom(Ẽ) then for all (α, 
) ∈ dom(Ẽ), if E is the L[Ẽ]-
extender given by Eα
 , then in L[Ẽ],

�(E) ≤ �E ≤ κ∗E.
Therefore a new approach is needed and a reasonable candidate is the
family of partial extender models, first defined by Mitchell–Steel, [12].

5.1. Partial extender models. Recall that a transitive setM is rudimenta-
rily closed if
(1) for all a, b ∈M , {a, b} ∈M , and ∪a ∈M ,
(2) for all a ∈ M , if b ⊂ [a]n for some n < � and b is Σ0-definable with
parameters fromM , then b ∈M .

The property that a transitive set M be rudimentary closed is formally
defined as being closed under the functions generated by the following
schemes, these are the rudimentary functions, Jensen [4].
(1) f(a0, . . . , an) = ai .
(2) f(a0, . . . , an) = ai\aj .
(3) f(a0, . . . , an) = {ai , aj}.
(4) f(a0, . . . , an) = h(g0(a0, . . . , an), . . . , gm(a0, . . . , an)).
(5) f(a0, . . . , an) = ∪{g(b, a1, . . . , an) | b ∈ a0}.
Definition 5.2. Suppose P is a set. Then Jα[P] is defined by induction
on α as follows, [4].
(1) J0[P] = ∅.
(2) Jα+1[P] =M whereM is the smallest transitive rudimentarily closed
set such that Jα[P] ∈M and such that for each b ∈M , P ∩ b ∈M .

(3) Jα[P] = ∪
{
J
 [P] |
 < α

}
if α > 0 and α is a limit ordinal.

Lemma 5.3. Suppose P ∈ V , α ∈ Ord, and
Jα[P] � ZF\Powerset.

Then
Jα[P] � Axiom of Choice.

Definition 5.4. Suppose thatP ∈ V and α ∈ Ord. Then Jα[P] is strongly
acceptable if for all 
 < α and for all κ < 
 , if

P(κ) ∩ J
 [P] �= P(κ) ∩ J
+1[P]
then |J
 [P]| ≤ κ in J
+1[P].
Definition 5.5. E is an partial extender if E is an M -extender for
transitive set such thatM � ZFC\Powerset.
Definition 5.6. Suppose E = 〈Eα : α ∈ dom(E)〉 is a sequence of partial
extenders and that for all α ∈ dom(E), LTH(Eα) ≤ α. Then for all � ∈ Ord,
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JE� = J�[PE],

where PE = {(α, a, x) |α ∈ dom(E), (a, x) ∈ Eα}.
Definition 5.7. Suppose thatM is transitive,

M � ZFC\Powerset
and that E is anM -extender. Let

jE :M → N ∼= Ult0(M,E)
be the ultrapower embedding. Then

(1) κE = CRT(jE) and κ∗E = jE(κE).
(2) An ordinal � < LTH(E) is a generator of E if for all f ∈ M , for all
a ∈ [�]<�,

jE(f)(a) �= �.
(3) �E = sup {� + 1 | � is a generator of E}; �E is the natural length of E.
(4) TheM -extender E is a short extender if �E ≤ jE(κE) and E is a long
extender if jE(κE) < �E .

(5) �E is the least cardinal 	 ofM such that �E ≤ jE(	).
(6) F is the Jensen completion3 of E|�E if F is theM -extender of length
� given by jE where

� = ((jE(�E))+)N .

(7) �∗E is the least � ≤ �E such that E|� /∈ N .
In the following definition, the requirement that JEα � ZFC\Powerset
follows from the indexing requirement, but we repeat it for emphasis.

Definition 5.8. Suppose that E is a partial extender sequence and
α ∈ dom(E). Then E is a good partial extender sequence at α if the following
hold where E is the partial extender Eα.

(1) JEα is strongly acceptable and J
E

α � ZFC\Powerset.
(2) E is a JEα -extender.
(3) (Indexing) E is the Jensen completion of E|�E and α = LTH(E).
(4) (Coherence) Let

jE : JEα → Ult0(JEα , E)
be the elementary embedding given by E. Then

jE(E|α)|(α + 1) = E|α.
5.2. Comparison by least disagreement. We consider a fairly general class
of structures and we shall use the following definition repeatedly.

Definition 5.9. Suppose M � ZFC, M is transitive, E is a sequence of
partial extenders from M , and � < � < OrdM . Then � is witnessed by the
partial extenders on the sequence E to be �-supercompact in M if there
exists α ∈ dom(E) such that
3The Jensen completion was suggested by Sy Friedman as an alternative to the indexing

scheme ofMitchell–Steel [12], and Jensen [5] was the first to develop the detailed fine-structure
theory based on this indexing scheme.
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(1) E is anM -extender,
(2) κE = � and � ≤ �E ,
(3) jE [�] ∈ME ,
where E is the partial extender given by Eα and where

jE :M →ME ∼= Ult0(M,E)
is the ultrapower embedding.

We consider transitive structures of the form

(M,E) � ZFC
such that the following hold for all 
 ∈ dom(E) such that E is an
M-extender, where E is the partial extender given by E
 .
Suppose that κE < �E ,

jE :M → ME
∼= Ult0(M, E)

is the ultrapower embedding, and let � = �E . Then
(1) � < κ∗E .
(2) (First Supercompactness Condition) Suppose that jE [�] /∈ ME and
let � ≤ � be least such that jE [�] /∈ ME . Then the following hold.
a) Suppose that � < � and that κE is supercompact in M. Then
(cof(�))M < κE and � = (�+)M.

b) Suppose � = �. Then � is a limit cardinal ofM.
(3) (Second Supercompactness Condition) Suppose that jE [�] ∈ ME .
Then for some � ∈ OrdM:
a) (Largest Generator Condition) �E < jE(�) and �E = � + 1.
b) (First Initial Segment Condition) E|� ∈ ME for all � < �.
c) (Second Initial Segment Condition) if E|� /∈ ME then
(cof(�))ME < jE(κE).

(4) (Coherence Condition)M|
 =ME |
 and 
 = sup(jE [	]) = jE(	),
	 = (�+)M.

(5) (Suitability Condition) No � < κE is (<κE)-supercompact inM.
Thus we are assuming that Jensen indexing is being used and thatM|

makes sense. IfM is of the form of L[E] then this is immediate, but we are
not assuming thatM has this form.
We really have in mind that

M = (Jα[P], P ∩ Jα[P]),
for some set P ∈ V , Jα[P] is strongly acceptable, and that

E = P|dom(E).
But there is no need to be so explicit at this stage. With notation as above
and by any reasonable notion of coherence

M|
 = Ult0(M, E)|
.
Further 
 is a successor cardinal in Ult0(M, E) and soUlt0(M, E)|
 makes
perfect sense by setting

Ult0(M, E)|
 = (H (
))Ult0(M,E)
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ifM were simply a transitive set, and making the obvious adjustments for
the additional predicates ofM ifM itself is a structure.
We assume that as part of the structure (M,E), there is a wellordering
<M of length OrdM such that for all uncountable regular cardinals 	
ofM,

<M ∩ (H (	))M

is a wellordering of (H (	))M in length 	.
Thus we are really considering structures

(M,E) � ZFC +GCH,
where M itself is a structure with additional predicates including the
wellordering, <M. All of this we suppress to simplify notation.
Therefore for every element a ∈ M, a is definable in the structure

(M,E)
from ordinal parameters, and this will be an important feature for us.

Remark 5.10. The requirement (3) combined with (4) implies

(1) �E ≤ �∗E + 1,
(2) �E = �∗E if and only if �

∗
E is not a limit of generators.

This is a very natural version of a weak initial segment condition, see
Definition 6.31 on page 90, and it would be a reasonable requirement to
impose on all the partial extenders on the sequence E but we will not need
this for our abstract treatment.
We do not impose the weak initial segment condition (which would imply
in requirement (2) that � = �) and instead use the more complicated require-
ments listed above (which are slightly more general than we need in [25])
because we need in [25] to apply our main negative theorem, Theorem 5.35.
There are fairly general arguments, seeRemark 5.13, that for the structures
one is ultimately interested in for this account, one can always require the
weak initial segment condition to hold whenever �E is a successor cardinal
except in the situation where

�E = (�+)M

and (cof(�))M < κE .
This accounts for the formulation of the First Supercompactness Condi-
tion. The sequences defined in [25] allow for more complicated failures of
the weak initial segment condition if κE is not already �E-supercompact at
the stage where E is indexed.
It is because of the coding constraints of Section 4 that one must allow
failures of the weak initial segment condition.

For the remainder of this section, writing (M,E) � ZFC indicates that
(M,E) is a transitive structure satisfying the conditions specified above,
though for emphasis, we will also occasionally explicitly add the hypothesis
of transitivity.

Definition 5.11. Suppose that (M,E) � ZFC.
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(1) (M,E) is finitely generated if for some a ∈ M, every element b ∈ M
is definable in (M,E) from a.

(2) X ≺ (M,E) is finitely generated if for some a ∈ M, X is the set of all
b ∈ M such that b is definable in (M,E) from a.

Clearly, X ≺ (M,E) is finitely generated if and only if (MX ,EX ) is
finitely generated where (MX ,EX ) is the transitive collapse of X . Further
since every element a ∈ M is definable in the structure

(M,E)
fromordinal parameters, every a ∈ Mbelongs to a⊆-least finitely generated
elementary substructure of (M,E).
We need an abstract notion of backgrounding. A rather weak version is
defined below and suffices for our purposes.

Definition 5.12. Suppose (M,E) � ZFC and that (M,E) is transitive.
(1) (M,E) is weakly backgrounded at κ if for allM-extenders E given by

E with κ = κE , if κE < 	, if

jE [	] ∈ ME
∼= Ult0(M, E),

and if U is the normal measure on
(
Pκ(	)

)M
given by E, then κ is

a cardinal in V which is 	-supercompact in V and there is a normal
fine κ-complete ultrafilter U ∗ on Pκ(	) such that U = U ∗ ∩M.

(2) (M,E) is weakly backgrounded if (M,E) is weakly backgrounded at
κ for all κ ∈ OrdM.

Remark 5.13. Suppose M is a transitive set and M � ZFC. Following
Hamkins [3], for each uncountable regular cardinal κ of M and for each
cardinal 	 of M , M satisfies the κ-approximation property at 	 if for all
A ⊂ 	, if A ∩ � ∈M for all � ∈M with |�|M < κ then A ∈M .
A very conservative version of a backgrounded construction is as follows
and here we are motivating the formulation of the First Supercompact-
ness Condition, the other conditions are strongly motivated by current
constructions.
The final model (M∞,E∞) is constructed as a limit of approximations
(Mα,Eα), constructed at some ordinal stage α, where in passing from
(Mα,Eα) to (Mα+1,Eα+1) one only adds an extender in the following
situation and for this discussion we set

(M,EM) = (Mα,Eα).

There exists an elementary embedding

j : V →M
such that
(1) (M,EM) � ZFC.
(2) Vj(�)+1 ⊂M , CRT(j) < � < j(CRT(j)), � is strongly inaccessible.
(3) j(M,EM)|j(�) = (M,EM)|j(�).
(4) There exists � < � such that (F |�) ∩ M /∈ M where F is the V -
extender of length � given by j.
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Let � < � be least such that (F |�) ∩M /∈ M where F is the V -extender
of length � given by j, let E be theM-extender given by (F |�)∩M, and let

N = j(M)|(sup(j[(�+E )M])) =ME |jE((�+E )M),
where

jE : (M,EM)→ (ME,EME
) ∼= Ult0((M,EM), E)

is the ultrapower embedding.
The natural step would be to add OrdN to dom(EM) with E as the
next extender. The coding constraints of Section 4 strongly suggest that one
should only do this if (in essence) there exists � ∈ N such that
• |�|N < κ∗E and E|� /∈ M.
Therefore this is the requirement whichmust be (in essence) satisfied in order
to change EM in defining the next approximation toM∞. That this suffices
is by strong acceptability:
• Adding a new bounded subset of κ∗E must (lead to the) collapse of κ∗E
in generating the next (sound) approximation to the final model.
The issue arises when one can be sure that the required set � exists. We
claim that if no such set � exists, then necessarily,

j(�E ) = sup(j[�E ]) = �.

We verify this. First note that if sup(j[�E ]) = j(�E) then by the definition
of �, necessarily � = j(�E). This is because if sup(j[�E ]) = j(�E ) then
necessarily �E is a limit cardinal inM.
Now suppose that sup(j[�E ]) < j(�E ). We claim
• Mmust satisfy the κE-approximation property for all 	 < �E .
Suppose A ⊂ 	 and A ∩ � ∈ M for all � ∈ M with |�|M < κE . Applying
j, j(A) ∩ � ∈ M for all � ∈ M with |�|M < j(κE ) (since j(M) = M).
Further E|j(	) ∈ M and so j[	] ∈ M. Thus j(A) ∩ j[	] ∈ M and this
implies that A ∈ M.
SinceM has that κE -approximation property at 	 for all 	 < �E and since
j(M) =M:
• M has the j(κE)-approximation property at 	 for all 	 < j(�E).
Therefore if � < j(�E )M has the j(κE ) approximation property at |�|M and
it follows easily that � exists. If � = j(�E ) then j[�E ] ∈ M and so arguing
as above,M has the κE -approximation property at �E . The only potential
issue here is if

�E = (�+)M.
But then � ≥ j(�) and so E|j(�) ∈ M and this implies j[�E ] ∈ M.
This implies thatM has the j(κE)-approximation property at j(�E ) ≥ �
and so again � must exist.
This verifies the claim above that if no such set � exists then necessarily,

j(�E ) = sup(j[�E ]) = �.

Now suppose that � does not exist, κE is witnessed to be (<�)-
supercompact inM by EM, and that (M,EM) is weakly backgrounded.
Thus M has the κE-approximation property at all 	 < � and so M has
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the j(κE)-approximation property at all 	 < j(�). This implies that the
following must hold.

(1) cof(�E) < κE .
(2) There exists � ∈ M|j((�+E )M) such that |�|M < κ∗E and such that
E|� /∈ M.

Now again the coding constraints of Section 4 strongly suggest that if one
changes EM then one should use E∗|�∗ where E∗ = F ∩ M and where
�∗ < j((�+E )

M) is least such that (2) is witnessed to hold by some set

� ∈ Ult0(M, E∗|�∗).

Thus since no such � exists in N , which implies that �∗ > �, necessarily
�∗ = � + 1 for some � which is a generator of E and this puts one in the
situation corresponding to the First Supercompactness Condition.

We define a fairly general notion of iteration.

Definition 5.14. Suppose (M,E) � ZFC and (M,E) is transitive.
A semi-iteration of (M,E) is a continuous (linearly) directed system

((Nα,Fα), 
α,
 , Eα : α < 
 ≤ �)

(with � > 0) such that the following hold for allα < � and for allα < 
 < �.

(1) (N0,F0) = (M,E) and Nα is transitive for all α ≤ �.
(2) Eα is an Nα-extender, Nα+1 = Ult0(Nα, Eα), and


α,α+1 : Nα → Nα+1
is the ultrapower embedding.

(3) (Suitability Condition) No � < κEα is (<κEα )-supercompact inNα.
(4) (Non-overlapping Condition) �Eα < κ

∗
Eα

≤ κE
 .
(5) (First Supercompactness Condition) Suppose that 
α,α+1[�Eα ] /∈ Nα+1
and let � ≤ �Eα be least such that 
α,α+1[�] /∈ Nα+1. Then the following
hold.
a) Suppose � < �Eα and that κEα is (�

+)Nα -supercompact inNα. Then
(cof(�))Nα < κEα and �Eα = (�

+)Nα .
b) Suppose � = �Eα . Then �Eα is a limit cardinal ofNα .

(6) (Second Supercompactness Condition) Suppose that 
α,α+1[�Eα ] ∈
Nα+1 and that κEα < �Eα . Then there exists a generator � of Eα
such that
a) (Generator Condition) Either �∗Eα = � or �

∗
Eα
= � + 1.

b) (Initial SegmentCondition) If �∗Eα = � then � is a limit of generators
and

(cof(�))Nα+1 < 
α,α+1(κEα ).

(7) (Third SupercompactnessCondition) Suppose that 
α,α+1[�Eα ] ∈ Nα+1,
�Eα is a limit of strongly inaccessible cardinals in Nα and let � be the
least cardinal of Nα+1 with �∗Eα < � < 
α+1(�Eα ) such that

Nα+1|� � ZFC.
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Suppose that Eα has a generator � such that

�∗Eα < � < �

and let �0 be the least such generator. Then there exist a transitive
(N ,EN ) � ZFC and an N -extender F such that
a) For all a ∈ [LTH(F )]<� , Fa ∈ N .
b) Nα+1|� = Ult0(N , F )|�, κEα < κF , jF (κF ) = κ∗Eα , and jF (�F ) = �.
c) No � < κF is (<κF )-supercompact inN .
d) For some 	 ≤ �F , �0 = sup(jF [	]), and either

jF [	] ∈ Ult0(N , F )
or 	 = (�+)N = �F and (cof(�))N < κF .

(8) (Closeness Condition) For all a ∈ [LTH(Eα)]<�, (Eα)a ∈ Nα.

Remark 5.15. Note that with notation as in the statement of the Third
Supercompactness Condition, �0 cannot be a limit of generators of Eα.
Further by the Second Supercompactness Condition there exists a generator
� of Eα such that either �∗Eα = � or �

∗
Eα
= � + 1 and necessarily �0 is just

the least generator � of Eα such that � > �. Therefore if 	 witnesses the
requirement (7d) then one of the following must hold.

(1) 	 = κF .

(2) �∗Eα = � + 1 and 	 =
(
|�̂|+

)N
where jF (�̂) = �.

(3) �∗Eα = � and 	 =
(
|�̂|+

)N
where jF (�̂) = �.

The point here is that since �0 = sup(jF [	]), |�|Nα must be in the range of
jF . Also note that in the case where �∗Eα = �,

(
cof(�)

)Nα+1 < κ∗Eα
and so jF (�̂) = sup(jF [�̂]).

Remark 5.16. These conditions are motivated by the elementary embed-
dings produced by iteration trees. The proof of the main theorem,
Theorem 5.35, would be a bit simpler if we eliminated the Third Supercom-
pactness Condition and required as part of the Second Supercompactness
Condition that

�Eα = �
∗
Eα
+ 1

if �∗Eα+1 is a limit of generators and

�Eα = �
∗
Eα

otherwise.
This is true for the iteration embeddings (of ZFC structures) which can be
generated by (maximal) iteration trees at the finite levels of supercompact,
such as those in [24].
However at the infinite levels of supercompact, this stronger condition
can fail. But in the proof of Theorem 5.35, this potential failure is handled
by the Third Supercompactness Condition.
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The reason the stronger condition can fail is thatEα might originate as the
last extender of an active structure which occurs as a model in the iteration
tree before the stage where Eα is chosen. In this case the active structure
withEα as the last extender is the model at the stage whereEα is chosen and
moreover this model is a semi-iterate of that earlier model.
Finally if �Eα is not a successor cardinal then there can existmany cardinals
between �∗Eα and the Jensen index ofEα. In this case the identity �E ≤ �∗E+1
need not be preserved under semi-iterations and so �Eα ≤ �∗Eα +1might fail.
We isolate in two definitions, Definitions 5.17 and 5.24, the key assump-
tions that we shall need. Our position based on the results of [24] is that these
should follow under very general assumptions from any theory of weakly
background structures for which comparison can be proved through itera-
tions by least disagreement. In fact we shall only need Definition 5.24 but
Definition 5.17 provides a clearer context formotivating both the definitions.

Definition 5.17. Suppose that (M,E) � ZFC and that (M,E) is
transitive. Then (M,E) satisfies comparison if for all

X ≺ (M,E)
and all

Y ≺ (M,E),
the following hold where (MX ,EX ) is the transitive collapse of X and
(MY ,EY ) is the transitive collapse of X .
Suppose thatX andY are finitely generated, (MX ,EX ) �= (MY ,EY ), and

X ∩ R = Y ∩ R.

Suppose that neither (MX ,EX ) or (MY ,EY ) is a semi-iterate of the other.
Then there exists semi-iterations,

((NXα ,FXα ), 
Xα,
 , EXα : α < 
 ≤ �X )
of (MX ,EX ), and

((NYα ,FYα ), 
Yα,
 , EYα : α < 
 ≤ �Y )
of (MY ,EY ) such that
(1) (NX�X ,FX�X ) = (NY�Y ,FY�Y ).
(2) (First Disagreement Condition) EX0 �= EY0 .
(3) (Second Disagreement Condition) Suppose that �EX0 < �, �EY0 < �, and
that

P(�) ∩MX = P(�) ∩MY .

Then

X0,�X |P(�) �= 


Y
0,�Y |P(�).

Remark 5.18. (1) The larger the structure (M,E) the stronger the
requirement that comparison hold is.
For example if every element ofM is definable in (M,E) then there
are no nontrivial finitely generated X ≺ (M,E) and comparison
holds vacuously. However if cof(OrdM) > � then X ∈ M for every
finitely generated X ≺ (M,E).
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(2) We comment briefly on why the requirements specified in Defini-
tion 5.17 are reasonable.
Condition (2) is clearly the result of comparison through least dis-
agreement where the semi-iterations are given by the cofinal branches
of the maximal iteration trees.
Finally the last condition, (3), lies at the core of comparison by least
disagreement. Having this provably fail (while maintainingEX0 �= EY0 )
would seem to require an entirely new approach to innermodel theory.
In fact we could weaken (3) for our purposes and add the assumption
that � is strongly inaccessible inMX with �EX0 < � and �EY0 < �.

Remark 5.19. Suppose that with notation as in Definition 5.17,
(MY ,EY ) is a semi-iterate of (MX ,EX ).
More precisely suppose that


 : (MX ,EX )→ (N ,EN ) = (MY ,EY )

is given by a semi-iteration of (MX ,EX ).
One can show by appealing to the fact that (MY ,EY ) is finitely generated,
that the semi-iteration giving 
 must have finite length and moreover that
it must be an internal iteration with each extender being the extender gen-
erated by a single ultrafilter. Thus these cases of X and Y are really rather
special.

The following theorem is a corollary of the main theorem of [24] and
results of [25] but the only relevant result of [25] is one which allows
one to exploit the Weak Unique Branch Hypothesis (which only allows
short extenders in the iteration trees) versus a slightly stronger iteration
hypothesis.
Recall that κ is m-extendible, where m < �, if there is an elementary
embedding

j : Vκ+m → Vj(κ)+m
such that CRT(j) = κ.

Theorem 5.20 (Weak Unique Branch Hypothesis). Assume that for each
m < �, there is a proper class of m-extendible cardinals. Then there exists a
partial extender sequence

E = 〈Eα : α ∈ dom(E)〉
such that the following hold.

(1) L[E] is weakly backgrounded and L[E] is weakly Σ2-definable.
(2) (Lα[E],E|α) satisfies comparison for each ordinal α such that
(Lα[E],E|α) � ZFC.

(3) For each � and for each m < �, there exists α ∈ dom(E) such that
(a) α > �,
(b) Eα is an L[E]-extender which witnesses that κ is m-extendible in
L[E] where κ = CRT(Eα).

(4) L[E] � “The Weak Unique Branch Hypothesis.”
Thus one also gets an equivalence.
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Theorem 5.21. The following are equivalent.
(1) There exists a countable transitive setM � ZFC such that
(a) M � “For each m < �, there is a proper class of m-extendible
cardinal.”

(b) M � “The Weak Unique Branch Hypothesis.”
(2) There exists a countable transitive (M,E) � ZFC such that
(a) (M,E) � “For each m < �, there is a proper class ofm-extendible
cardinals.”

(b) (M,E) � “The Weak Unique Branch Hypothesis.”
(c) (M,E)|α satisfies comparison for each α such that (M,E)|α �
ZFC.

We need a version of Definition 5.17 for pairs.

Definition 5.22. Suppose that (M0,E0) � ZFC and that (M1,E1) �
ZFC. Suppose each structure is transitive and κ is a regular cardinal of both
structures. Then the pair

((M0,E0), (M1,E1))

is a coherent pair at κ if
(κ+)M0 = (κ+)M1

and
(M0,E0)|(κ+)M0 = (M1,E1)|(κ+)M1 .

Definition 5.23. Suppose that

((M0,E0), (M1,E1))

is a coherent pair at κ. A semi-iteration at κ of the (ordered) pair,

((M0,E0), (M1,E1))

is a continuous (linearly) directed system

((Nα,Fα), 
α,
 , Eα : α < 
 ≤ �)
such that the following hold for all α < 
 < �.

(1) (N0,F0) ∈ {(M0,E0), (M1,E1)} and
((Nα,Fα), 
α,
 , Eα : α < 
 ≤ �)

is a semi-iteration of (N0,F0).
(2) If N0 =M1 then κ < � for some � ∈ SP(E0).
Definition 5.24. Suppose that (M,E) � ZFC, (M,E) is transitive, κ is
a measurable cardinal in V ,U is a normal measure on κ, andU ∩M ∈ M.
Let

(MU ,EU ) = Ult0((M,E), U )
and suppose that

((M,E), (MU ,EU ))

is a coherent pair at κ. Then (MU ,EU ) satisfies comparison backed up by
(M,E) at κ if the following hold.
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Suppose X ≺ (M,E), X is finitely generated, U ∩M ∈ X ,
(MX ,EX )

is the transitive collapse of X , κX is the image of κ under the transitive
collapse, and

(MX
U ,E

X
U )

is the image of (X ∩ MU ,X ∩ EU ) under the transitive collapse.
Suppose that (MX

U ,E
X
U ) is not a semi-iterate of (MX ,EX ). Then there exist

semi-iterations,
((N 0α ,F0α), 
0α,
 , E0α : α < 
 ≤ �0)

of (MX ,EX ), and

((N 1α ,F1α), 
1α,
 , E1α : α < 
 ≤ �1)
of the pair

(
(MX ,EX ), (MX

U ,E
X
U )

)
at κX such that

(1)
(
N 0�0 ,F

0
�0

)
=

(
N 1�1 ,F

1
�1

)
.

(2) (First Disagreement Condition) E00 �= E10 .
(3) (Second Disagreement Condition) Suppose that �E00 < �, �E10 < �, and
that

P(�) ∩N 00 = P(�) ∩N 10 .
Then


00,�0 |P(�) �= 

1
0,�1 |P(�).

Remark 5.25. We will only use condition (3) in the situation where � is
strongly inaccessible inMX = N 00 with

max(�E00 , �E10 ) < �

and much more.

Remark 5.26. The semi-iteration of the coherent pair
(
(MX ,EX ),

(MX
U ,E

X
U )

)
is not like the iteration of a phalanx in [12]. It really is closer to

a semi-iteration ofMX where UX is allowed to be the initial extender. But
even that is not completely accurate since the next extender can act onMX

U

and yet have critical point strictly below jXU (κX ) where

jXU : (MX ,EX )→ Ult0((MX ,EX ), UX ) ∼= (MX
U ,E

X
U )

is the ultrapower embedding.

The following lemma shows that the requirement in Definition 5.24 that

U ∩M ∈ M
is necessarily satisfied in many cases. This lemma is a weak variation of the
Universality Theorem, Theorem 3.26.
Lemma 5.27. Suppose that (M,E) � ZFC, (M,E) is weakly back-
grounded, � < OrdM, and that � is witnessed by the M-extenders on the
sequence E to be supercompact inM. Suppose � < κ < OrdM and that U is
a �-complete ultrafilter on κ. Then U ∩M ∈ M.
Proof. Let � = |Vκ+� ∩ M|M and let � be a �-complete normal fine
ultrafilter on P�(�) such that
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(1.1) M∩P�(�) ∈ �,
(1.2) � ∩M ∈ M.
The ultrafilter � must exist sinceM is weakly backgrounded and since � is
witnessed by theM-extenders on the sequence E to be supercompact inM.
Fix a bijection


 : �→ Vκ+� ∩M
with 
 ∈ M and let I be the set of all � ∈ P�(�) ∩M such that for each
� < κ there exists � < � such that

(2.1) � ∈ �,
(2.2) 
(�) is a �-compete ultrafilter in κ inM,
(2.3) for all A ∈ P(κ) ∩ 
[�], A ∈ 
(�) if and only if � ∈ A.
The key point is that I ∈ �. This is easily verified by working inM and
using that inM, � ∩M is a �-complete normal fine ultrafilter on P�(�).
Define

f : I → �
by f(�) = � such that

(3.1) 
(�) is a �-complete ultrafilter on κ inM,
(3.2) � ∈ �,
(3.3) 
(�) ∩ 
[�] = U ∩ 
[�].
Since I ∈ �, there must exist �0 < � such that

{� ∈ I |f(�) = �0} ∈ �.
Thus 
(�0) = U ∩M and this proves the lemma. �
As a corollary of Lemma 5.27, we obtain the following strong version of
Theorem 3.40.

Theorem 5.28. Suppose that � is an extendible cardinal and that κ ≥ � is
a measurable cardinal. Then κ is a measurable cardinal in HOD.
Proof. By Lemma 3.37, we can reduce to the case that κ is not�-strongly
measurable in HOD. But then by Theorem 3.39, HOD is a weak extender
model, for � is supercompact and so by (the proof of) Lemma 5.27, κ is a
measurable cardinal in HOD. �
We prove three easy lemmas and the latter two are quite useful. These
require a definition. For this definition and these three lemmas, the notations
(M,E) and (N ,F) indicate that the structures are transitive.
Definition 5.29. Suppose that (M,E) � ZFC and that


 : (M,E)→ (N ,F)
is an elementary embedding which is cofinal. Then 
 is close to (M,E) if for
each X ∈ M and each a ∈ 
(X ),

{Z ∈ P(X ) ∩M| a ∈ 
(Z)} ∈ M.
The following lemma which is essentially immediate from the definition
of close embedding, identifies a useful feature of close embeddings. This
feature is a weak form of coherence.
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Lemma 5.30. Suppose that (M,E) � ZFC and that

 : (M,E)→ (N ,F)

is an elementary embedding which is close to (M,E). Suppose � < OrdM and

[�] ∈ N .

Then P(�) ∩M = P(�) ∩N .
Proof. Clearly P(�) ∩ M ⊆ P(�) ∩ N . Now suppose A ∈ P(�) ∩ N .
Then 
[A] ∈ N . Let

a = (
[A], 
[�])

and let X ∈ M be a transitive set such that a ∈ 
(X ). Since 
 is close
toM, U ∈ M where

U = {Z ∈ P(X ) ∩M|a ∈ 
(Z)} .
Thus A ∈ Ult0(M, U ) ⊆ M and so P(�) ∩N ⊆ P(�) ∩M. �
Lemma 5.31. Suppose that (M,E) � ZFC and that


 : (M,E)→ (N ,F)
is an elementary embedding which is given by a semi-iteration of (M,E).
Then 
 is close to (M,E).
Proof. The key point is that the composition of close embeddings is close.
We verify this.
Suppose that


0 : (M0,E0)→ (M1,E1)

and

1 : (M1,E1)→ (M2,E2)

are each close embeddings. FixY ∈ M0 and a ∈ 
1 ◦ 
0(Y ). We must show
that

{Z ∈ P(Y ) ∩M0 |a ∈ 
1 ◦ 
0(Z)} ∈ M0.

Let
W = {Z ∈ P(
0(Y )) ∩M1 |a ∈ 
1(Z)} .

ThenW ∈ M1 and inM1,W is an ultrafilter on 
0(Y ).
Let

W ∗ = {Z ∈ P(P(P(Y ))) ∩M0 |W ∈ 
0(Z)} .
ThenW ∗ ∈ M0 and inM0,W ∗ is an ultrafilter on 
(Y ), the space of all
ultrafilters on Y .
Fix Z ∈ P(Y ) ∩M0. Then

a ∈ 
1 ◦ 
0(Z)
if and only if


0(Z) ∈W.
Let

Z∗ = {U ∈ P(P(Y )) ∩M0 |Z ∈ U} .
Thus 
0(Z) ∈ W if and only ifW ∈ 
0(Z∗). ButW ∈ 
0(Z∗) if and only
if Z∗ ∈W ∗.
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Therefore a ∈ 
1 ◦ 
0(Z) if and only if Z∗ ∈W ∗, and this implies

{Z ∈ P(Y ) ∩M0 | a ∈ 
1 ◦ 
0(Z)} ∈ M0.

This proves 
1 ◦ 
0 is close to (M0,E0).
The lemma now follows easily by induction of the length of
semi-iterations. �
The next lemma is an abstract version of the uniqueness of iteration
embeddings.

Lemma 5.32. Suppose that (M,E) � ZFC and is finitely generated.
Suppose that


0 : (M,E)→ (N ,F)
and


1 : (M,E)→ (N ,F)
are elementary embeddings each of which is close to (M,E). Then 
0 = 
1.
Proof. Let � ∈ M0 ∩ Ord be such that every element ofM is definable
in (M,E) from �. It suffices to show that


0(�) = 
1(�).

Let �0 = 
0(�) and let �1 = 
1(�). Assume toward a contradiction that
�0 < �1. Let

U = {Z ⊂ � | �0 ∈ 
1(Z)} .
Thus U ∈ M. Let

jU : (M,E)→ (MU ,EU )

be the ultrapower embedding given by U and let

kU : (MU ,EU )→ (N ,F)
be the factor embedding such that 
1 = kU ◦ jU . Let �U0 be the element of
MU such that kU (�U0 ) = �0.
Let (NX ,FX ) be the transitive collapse ofX whereX is the set of all a ∈ N
such that a is definable in (N ,F) from �0. Then

(NX ,FX ) = (M,E).
But X ⊂ kU [MU ] since �0 = kU (�U0 ) and since 
1 = kU ◦ jU .
Thus we have

(1.1) �U0 < jU (�) since kU (�
U
0 ) = �0 < �1 = 
1(�) = kU ◦ jU (�).

(1.2) LetXU be the set of alla ∈ MU such that a is definable in (MU ,EU )
from �U0 , and let (MXU ,EXU ) be the transitive collapse of X . Then

(MXU ,EXU ) = (M,E)
and necessarily � is the image of �U0 under the transitive collapse of
XU .

Let

U : (M,E)→ (MU ,EU )

invert the transitive collapse of XU . Thus 
U (�) = �U0 < jU (�) and there is
a canonical elementary embedding
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j : Ult0(M, U )→ Ult0(MU , 
U (U )).

Now one can generate an illfounded iteration ofM of length � which is
induced by a linear iteration of a rank initial segment ofM, and this is a
contradiction. �
Remark 5.33. Suppose M � ZFC is a transitive set in which there is a
supercompact cardinal with OrdM as small as possible. Then there is a linear
iteration ofM in length �, by ultrapowers, such that the direct limit is not
wellfounded.
In fact, any linear iteration

T = 〈(Mi,Ui ), ji,k : i < k < �〉,
by ultrapowers such that
(1) for all α < OrdM there exists i < � such that �i > j0,α(α), where
Ui ∈ Mi is a normal fine κi -complete ultrafilter on (Pκi (�i ))Mi and
where κi = CRT(jUi ),

(2) there exists κ < OrdM such that CRT(jUi ) ≤ j0,i (κ) for all i < �,
must have ill-founded direct limit.
This is by the minimality of OrdM (taking a generic collapse and
then appealing to Σ∼

1
1-absoluteness) and since by (1)–(2), Ord

M is in the
wellfounded part of the direct limit.
Thus in the proof of Lemma 5.32, it is critical that the linear iteration of
length � have the simple form of being induced by a linear iteration of a
rank initial segment ofM.
Lemma 5.34. Suppose (M,E) � ZFC is finitely generated, U ∈ M, and
that inM, U is a κ-complete normal ultrafilter on κ. Let

(MU ,EU ) = Ult0((M,E), U ).
Then the following are equivalent.
(1) (MU ,EU ) is a semi-iterate of (M,E).
(2) No � < κ is witnessed to be (<κ)-supercompact inM by E.
Proof. Clearly (2) implies (1) and the witness is the semi-iteration

((Nα,Fα), 
α,
 , Eα : α < 
 ≤ �)
of (M,E) where � = 1 and E0 is the extender given by U .
Now suppose that (1) holds and that


 : (M,E)→ (MU ,EU )

is given by a semi-iteration of (MU ,EU ). Let


U : (M,E)→ (MU ,EU )

be the ultrapower embedding.
By Lemma 5.32, 
 = 
U and this implies (2) since κ = CRT(
U ). �
We now come to our main theorem. The fundamental idea is to simply
use the basic arguments from, for example, [12] for establishing that various
extenders, which belong to an iterable structure, must be on the sequence of
an iterable structure. The definitions of a coherent pair and of comparison
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for such pairs were formulated by isolating very general features sufficient
for the implementation of these arguments.
The situation here however is quite different because by universality (for
example, Lemma 5.27) there can be extenders which belong to the structure
whose associated critical point cannot be the critical point of any extender
on the sequence (because of the Suitability Condition).
The issue then is exactly how is this potential conflict resolved. The theo-
rem shows that the only resolution is through a failure of comparison based
on least disagreement.

Theorem 5.35. Suppose that � is supercompact and that Ω > � is a
strongly inaccessible cardinal. Then there is no weakly backgrounded structure
(M,E) � ZFC such that the following hold.
(1) Ω = OrdM and � is witnessed by theM-extenders on the sequence E
to be supercompact inM.

(2) There exists a measurable cardinal � < κ < Ω and a normal measure
U on κ such that the following hold where

(MU ,EU ) = Ult0((M,E), U ).
(a) ((M,E), (MU ,EU )) is a coherent pair at κ.
(b) U ∩M ∈ M.
(c) (MU ,EU ) satisfies comparison backed up by (M,E) at κ.

Proof. Assume toward a contradiction that (M,E) is weakly back-
grounded and that (M,E), U , and κ satisfy (1) and (2). Note that by
Lemma 5.27, the requirement (2b) follows from the assumption that (M,E)
is weakly backgrounded.
Let

eU : (M,E)→ (MU ,EU )

be the ultrapower embedding as defined in (M,E) using U ∩M. Let

X ≺ (M,E)

be the elementary substructure given by the set of all a ∈ M such that a is
definable in (M,E) from {U ∩M}.
(1.1) Let

(
MX
U ,E

X
U

)
be the transitive collapse of (X ∩MU ,X ∩ EU ).

(1.2) Let (MX ,EX ) be the transitive collapse ofX and letκX be the image
of κ under the transitive collapse of X .

(1.3) Let �X be the image of � under the transitive collapse of X .
(1.4) Let UX be the image of U ∩M under the transitive collapse of X .
(1.5) Let

eXU : (MX ,EX )→ (MX
U ,E

X
U )

be the image of eU under the transitive collapse of X .

By Lemma 5.34, (MX
U ,E

X
U ) is not a semi-iterate of (MX ,EX ). Therefore,

since (MU ,EU ) satisfies comparison backed up by (M,E) at κ, there exist
semi-iterations

((N 0α,F0α), 
0α,
 , E0α : α < 
 ≤ �0)
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of (MX ,EX ), and

((N 1α ,F1α), 
1α,
 , E1α : α < 
 ≤ �1)

of the pair
(
(MX ,EX ), (MX

U ,E
X
U )

)
at κX such that

(2.1)
(
N 0�0 ,F0�0

)
=

(
N 1�1 ,F1�1

)
.

(2.2) E00 �= E10 .
(2.3) Suppose that �E00 < �, �E10 < �, and that

N 00 ∩ P(�) = N 10 ∩ P(�).

Then 
00,�0 |P(�) �= 

1
0,�1 |P(�).

We prove the following.

(3.1) (N 10 ,F10) =
(
MX
U ,E

X
U

)
.

(3.2) 
00,�0 = 

1
0,�1 ◦ e

X
U .

Assume toward a contradiction that (N 10 ,F10) = (MX ,EX ). Then


00,�0 : (MX ,EX )→ (N 0�0 ,F
0
�0
)

and

10,�1 : (MX ,EX )→ (N 1�0 ,F

1
�1
)

are each embeddings of the finitely generated (MX ,EX ) into the same struc-
ture and by Lemma 5.31, each embedding is close to (MX ,EX ). Therefore
by Lemma 5.32,


00,�0 = 

1
0,�1

and this contradicts (2.3).
This proves (3.1). Thus (N 10 ,F10) =

(
MX
U ,E

X
U

)
and so


00,�0 : (MX ,EX )→ (N 0�0 ,F
0
�0
)

and

10,�1 ◦ e

X
U : (MX ,EX )→ (N 1�0 ,F

1
�1
)

are each embeddings of the finitely generated (MX ,EX ) into the same
structure.
By Lemma 5.31, 
00,�0 is close to (MX ,EX ) and 
10,�1 is close to (M

X
U ,E

X
U ).

But eU is trivially close to (MX ,EX ) and so since close embeddings are
closed under compositions (see the proof of Lemma 5.31), 
10,�1 ◦ e

X
U is close

to (MX ,EX ). Therefore by Lemma 5.32, 
00,�0 = 

1
0,�1 ◦ e

X
U . This proves (3.1)

and (3.2).
By the Suitability Condition, Definition 5.14(3), of semi-iterations,

(4.1) κE00 ≤ �X ,
(4.2) κE10 ≤ �X .
We next prove the following.

(5.1) κE00 = �X , �E00 = κX and κX ∈ SP(E00 ).
(5.2) κE10 = �X and �E10 > κX .
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Assume toward a contradiction that κE00 �= �X . Then κE10 �= �X and by the
three properties of semi-iterations specified as the Suitable Condition, the
First Supercompactness Condition, and the Closeness Condition; both

κE00 ≤ �E00 < �X
and

κE10 ≤ �E10 < �X .
But then by (3.2), and for all sufficiently large

� < �X ,

we have
(6.1) SP(E00 ) ∪ SP(E10 ) ⊂ �,
(6.2) � < κX ,
(6.3) 
00,�0 |P(�) = 


1
0,�1 |P(�).

This contradicts 5.2. This proves that κE00 = �X . Note that we have only
used the much weaker version of the Second Disagreement Condition (see
Definition 5.24)where one requires in addition that �be strongly inaccessible
in the models.
By (3.2), and since κE00 = �X , necessarily κE10 = �X . We now prove the rest
of the claims in each of (5.1) and (5.2).
If �E10 ≤ κX then N

1
0 =MX and so by (3.1), �E10 > κX . We now use (3.1)

and (3.2) to show that
(7.1) κX ∈ SP(E00 ).
(7.2) �E00 = κX .

This will finish the proof of (5.1) and (5.2).
Since �E10 > κX , by the First Supercompactness Condition (5) in the
definition of a semi-iteration, Definition 5.14 on page 57, necessarily


10,�1 [κX ] ∈ N 1�1 = N 0�0
and so by (3.1)–(3.2),


00,�0 [κX ] ∈ N 0�0 .
But then by backwards induction,
(8.1) 
00,1[κX ] ∈ N 01 .
Thus since κE00 = �X , necessarily κX ∈ SP(E00 ). This proves (7.1).
Assume toward a contradiction that �E00 > κX . Then again by the First
Supercompactness Condition of semi-iterations,


00,1[�] ∈ N 01 ,
where

� =
(
(κX )+

)N 0
0 .

By Lemma 5.30 and the closeness of 
00,1 to N 00 , this implies that

P(�) ∩N 00 = P(�) ∩N 01 ,
and so since CRT(
01,�0 ) ≥ 


1
0,1(κE00 ) > �,
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P(�) ∩N 00 = P(�) ∩N 0�0 .

Let G0 be the N 00 -extender given by 
00,�0 . Then

G0|
00,�0 (κX ) ∈ N 0�0 = N 1�1
and so by (3.2),

UX ∈ N 1�1 .
But we have that �E10 > κX and �E10 ≥ �. Therefore by the First
Supercompactness Condition of semi-iterations,


10,1[�] ∈ N 11
and so just as above

P(�) ∩N 10 = P(�) ∩N 1�1 .
But

N 0�0 = N 1�1
and so UX ∈ N 10 which is a contradiction since by (3.1), N 10 = MX

U =
Ult0(MX ,UX ).
This proves (7.1) and (7.2), and finishes the proof of (5.1) and (5.2).
We continue with G0 as specified above and let G1 be the N 10 -extender
given by 
10,�1 . Let �0 be least such that G0|�0 /∈ N 0�0 . Let �

0
0 be least such that

E00 |�00 /∈ N 01 . We note (then prove) the following.
(9.1) �0 < 
00,�0 (κX ).
(9.2) �0 = 
01,�0 (�

0
0).

(9.3) �0 = 
10,�1 (κX ) + 1.
(9.4) There exists κ0 ∈ N 01 such that 
01,�0(κ0) = 


1
0,�1 (κX ).

The last claim, (9.4), follows trivially from (9.1)–(9.3), and it is 9.4 that
we need.
It is useful to note, while proving (9.1)–(9.3), that since

j00,�0 = j
1
0,�1 ◦ e

X
U ,

and since κX < �E10 , necessarily

(10.1) G0|j10,�1 (κX ) = G1|j
1
0,�1 (κX ),

(10.2) G1|j10,�1 (κX ) ∈ N 1�1 = N 0�0 .
Further for all A ∈ P(κX ) ∩MX = P(κX ) ∩MX

U :

A ∈ UX ⇐⇒ κX ∈ eUX (A)
⇐⇒ j10,�1 (κX ) ∈ j

1
0,�1 ◦ e

U
X (A)

⇐⇒ j10,�1 (κX ) ∈ j
0
0,�0(A).

By our general assumptions, in particular the Second Supercompactness
Condition in the definition of semi-iterations on page 57, together with (8.1),
there is a generator � of E00 such that

(11.1) either �∗
E00
= � or �∗

E00
= � + 1,

(11.2) � < 
00,1(�E00 ) = 

0
0,1(κX ),
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(11.3) if �∗
E00
= � then � is a limit of generators of E00 and (cof(�))

N 0
1 <


00,1
(
κE00

)
.

Therefore,
(12.1) �00 = � + 1 or �

0
0 = � and (cof(�))

N 0
1 < 
00,1

(
κE00

)
.

The key point is that by (12.1), if �00 = � then


01,�0 (�
0
0) = sup(


0
1,�0 [�

0
0]).

Therefore, since
(13.1) G0|LTH(H ) = H where

a) H = 
01,�0(E
0
0 |�) if �00 = � + 1, and

b) H is the extender given by 
01,�0 [E
0
0 |�00 ] if �00 = �,

(13.2) 
01,�0 is close toN
0
1 ;

necessarily

01,�0(�

0
0) = �0.

The claims (9.1)–(9.3) now follow from (3.1), (3.2), (5.1), and (5.2).
Let κ0 ∈ N 01 be such that


01,�0(κ0) = 

1
0,�1 (κX ).

Thus κ0 is strongly inaccessible in N 01 and
κ0 < 


0
0,1(κX ) = 


0
0,1

(
�E00

)
.

Further
(14.1) �∗

E00
= κ0 + 1.

Let
�0 =

(
(κ0)+

)N 0
1

and let
�1 =

(
κ+X

)N 1
0 .

Thus 
01,�0 (�0) = 

1
0,�1 (�1). Let � = 


0
1,�0 (�0) = 


1
0,�1 (�1).

Let
�∗ = 
00,�0 (�X ) = 


1
0,�1 (�X ) = 


1
0,�1 ◦ e

X
U (�X )

and let
Y ∗ ⊂ (P�∗(�))N

0
�0 = (P�∗(�))N

1
�1

be the least Solovay set (see Lemma 3.4) which is definable in N ∗|�∗ where
N ∗ = N 0�0 = N 1�1

and where �∗ is the least strongly inaccessible cardinal of N ∗ above �. For
each � < �, let (Y ∗)� = � if � ∈ Y ∗ and sup(�) = �. This is well defined.
We prove the following:
(15.1) �∗

E00
< �E00 .

Assume toward a contradiction that �∗
E00
= �E00 . Let 1 ≤ � < �0 be least

such that

01,�(�0) ∈ SP(E0� ),

where here and below we set 
01,1 to be the identity. Since
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01,�0 (�0) = 

1
0,�1 (�1)

and since
sup(
10,�1 [�1]) < 


1
0,�1 (�1)

it follows that � must exist. The relevant points are as follows:

(16.1) sup(
01,�0 [�0]) = sup
(

01,�0(�0) ∩

{

01,�0(f)(


0
1,�0(κ0)) |f ∈ N 01

})
.

(16.2) sup(
10,�1 [�1]) = sup
(

10,�1(�1) ∩

{

10,�1(f)(


1
0,�1(κX )) |f ∈ MX

U

})
.

Note and this is a key point:

�E00 = κ0 + 1

and so
N 01 =

{

00,1(f)(a) | a ≤ κ0, f ∈ MX

}
.

This implies

(17.1) sup(
01,�0 [�0]) = sup
(

01,�0 (�0) ∩

{

00,�0 (f)(


0
1,�0 (κ0)) |f ∈ MX

})
.

Thus by (16.1), (16.2), and (17.1),
(18.1) sup(
01,�0 [�0]) = sup(


1
0,�1 [�1]).

By the choice of �,
(19.1) sup(
01,�0 [�0]) = sup(


0
�,�0
[
01,�(�0)]).

We have that �0 = (κ+0 )
N 0
1 and that κ0 is strongly inaccessible in N 01 .

Therefore by the properties of semi-iterations and the choice of �,


0�,�+1[

0
1,�(�0)] ∈ N 0�+1,

and this implies that

0�,�0 [


0
1,�(�0)] ∈ N 0�0 ,

since CRT(
0�+1,�0 ) ≥ 

0
�,�+1

(
κE0�

)
> 
01,�(�0).

Let

�0 = sup(
0�,�0 [

0
1,�(�0)]) = sup(


0
1,�0 [�0]) = sup(


1
0,�1 [�1]).

Thus
(20.1) (Y ∗)�0 = 


0
�,�0
[
01,�(�0)],

(20.2) (Y ∗)�0 = 

1
0,�1 [�1].

This is a contradiction since


0�,�0 [

0
1,�(�0)] ∩ 
00,�0 (�X ) = κE0�

and

10,�1 [�1] ∩ 


1
0,�1 (�X ) = κE10 ,

noting that κE10 = �X and


00,�(�X ) = CRT(

0
�,�0
) > �X .

This proves (15.1).
Let �0 be the least generator of E00 such that �

∗
E00
< �0 noting that since

�∗
E00
= κ0 + 1, �∗E00

cannot be a generator of E00 .
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We can reduce to the case that

�0 = ((κ0)+)Ult0(MX ,E
∗),

where E∗ = E00 |�∗E00 , since otherwise,

((κ0)+)Ult0(MX ,E
∗) = ((κ0)+)Ult0(MX ,E

0
0 ) = ((κ0)+)N

0
1 ,

and we can simply repeat the proof of (15.1) to again obtain a contradiction.
By (7.2), �E00 = κX and so since κX is a measurable cardinalMX , �E00 is a
limit of strongly inaccessible cardinals inMX .
Therefore 
00,1(�E00 ) is a limit of strongly inaccessible cardinals in N

0
1 . Let

� be the least cardinal of N 01 with �∗E00 < � < 

0
0,1(�E00 ) such that

N 01 |� � ZFC.
By the Third Supercompactness Condition of semi-iterations, and since
�0 < �, there exist a transitive (N̂ ,EN̂ ) � ZFC and an N̂ -extender F such
that

(21.1) for all a ∈ [LTH(F )]<� , Fa ∈ N̂ .
(21.2) N 01 |� = Ult0(N̂ , F )|�, κE00 < κF , jF (κF ) = κ

∗
E00
, and jF (�F ) = �.

(21.3) No cardinal of N̂ below κF is (<κF )-supercompact in N̂ .
(21.4) For some 	 ≤ �F , �0 = sup(jF [	]), and either

jF [	] ∈ Ult0(N̂ , F )

or for some cardinal �F of N̂ , 	 = (�+F )
N̂ = �F and

(cof(�F ))N̂ < κF .

Fix 	 as given by (21.4). Since �0 = sup(jF [	]) and since

�0 = ((κ0)+)Ult0(MX ,E
∗),

where E∗ = E00 |�∗E00 , necessarily 	 =
(
(κ̂)+)

N̂
for some strongly inaccessible

cardinal N̂ such that
κF < κ̂ < �F .

The point here is that κ0 must be in the range of jF and so κ̂ is the strongly
inaccessible cardinal of N such that jF (κ̂) = κ0. Therefore by (21.4),
(22.1) jF [	] ∈ Ult0(N̂ , F ),
(22.2) 
01,�0 [jF [	]] ∈ N 0�0 ,
noting that (22.1) implies (22.2).
Now we can just repeat the proof of (15.1) one last time and obtain a
contradiction, finishing the proof of the theorem. Note the following:

(23.1) 
01,�0 (�0) = sup(

0
1,�0 [�0]).

(23.2) sup(
01,�0 [�0]) = sup
(

01,�0 (�0) ∩

{

00,�0 (f)(


0
1,�0 (κ0)) |f ∈ MX

})
.

(23.3) sup(
10,�1 [�1]) = sup
(

10,�1 (�1) ∩

{

10,�1 (f)(


1
0,�1 (κX )) |f ∈ MX

U

})
.

(23.4) sup(
10,�1 [�1]) = sup
(

10,�1 (�1) ∩

{

10,�1 ◦ e

X
U (f)(


1
0,�1 (κX )) |f ∈ MX

})
.
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Thus

(24.1) sup(
01,�0 [�0]) = sup(

1
0,�1 [�1]).

Let
� = 
01,�0(�0) = sup(


0
1,�0 [�0]) = sup(


1
0,�1 [�1]).

Therefore,

(25.1) (Y ∗)� = 
10,�1 [�1],
(25.2) (Y ∗)� = 
01,�0(jF [	]) = 


0
1,�0 [jF [	]],

since �0 = sup(jF [	]). But


10,�1 [�1] ∩ �
∗ = �X = κE10

and

01,�0 [jF [	]] ∩ �

∗ = κF > �X .

This is again a contradiction. �

§6. The amenability obstruction. We show that there is no inner model
with a supercompact cardinal which is a fine structure model such that
every level is an amenable sound structure. There is no abstraction of com-
parison or iterability involved here and we shall also prove versions where
the amenability condition is significantly weakened. Thus these constraints
apply to amuchwider class of inner models than the comparison constraints
of the previous section.
We actually show there is no such inner model (with amenable and sound
levels) in which there is a cardinal κ which is κ+�-supercompact.
The nonstrategic-extender models of [24], which reach the finite levels of
supercompactness, are amenable and sound at every level, and so the extent
of those constructions in reaching levels of the large cardinal hierarchy is
best possible.
Further the variations on amenability that we consider include both the
cases where at each level the predicate is only required to be amenable to
an initial segment of the structure, or even more generally, simply specifies
an �-sequence of predicates each which is only required to be amenable to
some initial segment of the structure.
These generalizations exclude a variety of natural attempts to extend the
structures of [24] to the infinite levels of supercompactness.
Finally we shall show in Lemma 6.29 that these generalizations are all
equivalent and moreover just corollaries of the theorem of Shelah, [16],
that if the Approachability Property holds at κ+(�+1) then κ cannot be κ+�-
supercompact.

6.1. Soundness. We define an abstract notion of soundness. This is just
the natural definition given, for example, the basic definitions of modern
fine structure theory, and here we follow the basic framework of [12].

Definition 6.1. (1) Let L(gen) be the language of set theory together
with unary predicates Ṗ and Ṗ.
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(2) Suppose that M = (Jα[P],P|α,Pα) and that Pα ⊆ Jα[P]. Then
M defines an L(gen)-structure where Ṗ interpreted by P|α and Ṗ
interpreted by Pα.

(3) Suppose M is a (transitive) L(gen)-structure. Then PM is the
interpretation of Ṗ and PM is the interpretation of Ṗ.

Remark 6.2. We shall always assume that an L(gen)-structure is either of
the form

M = (Jα[P],P|α,Pα)
in the Ṗ-active case, or of the form

M = (Jα[P],P|α)
in the Ṗ-passive case. In particular, we are restricting to transitive structures.

For the following definitionwe implicitly restrict toL(gen)-structures which
are weakly amenable, see Remark 6.17. The case of more general structures
will involve altering the definition of a (L(gen))Σ1-formula, see the discussion
after Remark 6.17.

Definition 6.3. L+(gen) is L(gen) expanded by adding 3-ary predicates Ṫn
for 1 ≤ n < �. Suppose � is a formula of L+(gen).
(1) � is (L(gen))Σ1 if � is a Σ1-formula relative to L(gen).
(2) � is (L(gen))Σn+1 if there is a Σ1-formula φ(x0, . . . , xm, xm+1, xm+2) of

L(gen) such that

� = ∃xm∃xm+1∃xm+2
(
Ṫn(xm, xm+1, xm+2) ∧ φ

)
.

Definition 6.4. (1) For each formula φ(x0, . . . , xn, xn+1) of L+(gen)
(with free occurrences of xn+1), �φ(x0, . . . , xn) is the Skolem term
given by φ and for each 1 ≤ n < �, (L(gen))Skn is the smallest collection
of terms closed under composition and containing all the terms �φ
where � is (L(gen))Σn.

(2) A formula � is a generalized (L(gen))Σn-formula, where 1 ≤ n < �, if for
some (L(gen))Σn-formula φ[x0, . . . , xm], collection of terms closed under
composition and containing all the terms �φ where� is (L(gen))Σn. Thus
for any L+(gen)-formula φ, the arity of �φ is m where m is largest such
that xm+1 is a free variable of � (and �φ is defined only if m ≥ 1).

(3) A formula � is a generalized (L(gen))Σn-formula, where 1 ≤ n < �, if
for some (L(gen))Σn-formula φ[x0, . . . , xm],

� = φ(x0, . . . , xm : �0, . . . , �m),

where
a) for each i ≤ m, �i ∈ (L(gen))Skn, and �i is free for xi in φ,
b) φ(x0, . . . , xm : �0, . . . , �m) is the formula obtained from � by
substituting �i for each free occurrence of xi .

SupposeM is a L(gen)-structure. By induction on 1 ≤ n < �, we define
the interpretation of Ṫn inM, denoted TM

n , and the n-th projectum ofM,
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denoted �Mn . Simultaneously we define the interpretations of �φ which we
denote �Mφ . To simplify notation a bit we adopt the following conventions.

(1) φ(x0, . . . , xm) indicates the free variables of � are included in
{x0, . . . , xm} and that xm is a free variable of φ.

(2) Suppose φ(x0, . . . , xm) is a formula,m > 0, and s ∈ |M|<� . We write
M � φ[s̄] to indicate both |s | = m + 1 and that

M � φ[s0, . . . , sm].
Definition 6.5. SupposeM is a L(gen)-structure. Suppose 1 ≤ n < �.
(1) Suppose that φ(x0, . . . , xm+1) is a (L(gen))Σn-formula and that
�φ(x0, . . . , xm+1) is the corresponding (L(gen))Skn-term. Then for each

〈ai : i ≤ m〉 ∈ |M|<�,
〈ai : i ≤ m〉 ∈ dom(�Mφ ) and for each b = �Mφ (a0, . . . , am) if
a) M � φ[a0, . . . , am, b],
b) for all c <M b,M � (¬φ)[a0, . . . , am, c].

(2) For each X ⊆ |M|,
ThMn (X ) = {(φ, s) | s ∈ X<�,� is generalized (L(gen))Σn,M � φ[s̄]} .

(3) �Mn is the least ordinal � ≤ α, such that Thn(�∪{q}) /∈ |M| for some
q ∈ |M|, where α = |M| ∩Ord.

(4) TM
n (α, q, b) if and only if α < �

M
n , q ∈ |M|, and b = ThMn (α∪{q}).

Definition 6.6. Suppose M is a L(gen)-structure. Suppose X ⊆ |M|,
X �= ∅, 1 ≤ n < �, and �Mk > 0 for all 0 < k < n.

(1) SM
n (X ) =

{
�M(s) | s ∈ dom(�Mφ ) ∩ X<� and � ∈ (L(gen))Skn

}
.

(2) HM
n (X ) is the L(gen)-structure given by the transitive collapse of(

SM
n (X ),PM ∩ SM

n (X ), PM ∩ SM
n (X )

)
.

Definition 6.7. SupposeM is an amenable L(gen)-structure. ThenM is
�-sound if for each k + 1 < �, one of the following holds.
(1) k > 0 and �Mk = 0.
(2) There exists a ∈ M such thatM = HM

k+1(�
M
k+1 ∪ {a}).

Remark 6.8. Thedefinitionof soundness here does not involve anynotion
of a standard parameter or any properties of the standard parameters such
as solidity. Thus it is far weaker than the usual notions of soundness.

Remark 6.9. We illustrate why sound structures are so useful. Suppose
M is an amenable �-sound, L(gen)-structure, 0 < k < �, and

�Mk > 0.

Let � = �Mk and let q ∈ M be such that

M = HM
k (�, {q}).

Let N = (M|�, T ) where T = ThMk (� ∪ {q}), naturally coded as a subset
ofM|�.
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(1) N is an amenable L(gen)-structure.
(2) N is �-sound and �N1 = �Mk+1.
(3) Suppose A ⊂ M|�. Then the following are equivalent.
a) A is (L(gen))Σ1-definable in N from parameters.
b) A is (L(gen))Σk+1-definable inM from parameters.

6.2. The amenability obstruction.

Definition 6.10. Suppose that P ⊂ Ord × V . Then J [P] is amenable if
for all α ∈ dom(P), the following hold.
(1) (Jα[P],P|α) � Comprehension.
(2) Pα ⊆ Jα[P].
(3) For all 
 < α, Pα ∩ J
 [P] ∈ Jα[P].
Remark 6.11. The requirement that if α ∈ dom(P) then

(Jα[P],P|α) � Comprehension
just simplifies things conceptually and is not necessary. For example ifα > �,
it implies that α is a limit ordinal.
Note that in the case where P is a good partial extender sequence, we
require (see Definition 5.8) that if α ∈ dom(P) then

(Jα[P],P|α) � ZFC\Powerset,
which is of course a much stronger condition.

We now include soundness and define when J [P] is amenable and sound.
We shall define soundness more generally just after Remark 6.17 but that
definition will be based on a reformulation of the definition of (L(gen))Σn-
formulas together with a reformulation of Definition 6.7 to include the case
whenM is not amenable, see Definition 6.22.

Definition 6.12. Suppose that P ⊂ Ord × V and that J [P] is amenable.
Then J [P] is sound if for each α ∈ Ord:
(1) (Jα[P],P|α, ∅) is �-sound,
(2) if α ∈ dom(P) then (Jα[P],P|α,Pα) is �-sound.
Of course, if J [P] is amenable then for each α ∈ dom(P), the structure

(Jα[P],P|α, ∅)
is trivially �-sound since (Jα[P],P|α) � Comprehension.
The following lemma is immediate from the definitions.
Lemma 6.13. Suppose that P ⊂ Ord × V , J [P] is amenable, and J [P] is
sound. ThenGCH holds in J [P].

Remark 6.14. AssumingGCH, ifκ isκ+�-supercompact then necessarily
κ is κ+(�+1)-supercompact. Rephrased (and now not assuming GCH), if

j : V →M
is an elementary embedding with critical point κ, the following are
equivalent.
(1) j[Vκ+�] ∈M .
(2) j[Vκ+�+1] ∈M .
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More generally for any set X and for any 	 < κ, if

j[X ] ∈M
then j[X	 ] ∈M .

Lemma 6.15 (GCH). Suppose that κ is κ+�-supercompact and that
P ⊂ Vκ. Then there exist � < κ and an elementary embedding


 :
(
H (	),P ∩H (	)

)
→

(
H (
(	)),P ∩H (
(	))

)

such that

(1) 
 ∈ Vκ and CRT(
) = �.
(2) 	 = �+(�+1) and 
(	) = (
(	))+(�+1).

Proof. Since GCH holds, κ is κ+(�+1)-supercompact. Let

j : V →M
be an elementary embedding such that CRT(j) = κ andM� ⊂M where

� = κ+(�+1) = |Vκ+�+1| = |H (κ+(�+1))|.
Let N = j(M ) and let

j(j) ◦ j : V → N
be the iteration embedding. Then

j|H (κ+(�+1)) ∈ j(j) ◦ j(Vκ) = Nj(j(κ))
witness that the conclusion of lemma holds in N at j(j) ◦ j(κ) for
j(j) ◦ j(P). �
Theorem 6.16. Suppose that P ⊂ Ord× V and that J [P] is amenable and
sound. Then

J [P] � “There are no cardinals κ which are κ+�-supercompact.”
Proof. We work in (J [P],P). Assume toward a contradiction that there
exists κ such that κ is κ+�-supercompact. Therefore by Lemmas 6.13
and 6.15, there exist � < κ and an elementary embedding


 : (J	 [P],P|	)→ (J
(	)[P],P|
(	))
such that

(1.1) 	 = �+(�+1) and CRT(
) = �,
(1.2) 
(	) = (
(�))+(�+1).

Let � = sup(
[	]). The key point is that there can be no closed set C ⊂ �
such that

(2.1) |C | < 
(�+�),
(2.2) C is cofinal in �,
(2.3) C ∩ � ∈ J�[P] for all � < �.
Note that this claim implies that weak-� must fail at �+� . In fact
the relevant principle is APκ+ which is an even weaker principle. See
Definition 6.25.
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Assume toward a contradiction that C exists. Let

D = {� < 	 | 
(�) ∈ C} .
Thus D is �-closed and by (2.3), D is cofinal in 	. Let �0 ∈ D be such that

|D ∩ �0| ≥ �+�.
Then C ∩ 
(�0) covers 
[D ∩ �0] and by (2.1),

P(C ∩ 
(�0)) ∈ J�[P].
This implies that 
[�+�] ∈ J�[P] and so


|H (�+�) ∈ J�[P].
But then 
[	] is definable from parameters in J�[P] and this is a contradiction
since

(J�[P],P|�) � ZFC\Powerset.
This proves the claim.
Let α > � be least such that for some 0 < k < �,

�Mk < �,

whereM = (Jα[P],P|α) if α /∈ dom(P) and
M = (Jα[P],P|α,Pα)

otherwise. We assume α ∈ dom(P). The case that α /∈ dom(P) is easier.
Fix k to be least such that �Mk < �. Thus

�Mk = 
(�)
+�.

We first prove the following:
(3.1) k > 1.
Assume toward a contradiction that k = 1. By soundness, there exists
q ∈ Jα[P] such that

M = HM
1 (�

M
1 ∪ {q}) = SM

1 (�
M
1 ∪ {q}).

Thus there is a partial function

f : 
(�)+� → �
such that f is a surjection and such that f is generalized (L(gen))Σ1-definable
inM from parameters. BecauseM is amenable, we can reduce to the case
that f is Σ1-definable from parameters in the structure

M = (Jα[P],P|α,Pα).
Fix a Σ1-formula φ(x0, x1, x2) and c0 ∈ Jα[P] such that

f = {(a, b) ∈ Jα[P] | (Jα[P],P|α,Pα) � φ[a, b, c0]} .
We can require that φ(x0, x1, x2) has the form

(∃� < α)�
[
x0, x1, x2,Pα ∩ J�[P]

]
,

where � is a (L(gen))Σ1-formula not mentioning Ṗ, the predicate for Pα.
Fix 
(�)+� < α0 < α such that c0 ∈ Jα0 [P]. For each α0 < 
 < α, let f

be the set of all (a, b) ∈ J
 [P] such that
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(J
 [P],P|
) � �[a, b, c0,Pα ∩ J�[P]]
for some � < 
 such that Pα ∩ J�[P] ∈ J
 [P].
Thus f
 ⊆ f, f
 ∈ Jα[P], and

f = ∪
{
f
 |α0 < 
 < α

}
.

There are two cases.

Case 1. cof(α) �= �+(�+1).
There must exist 
(�)+� < 
 < α such that f
 has range cofinal in �. But

f
 ∈ Jα[P].
This contradicts the choice of α.

Case 2. cof(α) = �+(�+1).
Let � < 
(�)+� be least such that f|� has cofinal range in �. Thus

cof(�) = cof(�) = �+(�+1).

Fix X ⊂ � such that
(4.1) |X | = �+(�+1),
(4.2) f|X has cofinal range in �.
We haveH (
(�)+�) ⊂ Jα[P] and so clearly X ∈ Jα[P]. This implies there
is an increasing cofinal continuous function

g : �+(�+1) → �
such that g is Σ1-definable from parameters in (Jα[P],P|α,Pα) and such that

g|� ∈ Jα[P]
for each � < �+(�+1). Let C be the range of g. Then C satisfies (2.1)–(2.3)
which is a contradiction.
This proves (3.1). Let n = k − 1 > 0. Thus

�Mn > �,

and either �Mn = α or �Mn is a cardinal of Jα[P]. Let � = �
M
n and fix

q ∈ Jα[P] such that
M = HM

n (� ∪ {q}).
The structure,

N = (J�[P], T )
is amenable where T = ThMn (� ∪ {q}) (naturally coded as a subset of �)
since

(J�[P],P|�) � Comprehension.
In fact since � is a cardinal of Jα[P], either

(J�[P],P|�) � ZFC\Powerset
or

(J�[P],P|�) � ZFC\Replacement,
which is a much strong claim.
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The key point is that
�N1 = �

M
n+1

and that for some p ∈ J�[P]
N = HN

1 (�
N
1 ∪ {p}).

We can now just repeat the proof of (3.1). �
One can weaken the notion of amenability quite a bit and still prove
Theorem 6.16. The point here is that the definition of soundness does not
require amenability though we will alter the basic definitions slightly when
generalizing to nonamenable structures.
As we have already indicated, these generalizations rule out many natural
approaches to extending the constructions of [24] in an attempt to reach the
infinite levels of supercompactness.

Remark 6.17. Define P to be weakly amenable if for all α ∈ dom(P),
there exists a limit ordinal 	 < α such that
(1) Pα ⊆ J	 [P].
(2) For all 
 < 	, Pα ∩ J
 [P] ∈ Jα[P].
Then the proof of Theorem 6.16 adapts to prove the corresponding theorem
for weakly amenable P. This requires dealing with more cases since there are
now two relevant cofinalities, cof(α) and cof(	). Note though that if 	 < α
and Pα /∈ Jα[P] then necessarily

�M1 ≤ 	,
whereM = (Jα[P],P|α,Pα). Thus the additional cases only arise in proving
(3.1) in the proof of Theorem 6.16 and the rest of the proof is exactly the
same.We leave the details to the reader since there is amore general theorem,
Theorem 6.30, which we shall obtain as a corollary of Theorem 6.16 and
Lemma 6.29.
In fact all these theorems are really equivalent since we shall prove in
Lemma 6.29 that if J [P] is �-weakly amenable and sound as defined below
then there exists P∗ such that

J [P] = J [P∗]

and such that J [P∗] is amenable and sound.

Remark 6.18. The backgrounding scenario described in Remark 5.13
illustrates how one might naturally be led to consider weakly amenable
structures which are not amenable. We continue that discussion and focus
just on the case whereM is weakly backgrounded and EM witnesses that
κE is �-supercompact inM. Notation now is as in Remark 5.13.
We have set

N =M| sup(j[(�+E )M]) =M| sup(jE(�+E )M),
and the coding obstruction of Section 4 has been interpreted to require that
one must (in general) have that there exists a set � ∈ N such that |�|N < κ∗E
and such that E ∩ � /∈ M. Otherwise one cannot add E to the sequence to
construct the next approximation to the final model.
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If no such � exists then we argued that cof(�E) < κE which implies that

j(�E ) = sup(j[�E ]).

Now replace N with
N ∗ =M|

(
j
(
(�+E )

M))
.

Thus sinceM is weakly backgrounded and since EM witnesses that κE is
supercompact inM, there does exist

� ∈ N ∗

such that |�|N ∗
< κ∗E and such that E ∩ � /∈ M. The structure

(N ∗, E)

is weakly amenable since � = j(�E ).
This suggests altering the indexing scheme to allow in this situation that
E be added with index OrdN

∗
so that

(N ∗,EN ∗, E)

is that next approximation to the final model, and so this suggests devel-
oping an alternative fine-structural hierarchy which allows such generalized
indexing schemes.
But this cannot work to reach the infinite levels of supercompact.

One can further generalize by only requiring that for each α ∈ dom(P),
Pα specifies an �-sequence of predicates each of which is weakly amenable
to Jα[P].

Definition 6.19. Suppose that α ∈ dom(P) andα is a limit ordinal. Then
(Jα[P],P|α,Pα)

is �-weakly amenable if
Pα ⊂ � × Jα[P]

and for each n < �, there exists a limit ordinal 	n ≤ α such that
(1) (Pα)n ⊂ J	n [P],
(2) (Pα)n ∩ J�[P] ∈ Jα[P] for each � < 	n.
Definition 6.20. Suppose that P ⊂ Ord × V . Then P is �-weakly
amenable if for all α ∈ dom(P),
(1) (Jα[P],P|α) � Comprehension,
(2) (Jα[P],P|α,Pα) is �-weakly amenable.
The notion of soundness is exactly as defined for the case of amenable P
except that (L(gen))Σn-formulas are redefined as follows.

Definition 6.21. L−
(gen) is L(gen) reduced by eliminating Ṗ.

Definition 6.22. Suppose � is a formula of L(gen)+.
(1) � is (L(gen))Σ1 if there is a Σ1-formula φ(x0, x1) of L−

(gen) such that

� = ∃x0
(
“x0 ⊂ Ṗ ” ∧ “x0 is finite” ∧ φ

)
.
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(2) � is (L(gen))Σn+1 if there is a Σ1-formula φ(x0, . . . , xm, xm+1, xm+2) of
L−
(gen) such that

� = ∃xm∃xm+1∃xm+2
(
Ṫn(xm, xm+1, xm+2) ∧ φ

)
.

For the amenable L(gen)-structures, this change in the definition of
(L(gen))Σn-formulas amounts to simply replacing P with P∗ where

dom(P) = dom(P∗),

and for each α ∈ dom(P),
P∗
α = {Pα ∩ J�[P] | � < α} .

Therefore we could have simply made this part of our abstract definitions
in Section 6.1 of L(gen)-structures and (L(gen))Σn-formulas.
With this change, we can naturally define when an L(gen)-structure M
is �-sound without restricting to the case that M is an amenable L(gen)-
structures which we did in Definition 6.7. Thus we can define when J [P] is
sound for an arbitrary class

P ⊂ Ord× V,
and this we do in the following definition.

Definition 6.23. Suppose that P ⊂ Ord × V . Then J [P] is sound if for
each α ∈ Ord,M is �-sound whereM = (Jα[P],P|α, ∅) if α /∈ dom(P),
and

M = (Jα[P],P|α,Pα)
otherwise.

Lemma 6.24. Suppose that P ⊂ Ord × V and J [P] is sound. Then GCH
holds in J [P].

6.3. Weak amenability and the Approachability Property. The analysis of
J [P] which are �-weakly amenable and sound involves the Approachability
Property, AP.
Definition 6.25 (Foreman–Magidor). Suppose that κ is an infinite
cardinal. Then APκ+ holds if there is a sequence

〈Cα : α < κ+〉
such that for all limit α < κ+:
(1) Cα is a closed cofinal subset of α and ordertype(Cα) ≤ κ.
(2) If cof(α) < κ then |Cα| < κ.
(3) For all 
 < α, Cα ∩ 
 = C	 for some 	 < α.
Remark 6.26. (1) APκ+ holds for all regular cardinals κ assuming
GCH and we are only really interested in the situation where GCH
holds.

(2) The usual definition ofAPκ+ is slightly different. The definition above
highlights the principle APκ+ as a very weak version of �κ.
Note that in clause (3) of the definition, if one required 	 to be a limit
ordinal whenever 
 is a limit point of Cα then one has a �κ sequence.
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(3) One advantage of formulating APκ+ as in Definition 6.25 is that it
gives the notion of a witness for APκ+ and we shall use this freely.

The following lemma implicit in the introductory remarks of [2] gives the
two equivalent formulations of APκ+ . We also refer the reader to [2] for an
historical perspective noting that the AP family of principles have origin in
prior work of Shelah [16].
Lemma 6.27 (Foreman–Magidor: [2]). Suppose that κ is an infinite
cardinal. Then the following are equivalent.
(1) APκ+ holds.
(2) For all

X ≺ H (κ++)
if |X | = κ and κ ⊂ X then there exists a closed cofinal subset C ⊂
X ∩ κ+ such that
(a) ordertype(C ) ≤ κ,
(b) if cof(X ∩ κ+) < κ then |C | < κ,
(c) C ∩ � ∈ X for all � < sup(X ∩ κ+).

Proof. We first show that (1) implies (2). Assume that APκ+ and that
X ≺ H (κ++)

is such that |X | = κ and that κ ⊂ X . Thus there exists a sequence
C = 〈Cα : α < κ+〉

such that C witnessesAPκ+ and such that C ∈ X . The key point is that there
is an enumeration

〈Z� : � < κ+〉 ∈ X
of bounded subsets of κ+ and closed unbounded set D ⊂ κ+ such that
(1.1) D ∈ X ,
(1.2) for all � ∈ D, for all 
 < �, C� ∩ 
 ∈ {Z� | � < �}.
Let C = Cα0 where α0 = X ∩ κ+. Then
(2.1) ordertype(C ) ≤ κ,
(2.2) if cof(X ∩ κ+) < κ then |C | < κ,
(2.3) C ∩ � ∈ X for all � < X ∩ κ+.
This proves (2). Now suppose (2) holds and let

X = 〈X� : � < κ+〉
be a continuous elementary chain such that for all � < κ+:
(3.1) X� ≺ H (κ++) and X� ∈ X�+1.
(3.2) κ ⊂ X� and |X�| = κ.
For each � < κ+, let α� = X� ∩ κ+ and let Cα� be a closed cofinal subset of
α� such that
(4.1) ordertype(Cα�) ≤ κ.
(4.2) If cof(X� ∩ κ+) < κ then |Cα� | < κ.
(4.3) Cα� ∩ � ∈ X� for all � < X ∩ κ+.
These sets exist by (2). Since X is continuous, for each limit � < κ+, and for
each � < �,
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Cα� ∩ � ∈ X�
for all sufficiently large � < �. Thus the sequence

〈Cα� : � < κ+〉
can easily be expanded to a sequence

〈Cα : α < κ+〉,
which witnesses APκ+. The relevant point here is that for each κ < �0 <
�1 < κ

+, one can always choose a sequence

〈D� : α�0 < � < α�1〉,
which witnesses APκ+ on the interval (α�0 , α�1). �
The following easy lemma shows that GCH is in some sense equivalent to
soundness. Lemma 6.29, which we prove below, shows that GCH together
with AP is in the same sense equivalent to soundness and amenability.
Lemma 6.28. Suppose that P ⊂ Ord × V . Then the following are
equivalent.
(1) J [P] � GCH.
(2) There exists P∗ ⊂ Ord× V such that
(a) J [P∗] is sound.
(b) J [P] = J [P∗].
(c) P∗ is Σ2-definable in (J [P],P).

Lemma 6.29 also shows that Theorem 6.16 and its generalization to the
case of �-weak amenable J [P] are equivalent and moreover just corollaries
of the theorem of [16] that if the Approachability Property holds at κ+(�+1)

(this is AP� where � = κ+(�+1)) then κ cannot be κ+�-supercompact.
Lemma 6.29. Suppose that P ⊂ Ord× V and that J [P] � GCH. Then the
following are equivalent.
(1) For each uncountable cardinal κ of J [P], APκ+ holds in J [P].
(2) There exists P∗ ⊂ Ord× V such that
(a) J [P∗] is amenable and sound.
(b) J [P] = J [P∗].
(c) P∗ is Σ2-definable in (J [P],P).

(3) There exists P∗ ⊂ Ord× V such that
(a) J [P∗] is �-weakly amenable and sound.
(b) J [P] = J [P∗].
(c) P∗ is Σ2-definable in (J [P],P).

Proof. We work in (J [P],P). It suffices to prove that (1) implies (2) and
that (3) implies (1).
We first assume (1) and prove (2). Suppose κ is an uncountable cardinal
and let

C = 〈Cα : κ < α < κ+〉
be the (J [P],P)-least witness that APκ+ holds.
Let

D =
{
κ < α < κ+ | (Jα[P],P|α, C|α) ≺ (Jκ∗ [P],P|κ+, C)

}
.
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Given P∗|κ such that
Jκ[P∗] = H (κ),

define P∗|κ+ to be the (J [P],P)-least set
H ⊂ κ+ × J [P]

such that
(1.1) H|κ = P∗|κ.
(1.2) If (J�[H],H|�) �� ZFC\Powerset then H� = ∅;
and such that the following hold for all κ < � < κ+ such that

(J�[H],H|�) � ZFC\Powerset.
(2.1) κ is the largest cardinal of J�[H].
(2.2) Suppose cof(�) < cof(κ). Then H� is a cofinal closed subset of �

such that ordertype(H�) = cof(�) and such that H� ∩ � ∈ J�[H] for
all � < �.

(2.3) Suppose cof(�) = cof(κ). Let �∗ ∈ D be the least element of D
above �. Then there is a set E ⊂ κ which codes

(J�∗ [P],P|�∗, C|�∗)
and there are increasing continuous cofinal functions

f : cof(κ)→ �
and

g : cof(κ)→ κ
such that

H� = {(f(�), g(�) ∩ E) | � < cof(κ)} .
(2.4) Suppose that cof(�) > cof(κ). Then � ∈ D,

J�[P] ⊆ J�[H]
and H� = C�.

Note that in (2.3), since GCH holds, since κ is the largest cardinal of J�[H],
and since cof(�) = cof(κ), for each � < � and for each 	 < cof(κ),

(J�[H])	 ∈ J�[H].
Therefore the set H� is necessarily amenable to J�[H] whereH� is as defined
in (2.3) but for any choice of (f, g) and for any set E ⊂ κ.
Also note the following regarding (2.4). Suppose κ < � < κ+ and

(J�[H],H|�) � ZFC\Powerset.
Then either cof(�) = � or the set

{� < � | (J�[H],H|�) ≺ (J�[H],H|�)}
is closed and cofinal in �.
With these two observations it follows that for any choice of P∗|κ such
that

Jκ[P∗] = H (κ);

H exists satisfying (1.1), (1.2) and satisfying (2.1)–(2.4) for all κ < � < κ+.
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It follows that J [P∗] is amenable and sound, and that J [P] = J [P∗].
Clearly P∗ is Σ2-definable in (J [P],P). This proves that (1) implies (2).
We now assume (3). Clearly we can just reduce to the case that P = P∗.
Fix

X ≺ (Jκ+[P],P|κ+)
such that κ ⊂ X and |X | = κ. We prove that there exists C ⊂ X ∩ κ+ such
that
(3.1) C is closed cofinal in X ∩ κ+,
(3.2) ordertype(C ) ≤ κ and if cof(X ∩ κ+) < κ then |C | < κ,
(3.3) C ∩ � ∈ X for each � < X ∩ κ+.
By Lemma 6.27, this implies APκ+ holds.
Let 	 = cof(κ). We can reduce to the case that

cof(X ∩ κ+) > 	
for otherwise the existence of C is immediate since for each α ∈ X ∩ κ+,

P	(α) ⊂ X.
Let X ∩ κ+ < α < κ+ be least such that

�Mn = κ

for some n < � where M = (Jα[P],P|α,Pα) if α ∈ dom(P) and
M = (Jα[P],P|α) if α /∈ dom(P).
We can further reduce to the case that α ∈ dom(P) and n = 1 since
otherwise we can reduce to the case that M is an amenable structure in
which case by the proof of Theorem 6.16, C exists satisfying (3.1)–(3.3).
The structureM is 1-sound and so

M = HM
1 (κ ∪ {p})

for some p ∈ M. Thus there is a partial surjection
f : κ → X ∩ κ+

such that f is generalized (L(gen))Σ1-definable inM from p. Arguing as in the
proof of Theorem 6.30, for some m < �, the partial function

f(m) : κ → X ∩ κ+

has cofinal range and is generalized (L(gen))Σ1-definable inM(m) from pwhere

M(m) = (Jα[P],P|α,Pα|m),
where

Pα|m = Pα ∩ (m × Jα[P]).
Here f(m) is simply f as defined inM(m).
Since cof(κ) < cof(X ∩ κ+) < κ, there exists � < κ such that
range(f(m)|�) is cofinal in X ∩ κ+. Therefore letting � = cof(X ∩ κ+),
there exist q ∈ M and a cofinal continuous function

g : � → X ∩ κ+

such that g is generalized (L(gen))Σ1-definable inM(m). We assume that m is
as small as possible over all possible choices of H yielding
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MH = (Jα[P],P|α,H),
such that

H ⊂ m × Jα[P]
and such that for each k < m there exists � < α such that

(4.1) Hk ⊂ J� [P],
(4.2) Hk ∩ J
 [P] ∈ Jα[P] for all 
 < α;
and relative to all possible generalized (L(gen))Σ1-formulas with parameters.
If m = 0 thenMH is amenable, and by the proof of Theorem 6.16, C exists
satisfying (3.1)–(3.3). Therefore we can reduce to the case that m > 0.
For each k < m, let �k = sup((Pα)k) and let I be the set of all finite
sequences 〈
k : k < m〉 such that 
k < �k for each k < m. For each a ∈ I ,
let

Ma = (Jα[P],P|α,Pa),
where Pa is the set of all (k, b) such that k < m and b ∈ (Pα)k|
k , and
a = 〈
k : k < m〉. Let ga be g as interpreted in the structureMa . Thus,

(5.1) The set I is directed under the order a < b if ai < bi for all i < m.
(5.2) For each � < �, there exists a ∈ I such gb(�) = g(�) for all b > a.
We claim the following:
(6.1) For each k < m, cof(�k) = �.

Let
s = {i < m | cof(�k) < �}

and let
t = {i < m | cof(�k) > �} .

For each � < �, let a� ∈ I be such that
g(�) = ga(�)

for all a > a�. There must exist a cofinal set A0 ⊂ � and c ∈ I such that for
all � ∈ A0 and for all i ∈ s ,

(a�)i < ci .

Therefore by the minimality ofm, it follows that s = ∅. Similarly there must
exist d ∈ I such that for all � < � and for all i ∈ t,

(a�)i < di .

This implies t = ∅, again by the minimality of m. This proves (6.1).
Note that by (5.2) and (6.1),

(7.1) For each � < �, there exists a ∈ I such that g|� = ga|�.
There are two cases.
Case 1. cof(α) ≥ �.
For each a ∈ I and for each sup(a) < 
 < α, let g(
,a) be g as interpreted
in the structure

M(
,a) = (J
 [P],P|
,Pa),
where as above Pa is the set of all (k, b) such that k < m and b ∈ (Pα)k |
k
and
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〈
k : k < m〉 = a.
This all makes perfect sense even though we cannot require that

(J
 [P],P|
) � Comprehension,
which we have generally imposed at active stages.
Since cof(α) ≥ � it follows that for each � < � there exists a ∈ I and

 < α such that

g|� = g(
,a)|�.
For each a ∈ I ,M(
,a) ∈ Jα[P], and so for each � < �,

g[�] ∈ Jα[P].
Therefore letting C = g[�], C witnesses (3.1)–(3.3).
Case 2. cof(α) < �.
Since cof(α) < � there must exist 
0 < α such that for all k < m,
(8.1) �k < 
0,
(8.2) (P)k ∩ J�[P] ∈ J
0 [P] for all � < �k .
Again since cof(α) < �, there must exist limit ordinal 
 such that, 
0 <

 < α, an elmement r ∈ J
 [P], and a cofinal increasing continuous function

h : � → X ∩ κ+

such that h is generalized (L(gen))Σ1-definable from r in the structure

(J
 [P],P|
,Pα|m).
For each a ∈ I , let ha be h as interpreted in the structure

M(
,a) = (J
 [P],P|
,Pa),
where Pa is as defined above.
Thus exactly as for g andM(m):
(9.1) For each � < �, there exists a ∈ I such hb(�) = h(�) for all b > a.
By (6.1) and (9.1),
(10.1) For each � < �, there exists a ∈ I such that h|� = ha |�.
Finally exactly as in Case 1, for each a ∈ I ,M(
,a) ∈ Jα[P], and so for each
� < �,

h[�] ∈ Jα[P].
Therefore letting C = h[�], C witnesses (3.1)–(3.3). �
As an immediate corollary, we obtain the following generalization of
Theorem 6.16.
Theorem 6.30. Suppose that P ⊂ Ord × V and that J [P] is �-weakly
amenable and sound. Then

J [P] � “There are no cardinals κ which are κ+�-supercompact.”
Proof. By Lemma 6.29 there exists P∗ ⊂ Ord× V such that
(1.1) J [P∗] is amenable and sound.
(1.2) J [P] = J [P∗].
(1.3) P∗ is Σ2-definable in (J [P],P).
The theorem is an immediate corollary of this by Theorem 6.16. �
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6.4. Good partial extender sequences revisited.

Definition 6.31. Suppose that E is a good partial extender sequence and
α ∈ dom(E). Let E be the Jα[E]-extender given by E at α and let

jE : Jα[E]→ Ult0(Jα[E], E)
be the ultrapower embedding. Then E satisfies the weak initial segment
condition at α if

E|jE (�) ∈ Jα[E]
for all � < �E .

The weak initial segment condition at α is equivalent to a level of
supercompactness for the associated extender E.
Lemma 6.32. Suppose that E is a good partial extender sequence and
α ∈ dom(E). Let E be the Jα[E]-extender given by E at α and let

jE : Jα[E]→ Ult0(Jα[E], E)
be the ultrapower embedding. Then the following are equivalent.
(1) E satisfies the weak initial segment condition at α.
(2) Suppose � < �E is a cardinal of Jα[E] and 	 = (�+)Jα [E]. Then jE [	] ∈
Ult0(Jα[E], E).

Proof. We first assume (1) and prove (2). Let � = jE(�). Thus

E|jE (�) ∈ Jα[E]
and

Jα[E] = Ult0(Jα[E], E)|α.
By the elementarity of jE ,

Ult0(Jα[E], E) � ZFC\Powerset
and thus (2) holds.
Now assume (2) holds and fix � < �E . Let � = |�|Jα [E] and let 	 = (�+)Jα [E].
Thus by (2),

jE [	] ∈ Ult0(Jα[E], E).
But this implies that

jE [J	 [E]] ∈ Ult0(Jα[E], E),
since

Ult0(Jα[E], E)|α = Jα[E].
By the strong acceptability of Jα[E],

P(�) ∩ Jα[E] ⊂ J	 [E]
and so it follows that

E|jE(�) ∈ Ult0(Jα[E], E).
Finally by the strong acceptability of Ult0(Jα[E], E) and since

α = jE(�),

where � = (�+E )
Jα [E], this implies that E|jE(�) ∈ Jα[E]. �
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Lemma 6.33. Suppose that E is a good partial extender sequence which
satisfies the weak initial segment condition at all α ∈ dom(E). Then for all
α ∈ dom(E), Eα can be coded by a set E such that for some 
 ≤ α,
(1) Either (J
 [E],E|
) � ZFC\Powerset or (J
 [E],E|
) � ZFC\Replacement.
(2) E ⊂ J
 [E] and E ∩ J�[E] ∈ J
 [E] for all � < 
.
(3) (J
 [E], E) and (Jα[E],Eα) are logically equivalent.

The main theorems from [24] actually yield amenable structures at the
finite levels of supercompactness because of satisfying the weak initial
segment condition.
These can easily be extended to the levels of �-extendible cardinals where
one obtains the close version of amenability indicated in the previous lemma.
But since the focus of [24] is the finite levels of supercompact, we restrict the
statement of Theorem 6.35 to such levels as well.

Remark 6.34. In some sense, Theorem 6.35 represents, modulo the itera-
tion hypothesis, the strongest possible result for the extent of a fine-structural
hierarchy of inner models where some version of amenability holds at all
active stages.
Thus the finite levels of supercompactness emerges as a canonical and
natural threshold within the large cardinal hierarchy beyond which a
new approach is required for the construction of fine-structural inner
models, [25].

The results of [24] combinedwith those of [25] yield the following theorem.
Just as for Theorem 5.20, the only use here of the results of [25] is to reduce
the iteration hypothesis to the Weak Unique Branch Iteration Hypothesis.

Theorem 6.35 (Weak Unique Branch Hypothesis). Assume that for each
m < �, there is a proper class of m-extendible cardinals. Then there exists
a good partial extender sequence E = 〈Eα : α ∈ dom(E)〉 such that the
following hold.

(1) J [E] is weakly backgrounded and L[E] is weakly Σ2-definable.
(2) J [E] satisfies comparison.
(3) For each � and for each m < �, there exists α ∈ dom(E) such that
(a) α > �,
(b) Eα is a J [E]-extender which witnesses that κ is m-extendible in
J [E] where κ = κEα .

(4) E satisfies the weak initial segment condition at all α ∈ dom(E).
6.5. Weak extender models and comparison. The definition of compari-
son, Definition 5.17, can naturally be generalized to arbitrary inner models.
There are many possible versions and a natural rather weak version is as
follows where the notion of close embedding is as given in Definition 5.29
but applied to all elementary embeddings, j :M → N , whereM andN are
transitive models of ZFC.

Definition 6.36. Suppose that N is a weak extender model, for � is
supercompact and that

N � “V = HOD.”
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Then N satisfies weak comparison if for all X,Y ≺Σ2 N the following hold
where NX is the transitive collapse of X and NY is the transitive collapse
of Y .
Suppose that NX and NY are finitely generated models of ZFC,
NX �= NY , and

NX ∩ R = NY ∩ R.

Then there exist a transitive set N∗ and elementary embeddings


X : NX → N∗

and

Y : NY → N∗

such that 
X is close to NX and 
Y is close to NY .

Remark 6.37. The elementary embeddings witnessing weak compari-
son are not required to have any special form. Thus suppose there is an
elementary embedding


 : NX → NY
such that 
 is close toNX and thatN∗ is the ultrapower ofNY by a countably
complete nonprincipal ultrafilter of N . Then there trivially exist elementary
embeddings


X : NX → N∗

and

Y : NY → N∗

such that 
X is close to NX and 
Y is close to NY .
Thus one can require that the elementary embeddings witnessing weak
comparison each be nontrivial.

The conclusion of weak comparison is downward absolute to N and
moreover the definition of weak comparison can be applied with N = V
provided there is a supercompact cardinal in V and that V = HOD.
Thus the following is a natural test question for the existence of a gener-
alization of L at the level of supercompact cardinals based on anything like
the current methodology for the construction of such inner models.
Question 6.38. Suppose that there is a supercompact cardinal and that
V = HOD. Can weak comparison hold?
The results we have discussed arguably show that for the construction
of fine structural extender models which are weakly backgrounded, going
beyond the level of �-extendible cardinals requires the following:
(1) Allowing the weak initial segment condition to fail.
(2) Allowing levels which are not even �-weakly amenable.
(3) Altering how comparison is proved if one can provably (from some
large cardinal hypothesis) reach the level a weak extender model for
supercompactness.

Therefore we cannot just use good partial extender sequences to generate
thesemodels with anything remotely like the currentmethodology. Anatural
alternative is to augment extender models with their iteration strategies.
These are strategic-extender models.
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§7. Epilogue. The emerging picture based on the results we have surveyed
in the previous sections is that in generalizing inner models to level of weak
extender models for supercompactness, one must not only have failures of
the weak initial segment condition but moreover that the hierarchy cannot
consist of models constructed from just a sequence of partial extenders.
Theonly alternative at present is an innermodel theory basedona strategic
premice—this is a hierarchy of structures constructed from both a partial
extender sequence and the iteration strategy for the initial segments of the
structure—for backgrounded structures this would be the iteration strategy
inherited from V assuming (some version of) the Weak Unique Branch
Hypothesis.
Of course if one must pass to the strategic hierarchy then the strategic-
extender structures can no longer be layered and so a fundamentally new
approach to the strategic-extender hierarchy is required compared to the
current approach, [15]. This is all the subject of [25].

Remark 7.1. From the broader perspective, here is the picture which is
emerging.
(1) At the lowest levels, reaching past measurable cardinals, the fine-
structure models can be simply defined (at reasonable closure points)
and there is no distinction between the extender and strategic-extender
hierarchies.

(2) Ascending to levels below that of oneWoodin cardinal there is still no
distinction (again at reasonable closure points) between the extender
and strategic-extender hierarchies.

(3) Passing one Woodin cardinal and up to the finite levels of super-
compactness, the extender and strategic-extender hierarchies strongly
diverge but both exist.

(4) Reaching the infinite levels of supercompactness requires a complete
failure of amenability andmoreover at some point past the finite levels
of supercompact, the extender hierarchy fails and one is left with just
the strategic-extender hierarchy.

The following summarizes, in more detail and within the context of the
obstructions identified in the previous sections, the approach of [25] and the
key issue is what happens with the iterability problem.
The coding obstruction is handled by ensuring that at all extender-active
stages, the projectum is at most the image of the critical point. This strategy
has already been used in unpublished work of Steel and Neeman-Steel. This
is discussed at length in [24].
This approach also facilitates the comparison proof and so there are a
number of reasons to take this path.
The amenability obstruction is handled because in meeting the coding
obstruction one must allow the weak initial segment condition to fail,
and so one is forced to allow structures which are not even �-weakly
amenable at their extender-active stages. These structures arise naturally
in the backgrounded construction and previous approaches would attempt
to circumvent them.
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The comparison obstruction is handled because one compares (in the
general case), suitably iterable structures against backgrounded structures
restricting to the situation where the background structure does not move.
This is forced by passing into the hierarchy of strategic-extender structures.
Steel has independently realized that this methodology is the key to extend-
ing the fine-structure theory of nonstrategic-extendermodels to the hierarchy
of strategic-extender models, and he has developed the machinery for this.
Finally one is forced into the strategic-extender hierarchy in order to
connect with AD+ for the proof of iterability (which is an induction). The
proof of iterability is only possible by connecting with the general theory
of AD+-models and that connection does not exist in the nonstrategic case.
This connection is through theHOD’s as computed within the AD+-models.
These models are already known (in many cases) to be strategic-extender
models and known under fairly general conditions to never be nonstrategic-
extender (or pure extender) models.
The fundamental reason for the necessity of this methodology is the fol-
lowing. If one assumes iterability, for example the Weak Unique Branch
Hypothesis, and that there is a huge cardinal then there is nothing which
prevents the construction of the much simpler nonstrategic-extender models
up to the level where one violates the comparison obstruction, Theorem5.35.
Therefore the Weak Unique Branch Hypothesis must be false and the
construction is vacuous. Further in this case, the only credible possibility
which remains is that iterability is proved by induction and not on the basis
of some general iteration hypothesis for V such as the WeakUnique Branch
Hypothesis.
Verifying this is in fact what happens is the main task ahead [25]. In par-
ticular, it is necessary to verify that there are no further hidden obstructions
and that can only be done by carefully working through all the details.
As conjectured in [20], one can formulate the axiom, V = Ultimate-L,
based on the strategic-extender models, without referring to the detailed
fine-structure theory of these models, or even using the definition of the
structures yielding the levels of the models.
The main point here is that in the context of a proper class of Woodin
cardinals, there are naturally defined approximations to Ultimate-L and
the collection is rich enough to make a definiton of the axiom, V =
Ultimate-L, possible without specifying the detailed level-by-level definition
of Ultimate-L.
The approximations form a hierarchy and it has been verified that for an
initial segment of the hierarchy, the approximations are strategic-extender
models. The conjecture of course is that all the approximations are strategic-
extender models and there is quite a bit of evidence for this conjecture.
However this is not the key issue.
The key issue iswhether the axiomV = Ultimate-L formulated in terms of
these approximationsmust necessarily hold in someweak extendermodel for
supercompactness assuming that there is an extendible cardinal. Presumably
any proof of this must yield as a corollary that these approximations are all
strategic-extender models.
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Before giving the requisite preliminary definitions, we note that the situa-
tion is analogous to being able to formulate the axiom, V = L, without
specifying the definition of L. This is easily done as illustrated by the
following lemma.
Lemma 7.2. The following are equivalent.
(1) V = L.
(2) For each Σ2-sentence φ, if V � φ then there exists a countable ordinal
α such that

N � φ,
where N = ∩

{
M |M � ZFC\Powerset and OrdM = α

}
.

We recall the definition of the universally Baire sets, [1].

Definition 7.3 (Feng–Magidor–Woodin). A set A ⊆ R is universally
Baire if for all topological spaces Ω and for all continuous functions 
 :
Ω→ R, the preimage of A by 
 has the property of Baire in the space Ω.

If there is a proper class of Woodin cardinals then the collection of the
universally Baire sets has very strong closure properties. Large cardinal
hypotheses are necessary for this since for example, if V = L then every
set A ⊂ R is the image of a universally Baire set by a continuous function,
f : R → R.
Theorem 7.4. Suppose that there is a proper class of Woodin cardinals and
that A ⊆ R is universally Baire. Then every set

B ∈ P(R) ∩ L(A,R)
is universally Baire.
Theorem 7.4 combined with the seminal Martin–Steel Theorem [10],
which shows that ifA ⊂ R is universallyBaire and there is aWoodin cardinal
with a measurable cardinal above, then A is determined, one obtains the fol-
lowing theorem which is central to analyzing the structure of the universally
Baire sets.
The axiom, AD+, is a technical variation of the axiom, AD, which asserts
that all sets A ⊂ R are determined. While it remains an interesting open
question whether AD+ and AD are equivalent (over ZF + DCR), the
AD-models of interest are all AD+-models.
Theorem 7.5. Suppose that there is a proper class of Woodin cardinals and
that A ⊆ R is universally Baire. Then

L(A,R) � AD+.
Definition 7.6. Suppose that A ⊆ R is universally Baire. Then ΘL(A,R) is
the supremum of the ordinals α such that there is a surjection, 
 : R → α,
such that 
 ∈ L(A,R).
IfA ⊂ R is universally Baire and there is a proper class ofWoodin cardinal
then ΘL(A,R) is a measure of the complexity of A.
The connection with inner models for large cardinals begins with the
following theorem.

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2016.34


96 W. HUGHWOODIN

Theorem 7.7. Suppose that there is a proper class of Woodin cardinals and
that A is universally Baire. Then ΘL(A,R) is a Woodin cardinal in HODL(A,R).
For the formulation of V = Ultimate-L we give and the analysis we shall
do, it is convenient to use the following notation from the theory of AD+.
The definition of the Solovay Sequence originates in [17].

Definition 7.8 (ZF + AD+). (1) Θ denotes the supremum of the set
of α ∈ Ord such that there is a surjection 
 : R → α.

(2) (SolovaySequence) 〈Θα : α ≤ Ω〉 is the sequence definedby induction
on α as follows.
a) Θ0 is the supremum of the set of � ∈ Ord such that there is a
surjection 
 : R → � such that 
 is OD.

b) Θα+1 the supremum of the set of � ∈ Ord such that there is a
surjection 
 : P(Θα)→ � such that 
 is OD.

c) Θα = sup
{
Θ
 | 
 < α

}
if α is a nonzero limit ordinal.

d) Θ = ΘΩ.

Remark 7.9. Assume AD+ and that V = L(P(R)). Let
〈Θα : α ≤ Ω〉

be the Solovay sequence. Suppose that α ≤ Ω and that either α = 0 or α is
not a limit ordinal. Then the following hold.
(1) Θα is a Woodin cardinal in HOD.
(2) Let � be the largest Suslin cardinal such that � < Θα . Then � is a
strong cardinal in HOD ∩ VΘα .

Thus if V = L(A,R) and the largest Suslin cardinal is on the Solovay
sequence then it must be both a limit of Woodin cardinals and a strong
cardinal in HODL(A,R) ∩ VΘ.
We fix some notation to simplify various statements.

Definition 7.10. Assume there is a proper class of Woodin cardinals.
(1) Γ∞ is the set of all universally Baire sets.
(2) Γ � Γ∞ if the following hold.
a) Γ � Γ∞ and Γ = P(R) ∩ L(Γ,R),
b) L(Γ,R) � ¬ADR.

We note the following lemma from the basic theory ofAD+.With notation
as in this lemma, ΘL(Γ,R) is aWoodin cardinal in HODL(Γ,R) and � is a strong
cardinal in

HODL(Γ,R)|ΘL(Γ,R),
where � is the largest Suslin cardinal of L(Γ,R).
Lemma 7.11. Suppose there is a proper class of Woodin cardinals and that
Γ � Γ∞. Then there is a largest Suslin cardinal in L(Γ,R).
The following theorems are from [23]. These theorems connect aspects
of the large cardinal structure of the HOD of an AD+ which satisfies V =
L(P(R)), with the structure of the Suslin cardinals in that determinacy
model.
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Theorem 7.12. Suppose there is a proper class of Woodin cardinals,
Γ � Γ∞, and that

Γ = P(R) ∩ L(Γ,R).
Then Γ � Γ∞ if and only if ΘL(Γ,R) is a Woodin cardinal inHODL(Γ,R).
Theorem 7.13. Suppose there is a proper class ofWoodin cardinals and that
Γ � Γ∞. Let � be the largest Suslin cardinal of L(Γ,R). Then the following
are equivalent.

(1) � is a limit of Woodin cardinals in HODL(Γ,R).
(2) � < ΩL(Γ,R) and � = (Θ�)L(Γ,R).

Assume there are infinitely many Woodin cardinals with a measurable
cardinal above them all (for example assume there is a proper class of
Woodin cardinals). Then for many universally Baire sets A ⊂ R, the inner
model,

HODL(A,R),

has been verified to be a strategic-extender model. The natural conjecture is
that (assuming there are infinitely manyWoodin cardinalswith ameasurable
cardinal above) this must be true for all universally Baire sets.
This suggests how to formulate the axiom V = Ultimate-L and the fol-
lowing is the formulation of the axiom V = Ultimate-L implicitly defined
in [20], except that the large cardinal hypothesis is altered.

Definition 7.14 (V = Ultimate-L). (1) There is a proper class of
Woodin cardinals.

(2) For each Σ2-sentence φ, if φ holds in V then there exists a universally
Baire set A ⊆ R such that

HODL(A,R) � φ.
The following version of the axiom is given in [22].

Axiom 1. (1) There is a proper class of Woodin cardinals.
(2) There is a proper class of strong cardinals.
(3) For each Σ4-sentence φ, if φ holds inV then there exists Γ � Γ∞ such
that

HODL(Γ,R) ∩ VΘ � φ,
where Θ = ΘL(Γ,R).

This version of the axiom implies the following intermediate version
which therefore became an elegant candidate for the formulation of
V = Ultimate-L.

Axiom 2. (1) There is a strong cardinal which is a limit of Woodin
cardinals.

(2) For each Σ3-sentence φ, if φ holds in V then there exists a universally
Baire set A ⊆ R such that

HODL(A,R) ∩ VΘ � φ,
where Θ = ΘL(A,R).
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The main motivation behind these variations was the intuition that if
V = Ultimate-L then the models,

HODL(Γ,R) ∩ VΘ,
where Θ = ΘL(Γ,R) and Γ � Γ∞, should resemble V if Γ is sufficiently
closed. We shall see below however that this is very likely impossible.
A more pragmatic motivation for considering these kinds of variations is
simply that with more reflection and a stronger large cardinal hypothesis,
the consequences, such as those indicated in Theorem 7.26 below, are easier
to obtain.
On the other hand, one clearly wants a version which can hold in a weak
extender model for supercompactness.
For Σ2-sentences there is no difference in formulating V = Ultimate-L in
terms of reflecting to HODL(A,R) versus reflecting to

HODL(A,R) ∩ VΘ,
where Θ = ΘL(A,R).
Lemma 7.15. Suppose that there is a proper class of Woodin cardinals.
Then the following are equivalent.
(1) For each Σ2-sentence φ, if φ holds in V then there exists a universally
Baire set A ⊆ R such that

HODL(A,R) � φ.
(2) For each Σ2-sentence φ, if φ holds in V then there exists a universally
Baire set A ⊆ R such that

HODL(A,R) ∩ VΘ � φ,
where Θ = ΘL(A,R).

Proof. Let �A be the largest Suslin cardinal of L(A,R). By the general
theory of AD+, there exists a set T ⊂ �A such that in L(A,R) every set is
OD with parameters from {T} ∪ R.
This implies by Vopenka’s Theorem adapted to L(A,R), that there exists
a set X ⊂ ΘL(A,R) such that

HODL(A,R) = L[X ].

Let T0 be the theory, ZFC\Replacement together with Σ1-Replacement
and the sentence which asserts that for all Z ⊂ Ord, Z# exists. Then for all
α ∈ Ord, if

HODL(A,R) ∩ Vα � T0,
necessarily α ≤ ΘL(A,R). The lemma follows easily from this. �
Lemma 7.15 is false for Π2-sentences and this claim follows easily from the
proof ofLemma7.15 since that proof shows that if for every setY ⊂ Ord,Y #
exists, then there is a Π2-sentence which holds in V and in HOD

L(A,R) ∩VΘ
where Θ = ΘL(A,R), but which cannot hold in HODL(A,R).
This suggests the kinds of variations in the formulation ofV = Ultimate-L
indicated above and the following lemmamotivates the second formulation,
given above as Axiom 2, since it shows that Axiom 1 (even weakened to just
Σ3-sentences) implies Axiom 2.
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Lemma 7.16. Suppose there is a proper class ofWoodin cardinals,Γ � Γ∞,
and that for all A ∈ Γ, (A,R)# ∈ L(Γ,R). Then there exists A ∈ Γ such that
for all Σ3-sentences φ, if

HODL(Γ,R) ∩ VΘΓ � φ
then

HODL(A,R) ∩ VΘA � φ,
where ΘA = ΘL(A,R) and ΘΓ = ΘL(Γ,R).
Proof. Let � be the largest Suslin cardinal ofL(Γ,R) and fix � < �0 < ΘΓ
such that

HODL(Γ,R) ∩ V�0 ≺ HODL(Γ,R) ∩ VΘΓ .
Note that �0 exists since ΘΓ is strongly inaccessible in HOD

L(Γ,R). LetA ∈ Γ
be such that

max(�, �0) < ΘA,

where ΘA = ΘL(A,R). By the Moschovakis Coding Lemma, [13], � is the
largest Suslin cardinal ofL(A,R) and so by the general theory of AD+ (and
in particular by the proof that � is a strong cardinal in HODL(Γ,R) ∩VΘΓ), it
follows that

HODL(A,R) ∩ VΘA = HODL(Γ,R) ∩ VΘA.
This implies that for all Σ3-sentences φ, if

HODL(Γ,R) ∩ VΘΓ � φ
then

HODL(A,R) ∩ VΘA � φ
and so A witnesses the lemma. �
The following lemma also holds for the variation of V = Ultimate-L
given above as Axiom 2, and the proof is the same.
Lemma 7.17. Suppose there is a proper class ofWoodin cardinals,Γ � Γ∞,
and that for all A ∈ Γ, (A,R)# ∈ L(Γ,R). Suppose that
HODL(Γ,R) ∩ VΘΓ � “There is a proper class of Woodin cardinals.”

Then
HODL(Γ,R) ∩ VΘΓ � “V = Ultimate-L,”

where ΘΓ = ΘL(Γ,R).
Proof. Fix a Σ2-sentence φ such that

HODL(Γ,R) ∩ VΘΓ � φ.
By Lemma 7.16, there exists A ∈ Γ such that

HODL(A,R) ∩ VΘA � φ.
Thus by the Δ21-Basis Theorem, there exists in L(Γ,R) a Δ

2
1-set Z which

codes (X,R)# where X ⊆ R is such that

HODL(X,R) ∩ VΘX � φ
and ΘX = ΘL(X,R). Since Σ21 has the scale property in L(Γ,R),
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(V�+1 ∩HODL(Γ,R), Z ∩HODL(Γ,R)) ≺ (V�+1, Z)

and again by the scale property for Σ21,Z ∩HODL(Γ,R) is universally Baire in

HODL(Γ,R) ∩ VΘΓ .

Therefore X ∩HODL(Γ,R) witnesses the necessary instance of reflection. �

Remark 7.18. Suppose there is a proper class of Woodin cardinals which
are limits of Woodin cardinals. Then by the results of Sargsyan, there exists
Γ � Γ∞, such that for all A ∈ Γ, (A,R)# ∈ L(Γ,R) and such that

�Γ = (Θ�Γ)
L(Γ,R),

where �Γ is the largest Suslin cardinal of L(Γ,R).

The reason for not simply declaring Axiom 2 as the axiom V =
Ultimate-L is a recent result which shows (assuming what seem to be
extremely plausible assumptions) that if L(A,R) � AD+ then

HODL(A,R) ∩ VΘ � “There are no supercompact cardinals,”
where Θ = ΘL(A,R). In fact one obtains that no cardinal κ < ΘL(A,R) of
HODL(A,R) is �-supercompact where � is the leastL(A,R)-cardinal above κ.
The “plausible assumptions” concern the representation of the rank initial
segments of HODL(A,R) below the largest Suslin cardinal of L(A,R) as the
direct limit of structures in an appropriate hierarchy of strategic-extender
structures.
The restriction to rank initial segments of HODL(A,R) below the largest
Suslin cardinal of L(A,R) suffices here since

(1) If U ∈ HODL(A,R) is a countably complete uniform ultrafilter in
HODL(A,R) on some ordinal 	, then necessarily 	 < ΘL(A,R).

(2) If Θ = ΘL(A,R) then
(
L�(A,R),HOD

L(A,R)∩L�(R)
)
≺Σ1

(
LΘ(A,R),HOD

L(A,R)∩LΘ(R)
)
,

where � is the largest Suslin cardinal of L(A,R). This is a corollary of
the proof that � is a strong cardinal in HODL(A,R)|Θ.

Such a representation would yield the following conjecture which is all
one needs. Define that a set X ⊂ P(Y ) generates a countably complete filter
if ∩� �= ∅ for each countable set � ⊂ X .

Definition 7.19 (HOD-Ultrafilter Conjecture). Suppose that A ⊂ R,
L(A,R) � AD+, U ∈ HODL(A,R), and

HODL(A,R) � “U is a countably complete ultrafilter.”
Then U generates a countably complete filter.

TheHOD-Ultrafilter Conjecture implies that�1 must be the least measur-
able cardinal in HODL(A,R). This is already known, and that analysis yields
the following theorem.
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Theorem 7.20. Suppose that A ⊂ R and L(A,R) � AD+. Then �V1 is the
least measurable cardinal inHODL(A,R) and every ultrafilter U ∈ HODL(A,R)
on �V1 which is countably complete in HOD

L(A,R) generates a countably
complete filter.
The proof of Theorem 7.20 highlights a subtle aspect of the HOD-
Ultrafilter Conjecture, even if one restricts to just ultrafilters on �V1 . There
are countable sets

� ⊂ P(�1) ∩HODL(A,R),
which cannot be covered by countable sets � ∈ HOD. This is because the
cardinal successor of �V1 in HOD

L(A,R) has countable cofinality.
The following theorem from [23] provides some evidence for the HOD-
Ultrafilter Conjecture. The strength of this evidence is arguable since B can
be chosen so that ΘL(A,R) is the onlyWoodin cardinal of HODL(A,R)B .
Theorem 7.21. Suppose that A ⊂ R and L(A,R) � AD+. Then there
exists B ⊂ R such that B ∈ L(A,R) and such that for all U ∈ HODL(A,R)B

for which

HODL(A,R)B � “U is a countably complete ultrafilter,”
the filter generated by U is countably complete.
Assuming V � AD, if N is an inner model of ZFC then Θ is always a
limit of strongly inaccessible cardinals of N which have cofinality � in V .
This shows that if

V � AD+ + “V = L(P(R))”
and if the HOD-Ultrafilter Conjecture holds in V then there can be no
supercompact cardinals in HOD ∩ VΘ. The basic argument is given in the
proof of Theorem 7.24.
A much tighter connection between the HOD-Ultrafilter Conjecture and
the degree to which supercompactness can occur in the model,

HODL(A,R) ∩ VΘ,
where Θ = ΘL(A,R), follows from the following theorem from [23].
Theorem 7.22. Suppose that L(A,R) � AD+, κ < ΘL(A,R) is a cardinal of
HODL(A,R), and

� = (|κ|+)L(A,R).
Then there is a countable set � ⊂ � such that � �⊂ � for any set � ∈ HODL(A,R)
such that ordertype(�) < κ.

Remark 7.23. The proof of Theorem 7.22 actually shows that if N ⊂
L(A,R) is an inner model of ZFC (containing the ordinals) and if � < � <
ΘL(A,R) is a cardinal of L(A,R), then � is a limit of strongly inaccessible
cardinals of N which have countable cofinality in L(A,R) (and hence have
countable cofinality in V ).

Theorem 7.22 combined with the HOD-Ultrafilter Conjecture yields the
following theorem. For this theorem, the distinction between HODL(A,R)

and HODL(A,R) ∩ VΘ, where Θ = ΘL(A,R), is not relevant.
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An immediate corollary of Theorem 7.24 is that assuming the HOD-
Ultrafilter Conjecture holds for L(A,R) then

HODL(A,R) ∩ VΘ � “There are no supercompact cardinals,”
where Θ = ΘL(A,R).

Theorem 7.24. Suppose A ⊂ R, L(A,R) � AD+, and that the HOD-
Ultrafilter Conjecture holds forL(A,R). Supposeκ is a cardinal ofHODL(A,R)

and � = (|κ|+)L(A,R). Then

HODL(A,R) � “κ is not �-supercompact.”

Proof. Assume not and let U ∈ HODL(A,R) be such that
HODL(A,R) ∩ VΘ � “U is a κ-complete fine ultrafilter on Pκ(�).”

Since the HOD-Ultrafilter Conjecture holds for L(A,R), U generates a
countably complete filter. Therefore for all countable � ⊂ � there must exist

� ∈ HODL(A,R)

such that � ⊂ � and such that ordertype(�) < κ. This contradicts
Theorem 7.22. �
Thus the models,

HODL(Γ,R) ∩ VΘΓ ,
where ΘΓ = ΘL(Γ,R) and Γ � Γ∞, very likely cannot resemble V in context
of large cardinals no matter how Γ is chosen. Any resemblance is limited to
the level of Σ2-sentences.
By Theorem 7.12, allowing Wadge initial segments Γ ⊂ Γ∞ for which

L(Γ,R) � ADR

(equivalently, which do not satisfy Γ � Γ∞) cannot help which was the
original point for focusing on Γ � Γ∞. Here again, plausible assumptions
give a much stronger result, specifically that there can be no strong cardinal
in HODL(Γ,R)|ΘΓ.
The next theorem is from [23] and highlights a very useful consequence
of the axiom V = Ultimate-L. This a typical consequence of the axiom
V = Ultimate-L which is easier to obtain if one assumes a version with
stronger large cardinal assumptions and with more reflection as in [22].

Theorem 7.25 (V = Ultimate-L). For each cardinal κ, if V [G ] is a set-
generic extension of V then there exists an elementary embedding


 : (H (κ+))V → N
such that (
,N ) ∈ V and such that N ∈ HODV [G ].
The following theorem from [23] summarizes some of the key conse-
quences of the axiom V = Ultimate-L where the Generic-Multiverse is the
generic-multiverse generated by V , [21].
These are proved in [22], assuming Theorems 7.32 and 7.25, but only for
the somewhat stronger formulation ofV = Ultimate-L which is given there.
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In light of the necessity of the revision of the formulation of V =
Ultimate-L, those theorems of [22] are not really relevant now.

Theorem 7.26 (V = Ultimate-L). (1) CH holds.
(2) V = HOD.
(3) V is the minimum universe of the Generic-Multiverse.
The conclusions (2)–(3) of Theorem 7.26 actually follow from
Theorem 7.25 by fairly general arguments and we briefly sketch how. These
arguments are from [22].
We first prove the following corollary of Theorem 7.25 which is a very
strong version Theorem 7.26(2). We then use Theorem 7.27 to prove
Theorem 7.26(3), which we isolate as Theorem 7.28 below.

Theorem 7.27 (V = Ultimate-L). SupposeV [G ] is a set generic extension
of V . Then

V ⊆ (HOD)V [G ].
Proof. Fix a partial order P ∈ V such that G is V -generic for P and
let � = |P|V . We prove that for all regular cardinals κ > �, (P(κ))V ⊂
(HOD)V [G ] and this will show that V ⊆ (HOD)V [G ].
Fix a regular cardinal κ > � and let 〈Sα : α < κ〉 ∈ V be a partition of
the set

S =
{
α < κ | (cof(α))V = �

}

into stationary sets such that there is a closed unbounded set C0 ⊂ κ such
that C0 ∈ V and such that for each � ∈ C0 ∩ S,

� ∈ ∪{S� | � < �} .
Note that if C ⊆ κ is a closed cofinal set with C ∈ V [G ] then there must
exist a closed cofinal set D ⊆ C such that D ∈ V . Therefore each Sα is a
stationary set in V [G ].
By Theorem 7.25 there exists an elementary embedding


 :
(
H (κ+)

)V → N

such that N ∈ (HOD)V [G ] and such that (
,N ) ∈ V . Let
〈T
 : 
 < 
(κ)〉 = 
(〈Sα : α < κ〉).

Working in V [G ], define

Z =
{

 < 
(κ) |T
 ∩ C �= ∅ for all closed cofinal sets C ⊂ sup(
[κ])

}
.

ThusZ ∈ (HOD)V [G ] since 〈T
 : 
 < 
(κ)〉 ∈ (HOD)V [G ]. Note that for all
� ∈ S, 
(�) = sup(
[�]). Therefore since each set Sα is a stationary subset
of κ in V [G ],


[κ] ⊆ Z
and so since for each � ∈ C0 ∩ S,

� ∈ ∪{S� | � < �} ,
necessarily,

Z = 
[κ].
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For each X ∈ N , let X ∗ = {α < κ | 
(α) ∈ X}. Since N ∈ (HOD)V [G ] and
since 
[κ] ∈ (HOD)V [G ],

{X ∗ |X ∈ N} ⊂ (HOD)V [G ].

Finally
(
P(κ)

)V ⊂ dom(
) and so
(P(κ))V = {X ∗ |X ∈ N} ,

which implies that (P(κ))V ⊂ (HOD)V [G ]. �
Theorem 7.28 (V = Ultimate-L). V is the minimum universe of the
Generic-Multiverse.
Proof. Suppose thatV [G ] = V0[G0],G ⊂ P isV -generic for some partial
order P ∈ V , and G0 ⊂ P0 is V0-generic for some partial order P0 ∈ V0. We
must prove that V ⊆ V0.
Fix a cardinal � ∈ V such that |P|V < � and such that |P0|V0 < �. The key
points are that in V ,

RO(P× Coll(�, �)) ∼= RO(Coll(�, �)),
and that in V0,

RO(P0 × Coll(�, �)) ∼= RO(Coll(�, �)).
Suppose g ⊂ Coll(�, �) is V [G ]-generic. Therefore by the homogeneity of
Coll(�, �),

(HOD)V [g] = (HOD)V [G ][g] = (HOD)V0[G0][g] = (HOD)V0[g] ⊆ V0.
By Theorem 7.27, V ⊆ (HOD)V [g] and so V ⊆ (HOD)V0[g] ⊂ V0. �
Remark 7.29. Usuba [19] has proved a remarkable theorem. If sufficient
large cardinals exist inV then theGeneric-Multiverse has a uniqueminimum
element.
Thus arguably any candidate for the axiom V = Ultimate-L must imply
that V is the minimum universe of the Generic-Multiverse.

The problem of whether V = Ultimate-L implies that the Ω Conjecture
is more subtle and this is because of the restriction to Σ2-sentences in the
formulation of the axiom. The stronger versions given as Axioms 1 and 2
each imply the Ω Conjecture.
What one seems to need in order to prove the Ω Conjecture from V =
Ultimate-L is the following conjecturewhich also follows from thepreviously
discussed “plausible assumptions.”

Definition 7.30 (Θ0 Conjecture). Suppose L(A,R) � AD+. Then
(Θ0)L(A,R) is the least Woodin cardinal of HOD

L(A,R).

The following theorem from [23] provides strong evidence for the Θ0
Conjecture. Note that Θ0 is same allowing x has a parameter for any x ∈ R;
more precisely, if 
 : R → α is a surjection which is ODx for some x ∈ R,
then α < Θ0.
Theorem 7.31. Suppose that A ⊂ R and that L(A,R) � AD+. Then for a
Turing cone of x, (Θ0)L(A,R) is the least Woodin cardinal of HOD

L(A,R)
x .
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Theorem 7.32 (V = Ultimate-L). Assume the Θ0 Conjecture and let � be
the least Woodin cardinal. Then there is a partial order P ∈ V�+1 such that if
G ⊂ P is V -generic then in V [G ] every Δ21 subset of R is universally Baire.
Proof. We just sketch the proof which requires basic elements of the
theory of AD+.
It suffices to prove that if κ > � and |Vκ| = κ then there is a partial order

P ∈ V�+1 such that ifG ⊂ P is V -generic then in V [G ] every Δ21 subset of R
is (<κ)-universally Baire.
This is expressible by a Π2-sentence, �. Assume toward a contradiction
that (¬�) holds. Then sinceV = Ultimate-L holds, there exists a universally
Baire set A ⊂ R such that the following hold where ΘA = ΘL(A,R).

(1.1) HODL(A,R) ∩ VΘA � (¬�).
(1.2) The Θ0 Conjecture holds for L(A,R).
Since Σ21 has the scale property in L(A,R), every set Z ⊂ R which is Σ21-
definable in L(A,R), is the projection of a tree T such that T ∈ HODL(A,R).
Let �A be the largest Suslin cardinal of L(A,R). Thus �A is (<ΘA)-strong
in HODL(A,R) and therefore (Θ0)L(A,R) < �A since (Θ0)L(A,R) is the least
Woodin cardinal in HODL(A,R).
LetG ⊂ Coll(�1,R) beL(A,R)-generic. A key point is that by Vopenka’s
Theorem and the definition of (Θ0)L(A,R), HOD

L(A,R)[G ] is a generic
extension of HODL(A,R) for a partial order of size at most (Θ0)L(A,R) in
HODL(A,R).
For each � < �A there is a unique normal fine countably complete ultra-
filter,U�, inL(A,R) onP�1(�). Thus every set of reals, which is Δ21-definable
in L(A,R) is (<�A)-universally Baire in HOD

L(A,R)[G ], appealing to the
closure of

HODL(A,R) ∩ P(Ord)
under the ultrapowers maps 
� as computed inL(A,R) using the ultrafilters
U�. We view 
� as acting on all sets of ordinals where the ultrapowers are
computed using all functions in L(A,R).
We have that �A is (<ΘA)-strong in HOD

L(A,R) and this implies that �A is
(<ΘA)-strong inHOD

L(A,R)[G ]. Thus every setZ ⊂ Rwhich is Δ21-definable
in L(A,R), is universally Baire in

HODL(A,R)[G ] ∩ VΘA.
But this includes all the sets Z ⊂ R which are Δ21-definable in

HODL(A,R) ∩ VΘA
and this proves that

HODL(A,R) ∩ VΘA � �,
which is a contradiction. �
The proof of Theorem 7.32 adapts to prove the following more striking
version of that theorem (assuming there is a strong cardinal). This requires
the following variation of the Θ0 Conjecture which is really a strong version
of Theorem 7.13.
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Definition 7.33 (Θα Conjecture). Suppose that A ⊂ R,

L(A,R) � AD+,
and 	 < ΘL(A,R). Then the following are equivalent.

(1) 	 is a limit of Woodin cardinals in HODL(A,R) and no cardinal κ is
(<	)-strong in HODL(A,R).

(2) 	 = (Θα)L(A,R) for some limit ordinal α > 0.

Remark 7.34. (1) The Θ0 Conjecture characterizes Θ0 in HOD,
whereas the Θα Conjecture characterizes in HOD, all the Θα where
α > 0 and α is a limit ordinal.

(2) By [23], assuming AD+ and that V = L(P(R)), if α > 0 is a limit
ordinal thenΘα cannot be a limit ofHOD-cardinalswhich are (<Θα)-
strong in HOD. Thus Θα is a Woodin cardinal in HOD if and only if
α = 0 or α is not a limit ordinal. This implies Theorem 7.12.

We note the following theorem, [23].

Theorem 7.35 (Ω Conjecture). Suppose there is a proper class of Woodin
cardinals. Then there is a partial order P such that if G ⊂ P is V -generic then
in V [G ],

V (RV [G ]) � AD+.
The conclusion of Theorem 7.36 (augmented with the Θ0 Conjecture) is
simply a much stronger version of the conclusion of Theorem 7.35, showing
that one can require P to be homogeneous and in addition both that �0 is
Θ = Θ0 in V (RV [G ]) and that V�0 is exactly HOD|Θ0 as computed in the
L(P(R)) of V (RV [G ]), where �0 is the least Woodin cardinal of V .
Theorem 7.36 (V = Ultimate-L). Assume theΘα Conjecture and suppose
that there is a strong cardinal. Let � be the least strong cardinal. Then there is
a homogeneous partial order P ∈ V�+1 such that if G ⊂ P is V -generic then
in V [G ] the following hold where

ΓG = (Γ∞)V [G ]

and where RG = RV [G ].
(1) V (ΓG ,RG) � ADR + “Θ is regular” and ΓG = P(RG) ∩ V (ΓG ,RG).
(2) � = ΘL(ΓG ,RG ) and V� = HOD

L(ΓG ,RG ) ∩ V [G ]�.
The conclusion of Theorem 7.36 is actually equivalent toV = Ultimate-L
assuming that there is a strong cardinal and that the Θα Conjecture holds.
To obtain the ΩConjecture fromV = Ultimate-L and the Θ0 Conjecture,
we use the following lemmawhich is a special case ofLemma217 onpage 315
in [20].

Lemma 7.37. Suppose that there is a proper class of Woodin cardinals and
that for every setZ ⊂ R, ifZ is Δ21-definable thenZ is universally Baire. Then

HOD � “The Ω Conjecture.”
Theorem 7.38 (V = Ultimate-L). Assume the Θ0 Conjecture. Then the
Ω Conjecture holds.
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Proof. By Theorem 7.32, there is a partial order P such that if G ⊂ P

is V -generic then in V [G ] every Δ21 subset of R is universally Baire. By
Lemma 7.37,

(HOD)V [G ] � “The Ω Conjecture”
and by Theorem 7.27,

V ⊆ (HOD)V [G ].
Therefore (HOD)V [G ] must be a generic extension of V . Finally the Ω Con-
jecture is absolute between set-generic extensions and so the Ω Conjecture
holds in V . �
Finally, a very natural open question is the following where weak com-
parison is as defined in Definition 6.36. This question makes sense by
Theorem 7.26(2).
Question 7.39. Does V = Ultimate-L imply weak comparison?
We now very briefly consider the Ultimate-L Conjecture and we begin by
noting the following lemma. This lemma explains why in the formulation of
the Ultimate-L Conjecture it is reasonable to require N be a weak extender
model for the supercompactness of �, versus just requiring thatN be a weak
extender model for the supercompactness of some cardinal.
Lemma 7.40. Suppose that N is a weak extender model for the supercom-
pactness of κ, N is weakly Σ2-definable, and that � > κ is an extendible
cardinal. Then N is a weak extender model for the supercompactness of �.
Proof. Let � > � be such that V� ≺Σ4 V and let

j : V�+1 → Vj(�)+1
be an elementary embedding such that CRT(j) = � and j(�) > �. Thus,
(1.1) N ∩ V� = (N )V� .
(1.2) V� � “N is a weak extender model for κ is supercompact.”
(1.3) Vj(�) � “N is a weak extender model for κ is supercompact.”
(1.4) (N )Vj(�) ∩ V� = N ∩ V� where (N )Vj(�) is N as computed in Vj(�).

This well-defined by the elementarity of j.
Therefore by (the proof of) the Universality Theorem, Theorem 3.26, for
each � < 	 < �,

j|(V	 ∩N ) ∈ (N )Vj(�)
and so for each � < 	 < �, there exists a �-complete normal fine ultrafilter
U on P�(	) such that
(2.1) N ∩ P�(	) ∈ U ,
(2.2) U ∩N ∈ N .
This implies that N is a weak extender model, for � is supercompact. �
We end with the following conjecture which is the minor variation of the
version of the Ultimate-L Conjecture given in [24] obtained by dropping
one clause.4 Proving either conjecture would show in a decisive fashion the
transcendence of the strategic-extender hierarchy.

4Which asserts that there is an extender sequence Ẽ of length � in V whose restriction to
N both belongs to N and witnesses in N that � is a Woodin cardinal.
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The same applies to the weaker conjecture where one drops the require-
ment that N ⊆ HOD or the requirement that N be weakly Σ2-definable.
Here, for example, one could simply conjecture that if κ is strongly inacces-
sible and � is an extendible cardinal in Vκ then there exists N ∈ Vκ+1 such
that

N � “V = Ultimate-L”
and such that relative to Vκ, N is a weak extender model for the
supercompactness of �.

Conjecture 7.41. Suppose that � is an extendible cardinal. Then there
exists a weak extender model N for the supercompactness of � such that

(1) N is weakly Σ2-definable and N ⊂ HOD,
(2) N � “V = Ultimate-L.”
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