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Abstract. We give a fairly complete account which first shows that the solution to the
inner model problem for one supercompact cardinal will yield an ultimate version of L and
then shows that the various current approaches to inner model theory must be fundamentally
altered to provide that solution.

81. Introduction. The Inner Model Program began with Godel’s discov-
ery of L which in the modern view is the first inner model. Of course it
was Scott’s Theorem, that if I/ = L then there are no measurable cardinals,
which set the stage for the necessity of the Inner Model Program.

By the early 1970s, the problem to extend the Inner Model Program to
the level of supercompact cardinals had emerged as a key problem and the
expectation was that in solving this problem the way would be open to extend
the solution to much stronger large cardinals. The constructions of Kunen,
solving the inner model problem for measurable cardinals, were generalized
to solve the inner model problem at the level of Woodin cardinals in series
of results driven primarily by seminal constructions of Mitchell and Steel
and building on earlier work of Mitchell which had solved the inner model
problem for strong cardinals.!

The levels of Woodin cardinals represent key stages for the inner
model program because the internal definability of the wellordering of the
reals becomes progressively more complicated through the emergence of
determinacy consequences.

By the year 2000, the Inner Model Program had been unconditionally
extended by Neeman, [14]. to the level of Woodin cardinals which are limits
of strong cardinals and conditionally extended. [18], to the level of super-
strong cardinals. The latter constructions require not only large cardinal
hypotheses (an obvious necessity) but also iteration hypotheses which are
abstract combinatorial hypotheses for iterating countable elementary sub-
structures of rank initial segments of }'. These basic hypotheses were first
defined and analyzed by Martin and Steel.
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The next advance was the extension of the Inner Model Program to the
finite levels of supercompact cardinals, [24], again assuming the (same)
Iteration Hypothesis that the earlier constructions were conditioned on.

About the same time in a decadal sense, there was a rather unexpected dis-
covery. This was that if one could extend the Inner Model Program to the
level of one supercompact cardinal then subject to a very general condition on
the relationship of the supercompact cardinal of the inner model constructed
and supercompact cardinals in V', the inner model constructed must be an
ultimate version of L. In particular, the Scott Effect would no longer apply.

This changed the entire framework for the Inner Model Program; from
a program of the incremental understanding of large cardinals through the
constructions of generalizations of L with V" forever hopelessly out of reach
because of Scott’s Theorem and its descendents, into a program for perhaps
understanding V itself.

The point here is that if there is an ultimate version of L which is compat-
ible with all large cardinals and which must always exist in a version that is
very close to V', then perhaps there is some version of an axiom that V" is an
ultimate version of L which is arguably true.

In fact a candidate for exactly such an axiom has been isolated, this is the
axiom V' = Ultimate-L. implicit in [20] and formally defined in [24].

This axiom strongly couples the width of the universe of sets to its height
since in the context of the axiom V' = Ultimate-L, one cannot change the
width using Cohen’s method of forcing without then changing the height. In
particular, the axiom ) = Ultimate-L renders Cohen’s method of forcing
completely useless as a method for establishing independence from the
resulting conception of the universe sets.

Coincident with these developments was another unexpected theorem.
This is the HOD Dichotomy Theorem of [20] which is presented here in a
more elegant form as Theorem 3.39. This theorem is arguably just an abstract
generalization of Jensen’s covering lemma. For this one simply recasts the
covering lemma as the Jensen Dichotomy Theorem which shows that 7 must
either be very close to L or very far from L.

The HOD Dichotomy Theorem generalizes this to HOD, showing that
if there is an extendible cardinal then V' must be either very close to HOD
or very far from HOD. The existence of Ultimate-L would provide the
explanation showing that in fact, unlike the Jensen Dichotomy Theorem,
the HOD Dichotomy Theorem is not a dichotomy theorem since HOD must
be close to V' or equivalently that the “far” option is vacuous.

Of course HOD is not canonical in the way that L is since one can easily
alter HOD by forcing. But that is not really relevant. The HOD Dichotomy
Theorem, which is not a difficult theorem to prove, establishes an unexpected
and deep connection between V' and definability.

To illustrate, one curious corollary of the HOD Dichotomy Theorem is
that if 0 is an extendible cardinal then ¢ must be a measurable cardinal in
HOD. see Theorem 3.40. Without the hypothesis that J is an extendible car-
dinal, this conclusion need not hold evenifd is assumed to be a supercompact
cardinal.
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But maybe this is all just evidence that the inner model program cannot be
extended to supercompact cardinals and moreover that there is an anti-inner
model theorem.

Reinforcing this latter speculation are two points. First, the Jensen
Dichotomy Theorem is a true dichotomy theorem since the existence of
Silver’s 0%, which is implied by the existence of a measurable cardinal,
implies V' is very far from L. So perhaps the HOD Dichotomy Theorem
is also a true dichotomy theorem and we simply have not yet discovered
what plays the role of 0%.

Now if the HOD Dichotomy Theorem is not a dichotomy theorem
then one obtains a new generation of inconsistency results for the large
cardinal hierarchy in the setting where the Axiom of Choice fails. This
includes a mild strengthening of Reinhardt cardinals and it includes Berkeley
cardinals.

Further one also obtains, but now in the context of the Axiom of
Choice, that what seem like natural generalizations of axioms of definable
determinacy are also false if sufficient large cardinals are assumed to exist.

Thus, and this is the second point, one could argue that it is quite rea-
sonable to expect that there are axioms which play the role of 0% but in the
context of the HOD Dichotomy.

In Section 2 we give a more detailed overview of this presentation and
this brings me to a rather important underlying point. This point concerns
the status of the Ultimate-L Project which is the program to prove the
Ultimate-L Conjecture.

The Ultimate-L Conjecture, as defined in a slightly weaker form on
page 108 in comparison to the original version implicit in [20] and defined
in [24], is in essence three interrelated conjectures: first that there is no
anti-inner model theorem, second that the HOD Dichotomy Theorem is
not a genuine dichotomy theorem, and third that (assuming sufficient large
cardinals) Ultimate-L exists in close proximity to V.

The reference [25] is a manuscript in preparation with the goal of showing
that if x is a huge cardinal then the Ultimate-L Conjecture holds in V. in
a very slightly weakened form.?

The issue of course is that until the manuscript is in final form, it is just a
work in progress, no matter how confident one is of the eventual outcome.

Given the series of unexpected events to date on this subject, an abundance
of caution seems prudent here. The approach in [25] is discussed in a bit
more detail at the end of Section 2 and then again on page 93, in the context
of the obstructions identified in this account.

Why then write this account now, before these issues are resolved? At the
very least, something noteworthy has happened. The collective impact of
all the obstructions which are the focus of this account, is that there are
really very few mathematical options now for the form that any proof of
the Ultimate-L Conjecture must take. This was not the case before and with
hindsight that was a part of the whole problem.

2Where the condition of weak X,-definability is dropped.
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Thus even if there are more surprises to come, this account presents a
current snapshot of what is surely a critical and interesting point in the final
story.

82. Overview. This is an expanded version of the material presented first
in a tutorial series of four lectures at the 19th Midrasha Mathematicae
Meeting held at the Hebrew University and hosted by the Institute for
Advanced Studies. I would like to thank the organizers and the IAS for
their efforts in arranging the meeting and providing me the opportunity to
give this lecture series. Also I wish to thank the participants for their close
attention during the lectures.

Part of this material was given a second time in a week long tutorial series
in the Summer School in Mathematical Logic held in Singapore in June,
2016, and hosted by the Institute for Mathematical Sciences (IMS) of the
National University of Singapore. Here again I owe a considerable debt to
the participants.

The purpose of this article, which was also the goal of the lectures, is
to provide a fairly direct and complete account which first shows that the
solution to the inner model problem for one supercompact cardinal will
yield an ultimate version of L and then shows that the various current
approaches to inner model theory must be fundamentally altered to provide
that solution.

We examine the current approaches in a progression starting with the
natural generalizations of L[U] and ending with the modern framework
based on partial extender models. This involves introducing many of the
central notions of inner model theory.

The material from Sections 3 and 4 is essentially all from [20] though the
presentation is simplified quite a bit and some of the theorems have been
strengthened. The material from Sections 5 and 6 is new and combined with
the material of Section 4 sets the stage for [25].

In fact, there are several changes here from the material given in the
Midrasha Mathematicae lectures, particularly in Section 5. This was pri-
marily driven by the goal to produce a version of Theorem 5.35 which could
be used in [25].

A substantial portion of the final section is also new and deals with vari-
ous possible formulations of the axiom, ' = Ultimate-L. This revision of
the material from the Midrasha Mathematicae lectures reflects more recent
results from [25] and highlights how the AD"-theory of determinacy enters
the story by making possible a formulation of the axiom V' = Ultimate-L
which does not involve the detailed level-by-level construction of the actual
model, or even the definitions of those levels.

It is interesting to note that for many of the standard generalizations of
L which have been identified and studied, for example the partial extender
models of Mitchell-Steel, the internal axiomatic characterization is not in
general known once the models pass the level of having Woodin cardinals.

There are many reasons for this and not the least of these is the surprising
fact that for the Mitchell-Steel models, most of the models are nontrivially
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the generic extension of another such model (if these models are simply
assumed to be iterable), one just needs that within the models there is at
least one Woodin cardinal, [24].

The three sections, Sections 4, 5, and 6, indicate critical constraints which
must be met and this turns out to provide sufficient information to convinc-
ingly predict what must happen and how. Part of this is what was expected
but a significant part was completely unexpected and this concerns the issue
of whether a construction of a fine-structural hierarchy based only on a
general iteration hypothesis for V', could ever be vacuous. In fact what we
predict happens is much more extreme.

First, assuming the existence of a huge cardinal, the Weak (w; + 1)-
Iteration Hypothesis is consistently false and moreover the Weak Unique
Branch Hypothesis is outright false.

These iteration hypotheses are defined in Section 4.1 and are weak versions
of what have become the standard iteration hypotheses used when outright
constructions (based on just large cardinal hypotheses) are not known.

More surprising is the reason. This happens because otherwise one can
prove the existence of fine-structural models and contradict the fundamental
obstruction identified in Section 5.

The models constructed for this purpose are extender models and they
are in the hierarchy of nonstrategic-extender models since no additional
predicate for iterability is added. In particular, even though the models
are iterable, the iteration strategy is not added to the model. This is the
traditional form of the fine-structural generalizations of L.

Thus I predict that a backgrounded construction of fine-structural models
which succeeds based on what seems to be a natural iteration hypothesis can
be vacuous.

The second prediction emerging in [25] is that the essential core of the
Ultimate-L Conjecture holds in V.. if k is a huge cardinal. More precisely,
if k is a huge cardinal then there exists a transitive set M such that

(1) M E V = “Ultimate-L”,

(2) Ord” =k and M c HOD">,

(3) For some 6 < k., (V.. M) E “M is a weak extender model, for ¢ is
supercompact.”

So in summary, I believe all the obstacles, along with their resolutions,
have been finally identified and as a result it is now possible to prove that the
core elements of Ultimate-L Conjecture, as specified above, hold in V. if
k 1is a huge cardinal.

The methodology is to build the necessary witnesses for this through
the construction of extender models in the hierarchy of strategic-extender
models. This is the hierarchy of (iterable) extender models where each model
is constructed from two predicates, one for the extender sequence and one
for the iteration strategy.

The immediate question that this raises is how the construction of the
strategic-extender models necessary to witness that the (strictly speaking,
“weak”) Ultimate-L Conjecture holds in V., can possibly succeed when
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the construction of the simpler nonstrategic-extender models must fail since
it is the construction of the latter which leads to the indicated contradiction.

The answer lies again in the problem of iterability. The construction of the
strategic-extender models succeeds because one can prove that the models
are iterable which one cannot do in the nonstrategic case. This is enabled
by connecting with the general theory of AD"-models and that connection
does not exist in the nonstrategic case. This connection is through the HOD’s
as computed within the AD"-models which in the relevant cases one verifies
is a strategic-extender model as part of the induction.

The main obstacle to proving the Ultimate-L Conjecture in light of the
obstructions identified here, is finding the technical reason why the hierarchy
must transition from the non-strategic extender hierarchy to the strategic
extender hierarchy.

This is compounded by the methodology which the obstructions indicate
must be used, specifically the one-sided comparison of structures against
backgrounded structures.

But this is only a mystery if one accepts that no vacuous construction is
possible because the iteration hypotheses one naturally uses must be provable.

It is after surrendering on this point that the picture becomes what seems
now so obvious: there is no obstacle here since the iteration hypotheses are
false and this is because there are vacuous constructions.

Perhaps in the ideal world, this article would have been written a year from
now after [25] was completely finished, thoroughly checked, and circulated.
Of course then it would probably be a very different article and in any case,
that is not this world and making the predictions detailed above seems really
the only option, short of saying nothing.

83. Weak extender models, universality, and the HOD Dichotomy.

3.1. Supercompactness. We begin by reviewing the basic notions related
to supercompact cardinals. Further details and the history of the develop-
ment can be found in [6].

DerINITION 3.1. Suppose that « is a regular cardinal and that x < 4.

(1) P.(4) ={o C A||o| < K}.
(2) Suppose that U C P (P, (1)) is an ultrafilter.
a) U is fine if for each a < 4,

{e €P.(A)|aca} el
b) U is normal if for each function
fiPe(A) = A

such that
{0 €P:(2)| (o) €a} el

there exists o < A such that
{e € P.(A)| flo) =a} e U
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DEFINITION 3.2. Suppose that x is an uncountable regular cardinal. Then
Kk 1s a supercompact cardinal if for each A > & there exists an ultrafilter U on
P..(4) such that

(1) U is k-complete,
(2) U is a normal fine ultrafilter.
The following basic lemma gives the connection between the two common

formulations of supercompactness. One can require that the transitive class
M and the embedding j each be X,-definable in V' from parameters.

LemMA 3.3. Suppose k is an uncountable regular cardinal. Then the
following are equivalent.

(1) & is a supercompact cardinal.
(2) For each A > k. there exists an elementary embedding

jiV-M
such that CRT(j) = &, j(k) > A, and such that M* C M.
PrOOF. Suppose « is supercompact and 4 > k. Let U be a k-complete
normal fine ultrafilter on P, (4). Let
j:V —=M=Ult(V,U)
be the ultrapower embedding. Thus
(1.1) jl2] € M and j[2] € j(Px(4)),
(1.2) M ={j(/IGIDI| f €V}
Suppose  : A — M. For each a < 4, let
fa:PeA) =V

be a function such that () = j(f»)(j[A]). The function f, exists by (1.1)
and (1.2).
For each o € P, (4) let
g 0 —>V
be the function defined by g,(a) = f, (o). Finally define
fiP(A) =V
by f (o) = g,. Thus
JOGND 1 jlAl— M
and
J()GED) o jli = h.
Therefore / is definable in M from j(f)(j[A]) andsoh € M.
This proves that (1) implies (2). Now suppose that 4 > « and that
j:V-M
is an elementary embedding such that CRT(j) = &, j(x) > /A, and such that
M* C M. Thus
JlA € j(Pe(2)).
Let U be the set of all 4 C P, (1) such that
JIA1 € j(A).
Then U is a k-complete normal fine ultrafilter on P, (4). =
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We shall need a specific variation of Solovay’s Lemma on sets of measure
one for normal fine k-complete ultrafilters on P, (1) where A > « is a regular
cardinal.

LeEmMA 3.4 (Solovay’s Lemma). Suppose that k < 1 are regular cardinals
and < is a wellordering of H(A"). Then there exists a set X C P,(L) such
that the following hold.

(1) Suppose U is a k-complete, normal. fine. ultrafilter on P, (/). Then
XelU.

(2) Suppose .t € X and sup(a) = sup(t). Theno = 1.

(3) X is uniformly definable in (H (A"). <) from k.

PrOOF. Let S = {a < 4|cof(a) = w} and let
(S ta< A)

be the <-least partition of S into A many stationary sets. Finally let X be
the set of all ¢ € P,(4) such that

(1.1) @ < cof(sup(o)) < k.
(1.2) o isthe set of o < sup(a) such that S, N C # @ for all closed cofinal
subsets of sup(a).

Then using the ultrapower embedding
j:V —M=UltV,U)
given by U, it follows that j[A] € j(X) and so X witnesses the lemma.

3.2. Weak extender models. The Inner Model Problem for supercompact
cardinals has been a fundamental open problem for 40 years. Given the
first solution of the inner model problem for measurable cardinals, this is
the inner model L[U] defined and analyzed in seminal work of Kunen, [7],
and then Silver, a natural requirement for the solution at the level of a
supercompact cardinal is that it should yield, or at least be compatible with,
a weak extender model as defined below.

The original motivation here was to develop the theory of such weak
extender models in order to either discover the relevant clues as to how to
construct the fine-structural versions of such inner models, or conversely to
conclude that the program cannot in general succeed. The latter would be
an anti-inner model theorem.

DErINITION 3.5. A transitive class N F ZFC is a weak extender model, for
o0 is supercompact if for every y > ¢ there exists a d-complete normal fine
measure U on Ps(y) such that

(1) NnPs(y) e U.
(2) UNN € N.

Analyzing covering properties between transitive models of ZFC has long
been a fruitful subject of study. Such notions arise naturally between }J and
its generic extensions, and between }/ and canonical inner models of V,
such as L.

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

IN SEARCH OF ULTIMATE-L 9

DEFINITION 3.6 (Hamkins [3]). Suppose N is a transitive class and that ¢
is a regular cardinal. Then N has the d-covering property if for each g C N
such that |o| < 9, there exists T € N such that

(1) o Cx.

(2) |z] < 9.

REMARK 3.7. V' has the d-covering property in V[G] whenever G is
V -generic for a partial order P which is (<é)-ccin V.

LemMa 3.8. Suppose that N is a weak extender model, for o is supercom-
pact. Then N has the d-covering property.
PRrROOF. Let ¢ C N be a set with |o| < J. Since

N E ZFC,

we can reduce to the case that ¢ C Ord. Let 4 > J be such that ¢ C 4. Let
U be a 6-complete normal fine ultrafilter on P;s(4) such that
N NPs(i) e U
Thus since U is fine and o-complete,
{rePs(A)|cct}elU
and so there must exist
T € Ps (/1) NN
such that o C 1. -
LemMa 3.9. Suppose that N is a weak extender model. for d is supercompact
and that y > ¢ is a regular cardinal in N . Then (cof(y)) g Iy|”.
ProoF. Let U be a d-complete normal fine ultrafilter on Ps(y) such that

(1.1) NNnPs(y) € U,
(12) UNN €N.

By Solovay’s Lemma applied within N, there exists a set
XeNNU

such that 7 is 1-to-1 on X where n(c) = sup(o).
Let C C y be a closed cofinal set of ordertype (cof(y)) v
Let
j:V-M
be the ultrapower embedding given by U. Thus j[y] is the unique element ¢
of j(X) such that
sup(a) = sup(j[y]).
But C is closed cofinal in y and so
sup(j[y]) € j(C).
Therefore
{6 € X|sup(o) e C} e U.
Further, since U is fine,
U{oc € X |sup(s) € C} =.
Therefore |y|” = |C|" -6 = (cof (y))" - 6.
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Finally y is a regular cardinal in N and N has the d-covering property
and so
(cof ()" > 6.

Thus [|” = |C|" -0 = (cof ()" -0 = (cof (y))"". 5
THEOREM 3.10. Suppose that N is a weak extender model, for o is super-
compact and that y > ¢ is a singular cardinal. Then y is a singular cardinal in
N and
GON =™,

PrOOF. If y is a regular cardinal in N then by Lemma 3.9, cof(y) = |y]
which contradicts that y is singular.

Let 4 = (y*)N. Then 4 is a regular cardinal in N and so again by
Lemma 3.9, cof(1) = |i] > y. But cof(4) is a regular cardinal and so
cof(4) > y. This implies that 2 = y ™. =

3.3. Extendible cardinals and Magidor’s Lemma. A natural strengthening
of the notion of a supercompact cardinal is given by the notion of an
extendible cardinal. Again [6] is an excellent reference for further details,
both historical and mathematical.

DEerINITION 3.11. Suppose that ¢ is a cardinal. Then ¢ is an extendible

cardinal if for each 4 > ¢ there exists an elementary embedding
7 Vil = Vioy+

such that CRT(n) = 6 and n(5) > A.

LemMA 3.12 (Magidor, [9]). Suppose that § is a regular cardinal. Then the
following are equivalent.

(1) 6 is supercompact. o

(2) For each A > 0 there exist 6 < A < 0 and an elementary embedding

. VZ 11 — V;nLl

such that CRT(%) = 6 and such that n(6) = 9.

LemMA 3.13. Suppose that N is a weak extender model. for J is supercom-
pact. Then for each /. > 6 and for each a € V), there existé < A <d.a € V.
and an elementary embedding

T VZ+1 — V).+l
such that the following hold.

(1) crRT(%) = 0. n(0) =5, and n(a) = a.

(2) n(N N V;j) =NNV,.

(3) n|(NNV;) eN.

ProOF. By increasing 4 and replacing a by the pair (a. ) if necessary. we
can reduce to the case that

A=V
and that cof (1) = w. Thus |[N N V;|Y = 4. Fix a bijection
p:i—> NNV,

such that p € N.
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Let U be a §-complete normal fine ultrafilter on Ps(4) such that

(1.1) NnPs(A) e U,
(12) UNN € N.

For each o € Ps(4), let
X, ={pla)laca}.
Let Z be the set of all ¢ € P;s(4) such that
X, < NNV,.

Thus Z € U. For each ¢ € Z, let M, be the transitive collapse of X,. The
key claim is as follows:

(2.1) {6 € Z| M, = N NV, where « is the ordertype of ¢} € U.
This follows easily by working in N and considering the ultrapower
embedding,
w N — My = Ult(N, W),
where W = U N N. The relevant points are as follows:
(32) W={ACP(A)NN|A€ENand jiy[i] € jw(A)}.
Now let
jU V= My gUlt(V,U)
be the ultrapower embedding (now computed in V). Thus since |V;| = 4
and since cof (1) = w,
(My)" c My
and so jy|V,;.1 € My. Further by (2.1),
ju(Nﬂ Vi)ﬁ V,=NnV,.
Thus the following hold where as usual j; (N ) denotes that class
Jju=U{ju(NNV,)|aecOrd}.

1) julNnV;) e julN).

) (cof(i)) < 9.

3) jul(NN Vi) € ju(N) (since jy[i] € ju(N)).

) U( )ﬂ V,=NnV,.

Note that (4.1)—(4.4) imply that the conclusion of the lemma holds for
(jula). ju(A)) in My for jy(N). Therefore the conclusion of the lemma
holds in V for (a, A) relative to N. 4

3.4. Elementary embeddings of weak extender models. We now prove that
if 0 is an extendible cardinal and N is a weak extender model, for ¢ is super-
compact, then N has a remarkable closure property relative to elementary
embeddings of N with critical point of at least J.

This theorem is in a natural sense a strong generalization of the following
corollary of a theorem of Dodd and Jensen. By a recent result of Jensen and
Steel, the analogous theorem holds for essentially all large cardinal notions
below the level of a Woodin cardinal. Here we focus on singular cardinals
in V' and N simply because of the conclusion of Theorem 3.10.
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TraEOREM 3.14 (after Dodd—Jensen). Suppose that N = ZFC is an inner
model such that
yt ="

for a proper class of singular cardinals which are singular in N. Suppose in
V' there is a measurable cardinal. Then in N, there is an inner model with a
measurable cardinal.

Theorem 3.14 is just one of a series of theorems which show that if

N E ZFC is an inner model such that

yt ="

for a proper class of singular cardinals which are singular in N, then N
has inner models for various large cardinal hypotheses that hold in V.
For such inner models N which are constructed as enlargements of L, the
large cardinal hypotheses which can hold in V' cannot exceed the level of
large cardinal hypotheses which ioldin N . At levels beyond that of a Woodin
cardinal, the precise generalizations involve some version of correctness or
iterability.

By Theorem 3.10, if NV is a weak extender model for the supercompactness
of 9, then

yt =0
and y is singular in N, for a// singular cardinals y > ¢.

Therefore, Theorem 3.14 and its generalizations suggest that N should
contain inner models of any large cardinal hypothesis which holds in V/
and moreover if N is actually an enlargement of L then these large cardinal
hypotheses should hold in V.

In fact we obtain much more and we shall prove two versions of this,
Theorem 3.15 and the more general Theorem 3.26 which is formulated in
terms of extenders.

THEOREM 3.15. Suppose that N is a weak extender model, for o is
supercompact and 'y > ¢ is a cardinal in N . Suppose that

JrHGOY = H(G)T)Y
is an elementary embedding such that 6 < CRT(j). Then j € N.
ProOF. Fix 4 > j(y) such that 2 = |V;|. Letting « = j. by Lemma 3.13,
there existd < 4 <. a € V. and an elementary embedding
T V/@r] — V1
such that the following hold.
(1.1) crT(n) =6, 7(0) = 0. and n(a) = a.
(1.2) 7Z(N N V;j) =NNYV,.
(1.3) n[(NNV;) eN.
Thus @ = j where
JHGO)Y = H(G))Y.
It suffices to prove the following:
(2.1) j € N;
since #(j) = j and since n|(N N V;) € N.
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Let
E={(4.8|4ePF)NN.E< (). and& € j(4)}.
We prove that £ € N. This implies that
JI(PF)NN) € N.

which implies that j € N.
The key point is as follows:

(3.1) 7| (HG)" € (HG)"Y

This is because z|(N N V;) € N noting that (H(y*))N is closed under
y-sequences in N.
Let

7=z (H(G))" e (HGH)".

Thus 7* € (H ( +))N and so * € dom(j).
Now fix 4 € P(7) N N and ¢ < j(§). Thus
¢ e jld) = n(é) en(f)(n(4))
= n(¢) € j(n(4))
= n(¢) € j(n"(4))
= (&) € j(n")(j(4)) = j(z")(A4).

(
Thus E can be computed from 7| j(7) and j(z*). Both these functions are
in Nandso E € N. =

We recall the large cardinal hypothesis that x is n-huge.
DEerINITION 3.16. Suppose n < . Then « is n-huge if there exists an
elementary embedding
j:V-=M
such that CRT(j) = & and such that M" C M where
(ki i< )
is the sequence where kg = k = CRT(j) and for all i < w, ki1 = j(K;).
Note that « is 0-huge if and only if « is a measurable cardinal. However if
k is 1-huge then in V; there are extendible cardinals and much more.
The following typical corollary of Theorem 3.15 illustrates the uni-

versality, for large cardinal hypotheses, of weak extender models for
supercompactness.

THEOREM 3.17. Suppose that N is a weak extender model, for o is supercom-
pact. Suppose that for each n < w, there is a proper class of n-huge cardinals.
Then in N, for each n < w, there is a proper class of n-huge cardinals.

THEOREM 3.18 (Kunen, [8]). Suppose that J. is a cardinal. Then there is no
nontrivial elementary embedding

J Vg2 = Vigo.

PrOOF. Let j be given. Note that V; , , is logically equivalent to H (| V; |T)
and so j yields an elementary embedding
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n:HOATT) = HGAT).

Note that (1) = Aand n(AF) = AT,
Let S = {a < A" |cof(a) = w} and let (S, : a« < AT) be a partition of S
into stationary sets. Let
(Ty :a< ATy =7r((Se:a< iT)).

Let C = {a € S|n(a) = a}. Thus C is w-closed and cofinal in ™. By the
elementarity of 7, for each a < A", T, is a stationary subset of S and so for
eacha < AT,

CNT,#0.
Let « = CRT() and choose

telCnT,.
Finally choose f < A" such that £ € Sg. Then

& =n(&) € n(Sp) = Trp).-
This implies 7(f) = x which contradicts that x = CRT(n). -

THEOREM 3.19. Let N be a weak extender model, for o is supercompact.
Then there is no nontrivial elementary embedding j : N — N such that
d < CRT(j).

Proor. By Theorem 3.15, for each x > &, j|(N N V1) € N. Thus j is
amenable to NV and in particular there must exist a cardinal A of NV such that
CRT(j) < A. j(4) = A. and such that

Jl(Viza N N) € N.
This contradicts Kunen’s Theorem. =

3.5. Extenders. For our purposes, the theory ZF\ Powerset is formulated
with the Collection Axiom in place of the Replacement Axiom. Over this
base theory, the various formulations of the Axiom of Choice are nort all
equivalent, and the Wellordering Principle is the strongest among the usual
variations. Thus we define ZFC\Powerset to be the theory ZF\Powerset
(with the Collection Axiom) together with the Wellordering Principle.

The issue which arises from which formulation of the Axiom of Choice
to use is the following. Suppose that M and N are transitive models of
ZFC\Powerset and that

n: M — N

is an elementary embedding which is cofinal in the sense that N =
U{n(a)|a € M}. Suppose = is the identity on the ordinals. Must 7 be
the identity?

If one uses the Wellordering Principle, then the answer is yes, 7 must be the
identity. If however one uses the usual formulation of the Axiom of Choice
then the answer is no, 7 need not be the identity. We give an example.

Let L[G] be a generic extension of L for adding w’ many Cohen reals
and let L[G][g] be a generic extension of L[G] for adding w4 -many Cohen
reals.
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Now define
M = L, (R1O)[G]
and define
N = L, (RMON[G][g).
where each is viewed as a transitive set. Thus in each case we are constructing
over the reals from an additional predicate. Note that P(w) exists in both
M and N but for example, P(w;) does not exist in either M or N.

It follows by the homogeneity of Cohen forcing that both M and N are
models ZFC\Powerset with the usual formulation of the Axiom of Choice
and that the natural map

n:M — N,

where 7(RM) = R” is an elementary embedding.

Finally for purposes of constructing inner models, one is really only inter-
ested transitive models of ZFC\ Powerset which are of the form L, [P], and in
this situation the various possible formulations of ZFC\Powerset discussed
above, are all equivalent.

DeriNITION 3.20. Suppose that M and N are transitive models of
ZFC\Powerset and that
n: M — N

is an elementary embedding. Then 7 is cofinal if
N =U{zr(a)|a e M}.

DEeriNITION 3.21. Suppose that M and N are transitive models of
ZFC\Powerset and that
n: M — N

is a cofinal elementary embedding which is not the identity.
Let k = CRT(7) and suppose that € Ord". Let 7 be least such that
n < n(#).
For each a € [#]<%, let
E, — {A ENNP ([ﬁ]'“‘) lae n(A)} .
Let E = (E, :a € [#]<®). Then
(1) E is an M -extender.

(2) n is the length of E.
(3) & is the critical point of E.

DEFINITION 3.22. Suppose that M is a transitive model of ZFC\ Powerset
and that
E=(E,:a€c[n~")

1s an M -extender. Then
Ulto(M E) = lim Ulto(M Ea).

a€E [7]]<w

REMARK 3.23. Following the conventions in inner model theory we use
the notation Ulty(M, E) instead of Ult(M, E). The reason is that in the
general case where M is not assumed to be a model of ZFC\Powerset there
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can exist more complicated ultrapowers which one can define, these include
the fine-structural ultrapowers Ult, (M, E).

LeEmMA 3.24. Suppose that M is a transitive model of ZFC\Powerset and
that
E = <Ea tac [7]]<w>
is an M -extender. Then

(1) Ulty(M. E) is wellfounded.
(2) Let Mg be the transitive collapse of Ulty(M. E) and let

7Z?EZM—>ME

be the ultrapower embedding. Then
(a) mg is a cofinal elementary embedding.
(b) CRT(ng) <5 < Ord™e.
(¢c) Let F be the M -extender of length n given by np. Then F = E.
The following theorem, which is the Universality Theorem for weak exten-
der models, is the general version of Theorem 3.15 and this is formulated
simply in terms of N-extenders with no assumptions whatsoever on the
strength of the extenders.
This version of universality is optimal in that it characterizes when an
N -extender (which has large enough critical point) must belong to N in the
simplest possible terms.

REMARK 3.25. We note that Theorem 3.26 implies Theorem 3.15. The
only issue is that given

JrHGOY = H(G)T)Y
as in the hypothesis of Theorem 3.15 and letting E be the H (y*)" -extender
of length j(y) given by j. one must verify Ulty(N. E) is wellfounded so that

E is also an N-extender.
The point here is that if

g N = Mg = Ult()(N,E)
is the ultrapower embedding then
nE’H(y+)N = j?

and so foreach 4 € P(y) NN, ng(A4) € N.
The wellfoundedness of Ulty(N, E) follows by using j and appealing to
the d-covering property of N.

THEOREM 3.26 (The Universality Theorem). Suppose that N is a weak
extender model, for o is supercompact and that E is an N -extender of length
n with critical point kg > 6. Let

g i N = Mg = Ulto(N,E)
be the ultrapower embedding. Then the following are equivalent.

(1) Foreach A C n,ng(A) Ny € N.
(2) E€N.
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PrOOF. Trivially (2) implies (1) and so it suffices to prove (1) implies (2).
The proof that (1) implies (2) is just a reworking of the proof of
Theorem 3.15.

Let 1 be least such that 7z (1) > #. Thus 1 is a cardinal of N. Fix 1 > 7
such that 4 = |V;| and such that cof(1) > 1. Thus

By Lemma 3.13, there exist 0 < l<94,E € V5. and an elementary
embedding
T V)-nLl — V,1+1

such that the following hold.
(1.1) crRT(n) =5, 7(0) =5, and n(E) = E.
(12) n(N N VZ) =NNV,.
(1.3) /(NN V5) € N.
Thus E is an N-extender. Let 77 be the length of E. let
;i N — Ulto(N,E)
be the ultrapower embedding, and let 7 be least such that 7z (7) > 77. Thus
(2.1) =(7) =1.
(22) 7'L'(7'L'E N VZ) =NV,
Let
P ={(4.8)]|AeP@NN.<qiand € np(A)}.
We prove that Pz € N. Thisimplies £ € N and so E € N since n(E) = E.
Now fix 4 € P(7) N N and ¢ < 77. We have that z|(N N V;) € N and so

letting
™ =zn|(N NV,).
we have
¢enp(d) < n(&) € nlng NV;3)(n(4))
= n(¢) € np(n(4))
= n(¢) € np(n™(4))
= n(&) € np(n*)(ne(4)) = ne(n”)(A).

Thus Pz can be computed from 7|7 and 7g(z*). We have z|7 € N but
only that
7'L'E(7'L'*) € Mg = Ulto(N,E)

However we only need
{(A.mg(n*)(4)Ny)|A € PO NN} N

in order to show that P; € N.
Working in N and since we have both that z* € N and that 7 < J, we can
choose Z C 1 such that

(3.1) ZeN,
(3.2) Foralld <0 <1,

{(A.n*(4)N0O)| A€ PI)NN} e L[ZNO].
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But then 7z (Z) Ny € N and so by the elementarity of 7,
{(A.ng(z*)(4)Ny)|A e P(I)NN} € Llng(Z) Nyl C N.
This proves £ € N andso E € N. -
REMARK 3.27. Suppose that E is an L-extender of length #. Then
L = Ulty(L, E),
andsong(A) € Lforall 4 € L.
As a corollary of Theorem 3.26, we obtain the direct transference of
Woodin cardinals to weak extender models for supercompactness. This

easily generalizes to the appropriate versions of essentially any current large
cardinal hypothesis.

THEOREM 3.28. Suppose that N is a weak extender model, for o is super-
compact and that 0 > ¢ is a Woodin cardinal. Then 0 is a Woodin cardinal
in N.

ProOF. By the definition of a Woodin cardinal, 8 is a Woodin cardinal if
for all A C V), there exists d < « < 0 such that for all Kk < 4 < 0 with
|V,| = A, there is a V' -extender E such that

(1.1) cRT(jg) = K, LTH(E) = A. and jg (k) > A,

(1.2) V;c Mgand jg(ANV)NV,=ANYV,,
where

je 1V = Mg = Ulty(V.E)
is the ultrapower embedding.

But then for all 4 € P(V,) N N, there exists § < k < 0 such that for all
Kk < A < @ with | V| = 4, there is an N-extender E such that

(2.1) CRT(jg) = k. LTH(E) = 4. and jg (k) > A.

(22) jE(NNV )NV, =NNV,,

(23) VNN C Mg andjE(A NV)NV,=ANV,,
where

JE : N — Mg = Ult()(N,E)
is the ultrapower embedding.
By Lemma 3.26 and with E as above, (E|#)|N € N for all # < A (since

kg = k > 0) and so since 4 can be chosen cofinally large in 6, 6 is a Woodin
cardinal in V. -

DEerFINITION 3.29. (1) E is an extender if E is a V -extender.
(2) An extender, E. of length 7 is A-complete if

n* C M.
where M = Ulty(V, E).

Suppose that E is an extender with critical point x, P € V., and G C P is
V' -generic. Then E naturally defines an extender in V'[G] and

)Y = (jp)".
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LemMma 3.30. Suppose that 6 < k, E is an extender which is d-complete
with critical point k., and that

iV = MCV[G]

is a generic elementary embedding such that
(i) M={j(f)a)|a<dand f €V}
(i) G is V -generic for some partial order P € V such that |P| <5 in V.
Then (i) 'NM = (jp)™ where F = j(E).
ProoF. By (i), M = Ulty(V, H) where H is a V -extender of length &.
Let # = LTH(E) and for each a € [5]° let E, be the ultrafilter,

E,={A Ul |a € je(a)].

where 4 = min{y | < je(y)}.

Since E is d-complete for each a € [5]°. a € Ulty(V,E) and so E, is
defined.

Suppose that ¢ € b and b € [5]°. Then there is a natural elementary
embedding,

Jap 2 Ultg(V. Ey) — Ulto(V, Eyp).
This defines a directed system indexed by the directed set, ([#]°. C) with
limit, Ulty(V, E).

This is just the usual analysis of Ulty(V, E) as the limit of a directed system
of ultrapowers except here the underlying directed set is ([#]°. C) instead of
the directed set. ([#]<“. C).

Let X = [#]°. For each a € [y, E, C P(X) and E, is an ultrafilter on
X.Fixa € [y).

We first show the following. Suppose that

f:X—-M
is a function in V[G]. Then there exists a function
frjX) =M
such that /* € M and such that

{peXx|f)=sr"G)} e (Edg.

where (E,)¢ is the ultrafilter in V' [G] generated by E,,.

Fix f and work in V'[G]. For each y € X there exists a pair (g,.«,)
such that

(1.1) o, <.

(12) g, eV,

(1-3) f(J/) = j(gy)(ay)-
This defines a function

F:X—>V

where forall y € X, F(y) = (g,. a)).
Since E, is k-complete and since [P|"” < 6 < k. it follows that there exists
Z € E, and there exists o < 0 such that
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(2.1) FlZz eV,
(22) ay =aforally € Z.
Define
LX) =
by f*(t) =0ift ¢ j(Z )andlfz e](Z) then
f5(0) = j(F)i(a),

where foreach y € X, F), = g,.
Thus for each y € Z,

F G ) = J(F) () = ((Fy))(a) = (jgy)(e) = (jgy))(ey) = f(»).
and so f* is as required.

What we have done is show that for each a € [#]° the lemma holds with
E replaced by E,. This special case is due to Steel.

Now we use the hypothesis that E is d-complete. Suppose b € j([#]°).
Then there exists @ < ¢ and a function

g6 =)
such that]( )(a) = b noting that§ < j(J). Leta = U{g(B)|p <J}. Thus
acyl.acVandb C j(a).

Thus
{i@]aecmr}
is cofinal in the directed set,

alacj(n’);.
{ }

and so Ulty(M. j(E)) is the limit of Ulty(M, j(E,)) over the directed
set ([#]°.<)" and the lemma follows by the correspondence of functions
established above. —

There is a useful corollary of Lemma 3.30 which allows one to generate a
variety of weak extender models for the supercompactness of some cardinal
0, and which have various other properties.

The main motivation for this is to show that weak extender models for
supercompactness need not be so close to V" as to render the notion useless as
a requirement for inner model theory at the level of supercompactness. The
latter is a natural speculation given for example the Universality Theorem,
Theorem 3.26.

The generic elementary embeddings given by the Stationary Tower at
Woodin cardinals 0 < k give many examples of j which satisfy the condi-
tions of Lemma 3.31 and with any given uncountable regular cardinal below
k as the critical point.

However, we shall only use Lemma 3.31 (with the partial order PP trivial
so that V' = V[G]) to obtain Lemma 3.32 which shows that Lemma 3.19 is
optimal.

LemMA 3.31. Suppose that é < k., k is supercompact, and that

j:V =M CV[G]

is a generic elementary embedding such that
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(i) M={j(f)a)|a<dand f €V}

(i) G is V -generic for some partial order P € V such that |P| <5 in V.
Then in V[G], M is a weak extender model, for k is supercompact.

Proor. By Lemma 3.30, for each extender E € V. if (in V),

(11) ]P) € VCRT(E)’

(1.2) p(E) = LTH(E),

(1.3) cof(LTH(E)) > 6.
thenin V[G], Ec " M € M where Eg is the extender in V' [G] generated by
E. The point is that E is d-complete and so by Lemma 3.30,

J(E)=EcN M.

Since & is supercompact in V', the class of all such extenders, E¢, witnesses
that « is supercompact in V'[G]. The corollary follows. —

Lemma 3.32 shows that the restriction on critical points in Theorem 3.19
is necessary and in addition, combined with Theorem 3.45 shows that the
case where N = HOD is quite different.

LEMMA 3.32. Suppose that 0 is a supercompact cardinal. Then there is a
weak extender model, N, for d is supercompact such that for each A there is a
nontrivial elementary embedding

j:N—=N
with CRT(j) < & such that j(A) = A.

ProoOF. Let kK < 0 be a measurable cardinal and let U be a normal
k-complete uniform ultrafilter on x. Let (M. U, juns1) : 1 < @) be
the iteration of (¥, U) of length w. Thus

(L.1) (My. Uy) = (V. U).
(1.2) M, = Ulty(M,,, U,) and j, .1 : M, — M, is the ultrapower
embedding.
(13) Un+1 = jn,nJrl(Un)-
Let
M, = li<m M,
be the direct limit under the composition of the elementary embeddings,
(Junt1 :n < o).
Thus M, is wellfounded and so for each A € Ord,
jn,n+l(/1) =4

for all sufficiently large n < .
Define N = M, and let

jo_wIV—>N

be the associated elementary embedding.
Lety = jO,(u(’{')- Then n < (2H)+ < o0 and

N = Ul (V. E).
where E is the extender of length # given by jo,.
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Thus N is a weak extender model, for ¢ is supercompact by Lemma 3.31
(with P trivial so that V = V[G]).

Finally for all n < @, j,,y1(N) = N and so for all A € Ord, for all
sufficiently large n < . j,,+1|N yields an elementary embedding

j:N—N

such that j(1) = A. and this proves the lemma. =

3.6. The HOD Dichotomy Theorem. Jensen’s Covering Lemma is natu-
rally formulated as a dichotomy theorem:

THEOREM 3.33 (Jensen). One of the following holds.

(1) Supposey is a singular cardinal. Then y is singular in L andy* = (p*)~.

(2) Every uncountable cardinal is inaccessible in L.

The following theorem is arguably an abstract generalization of the Jensen
Covering Lemma when stated as above in the form of a dichotomy theorem.

We shall prove a strong version of Theorem 3.34 as the HOD Dichotomy
Theorem, Theorem 3.39 below.

THEOREM 3.34. Assume that 0 is an extendible cardinal. Then one of the
following holds.

(1) For every singular cardinal y > &, v is singular in HOD and
(y+)HOD — 5+

(2) Every regular cardinal y > 6 is a measurable cardinal in HOD.

DeriNITION 3.35. Let A be an uncountable regular cardinal. Then 4 is
w-strongly measurable in HOD if there exists k < /4 such that
(1) (25)HOD < ).
(2) There is no partition (S, | o < &) of cof (w) N A into stationary sets
such that (S, | @ < k) € HOD.

LEMMA 3.36. Suppose that A is an uncountable regular cardinal and that
F is a A-complete uniform filter on J. Let

B ="P(1)/L.

where I is the ideal dual to F. Suppose that B is y-cc for some y such that
2" < L. Then |B| < 27 and B is atomic.

Proor. It suffices to prove that B is atomic. Equivalently, it suffices to
show that if A C A and A ¢ I then there exists B C A4 such that B ¢ I and
such that B cannot be split into 2 sets each of which is /-positive.

This in turn reduces to simply proving that B has an atom since if B is not
atomic then we can replace I by the ideal generated by 7 U {4} where 4/1
is the join in B of all the atoms of B.

Therefore we assume toward a contradiction that B has no atoms. Let

(Py. Zy) s < ©)
be a maximal sequence such that ® < y + 1 and such that for all & < S,
(1.1) 2Ifl < 2,

(12) Zg € Fand Zs C Z,,.
(1.3) P, is a partition of Zj into I-positive sets,
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(1.4) P refines P,.
(1.5) foreach B € P,.thereexistdistinct X, Y € Pgsuchthat YUY C B.

For eacha < 0,

(2.1) 2181 > ;.

Assume toward a contradiction that 2/®/ < 1. Thus ® < k andso Z € F
where

P,| <y since B is y-cc. We prove

Z=nN{Zy|a<6}.
Define an equivalence relation ~ on Z by &; ~ &; if for all a < O, for all

A€ P, & € Aifand only if x; € 4.
We have the following:
(3.1) 219 < 1 and 2" < A,
(3.2) foreacha < 4, |P,| < y.
Therefore | Z/~| < k. But then Zg € F where

Zo =U{[¢]~|¢ € Zand ] ¢ 1}

and where for each ¢ € Z, [£]. is the ~-equivalence class of &.
Define Po = {[¢{]~|¢ € Zo}. This contradicts the maximality of the
sequence

(Py.Z,) a0 < O).
This proves that 2/®/ > /. But this implies that ® > y. Fix & € Z,. For each
a <7y, let X, € P, besuch that £ € X,. Thus
(Xo i <y)

is a decreasing sequence of /-positive sets and for each a < y, X511\ X, is
I-positive. This yields an antichain in B is cardinality y which contradicts
that B is y-cc. .

LemmMa 3.37. Assume A is w-strongly measurable in HOD. Then
HOD F 4 is a measurable cardinal.
Proor. Let S = {a < 4| (cof(a))” = w} and let
F ={4 € P(A)NHOD|S\4 is not a stationary subset of Ain V'}.
Thus F € HOD and in HOD, F is a A-complete uniform filter on A. Since A
is w-strongly measurable in HOD, there exists y < x such that in HOD:

(1.1) 27 < A,
(1.2) P(4)/I is y-cc where I is the ideal dual to F.
Therefore by Lemma 3.36, the Boolean algebra

(P(2) "NHOD)/I
is atomic. -

THEOREM 3.38. Suppose that J is an extendible cardinal. Then the following
are equivalent.
(1) HOD is a weak extender model, for 8 is supercompact.
(2) There exists a regular cardinal A > & which is not w-strongly measurable
in HOD.
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ProOF. By Theorem 3.10, (1) implies that for every singular cardinal

y >0,
)/+ — (y+)HOD
and by Lemma 3.37, this implies (2).
Thus it suffices to show that (2) implies (1). We first prove the following:

(1.1) For each o > 0 there exists a regular cardinal A > « such that A is
not w-strongly measurable in HOD.

Fix a regular cardinal A4y > ¢ such that Ay is not w-strongly measurable in
HOD. Let k¥ > A be such that k > « and

| <y, V.
Thus
V.. E “Ao is not w-strongly measurable in HOD.”

Since 0 is extendible, there exists an elementary embedding
w: Vi1 — VH(KHI
such that CRT(n) = 6 and n(6) > k > «. Thus
Vi) F “n(Ao) is not w-strongly measurable in HOD.”

But
(HOD)"x»  HOD
and so 72(/g) is not w-strongly measurable in HOD. This proves (1.1).

Fix ko > 0 and let k > k¢ be such that | V| = k. Let 49 > 2" be a regular
cardinal which is not w-strongly measurable in HOD and let 4 > 4 be such
that

Vl <3, V.
Thus 4 = |V;] and HOD N V; = (HOD)"".
Let S = {a < ¢ |cof (a) = w}. Thus there exists a partition

(So 1 < k) € HOD

of S into stationary subsets of S
Let
Vi = Vi

be an elementary embedding such that CRT(z) = ¢ and 7(5) > 4.
Let T = n(S) and let

(Ty :a< (k) =n((Sy:a<k)).

Thus,
(2.1) n(Ag) is a regular cardinal.
(22) T ={a < ()| cof(a) = w}.
(2.3) :a < nt(k)) is a partition of T into stationary sets.
)

23) (T,
(24) (T, : a < n(k)) € (HOD)" 0,

Let
O =sup{n(&)|&< io}.
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Thus ® < 7(4g). Let o be the set of all @ < 7(k) such that
T.NC#0
for all closed cofinal subsets C C ®. Therefore
o= {nla)|a<k}.
But ¢ € (HOD)"= since
(T : a < n(k)) € (HOD) =,
This proves that
|k € (HOD) =0,
But there is a bijection
p:k—HODNV,
such that p € (HOD)"? and so
n|(HOD N V,) € (HOD)" =,

Let Uy be the normal fine ultrafilter on Ps(kg) given by 7. Thus

(31) 'P(;(K,o) N HOD € U,

(3.2) Uyn HOD € (HOD)"=» c HOD.

This proves that HOD is a weak extender model, for J is supercompact.

We now come to the HOD Dichotomy Theorem. There are various
equivalent versions but the following is sufficient for our purposes.

THEOREM 3.39 (HOD Dichotomy Theorem). Suppose that § is an
extendible cardinal. Then one of the following holds.

(1) Every regular cardinal k > & is w-strongly measurable in HOD.

Further,

(a) HOD is not a weak extender for the supercompactness of any A.

(b) There is no weak extender model N for the supercompactness of
some A such that N C HOD.

(2) Noregular cardinal k > ¢ is w-strongly measurable in HOD. Further,

(a) HOD is a weak extender model for the supercompactness of 6.
(b) Every singular cardinal y > § is singular in HOD and
y* = (y+)HOD,

ProOOF. Assume toward a contradiction that x and y are regular cardinals,
each greater than or equal to J, such that  is not w-strongly measurable in
HOD and that y is w-strongly measurable in HOD.

Since y is w-strongly measurable in HOD, there exists a stationary set

S c{a<ylcof(a) =w}
such that

(1.1) S € HOD,
(1.2) FN(HOD N P(y)) is an ultrafilter;

where F is the club filter (of V') restricted to S.
Let
U=Fn(HODNP()).

Thus in HOD, U is a y-complete, normal, uniform ultrafilter on y.
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By Theorem 3.38, HOD is a weak extender model, for ¢ is supercompact.
Therefore by Lemma 3.8, HOD has the d-covering property and so for each
ces.

(cof (£))HOD < 6.
Thus
{&<y[(cof ()P <&} e U
This contradicts that in HOD, U is a y-complete, normal, uniform ultrafilter
ony. -

The HOD Dichotomy Theorem has an interesting corollary and a much
stronger version is given by Theorem 5.28.

THEOREM 3.40. Suppose that ¢ is an extendible cardinal. Then o is a
measurable cardinal in HOD.

Proor. By Lemma 3.37, we can reduce to the case that J is not w-strongly
measurable in HOD. But then by Theorem 3.39, HOD is a weak extender
model, for d is supercompact and so d is a supercompact cardinal in HOD.

One can by a more careful argument generalize the previous theorem and
obtain the following variation.

THEOREM 3.41. Suppose there exists an elementary embedding

j : Vn+w — Vj(n)+w
with CRT(j) = k. Then there is a measurable cardinal in HOD.
3.7. The HOD Hypothesis.

DEFINITION 3.42 (The HOD Hypothesis). There exists a proper class of
regular cardinals 4 which are not w-strongly measurable in HOD.

REMARK 3.43. (1) Itisnot known if there can exist 4 regular cardinals
which are w-strongly measurable in HOD.

(2) Suppose y is a singular strong limit cardinal of uncountable cofinality.
It is not known if ™ can ever be w-strongly measurable in HOD.

The following theorem is an immediate corollary of the HOD Dichotomy
Theorem.

THEOREM 3.44 (HOD Hypothesis). Suppose that & is an extendible
cardinal. Then HOD is a weak extender model, for d is supercompact.

Comparing the next theorem with Lemma 3.32 shows that the case of
HOD being a weak extender model for the supercompactness of some J, is
quite different than the case of an arbitrary transitive class N.

THEOREM 3.45 (HOD Hypothesis). Suppose that there is an extendible
cardinal. Then there is an ordinal A such that for all y > A, if

j :HODN V1 — HOD N Vj(},)Jr]
is an elementary embedding with j(1.) = A then j € HOD.

ProOF. Let § be an extendible cardinal and let g = 07 be the w-th
cardinal above . Clearly (cof(9))H°P = . Further by Theorems 3.10
and 3.44,

(2g)HoD

_ 9+
_/L/O-
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Therefore if 7 < A then (cof (17))HOP < 4. Let 5 be least such that
{n < i | cof(n) = w and (cof ())"°P = ko }
is stationary in A
Define 1 = 49 + ko. We show that 4 is as required. Suppose y > 4 and
jtHOD NV, 1 » HODAN V.,

is an elementary embedding such that j(1) = A. By Theorem 3.44, if j|J is
the identity then j € HOD. Therefore we have only to prove that j|o is the
identity. Since kg < Ao and since j (1) = 4. j(Ao) = Ao and j (ko) = ko.
Clearly j induces canonically an elementary embedding
. HOD HOD
J(HGgH) — (H($H))

with the property that j|4y = j*|4o.
Let
S = {n < Af |cof(n) = w and (cof (17))"°P = ko } .

Thus since S is stationary in /; and since
(RO = ji
there is a partition
(Sq t < AJ) € HOD
of S into stationary sets. Let
(Tp: p<iy)=7"((Sa:a<iy)).

Note thatif 7 € S and if 77 is closed under j* then j*(57) = #. This is because
(cof (17))HOP = g and because j* (ko) = o.

Therefore for all § < 4;. TgNS isstationary in ] if and only if f = j*(a)
for some o < A; . This implies that

{j*(a)|a < i} € HOD

since { f < g | Tﬂ N S is stationary in /; } € HOD. But by the elementarity
of j* and since j*(S) = S.forall f < i].

HOD F “T4 N S is stationary in 1] .”

which implies (since {;*(a)|a < i} € HOD) that ;*
Thus

/o 1s the identity.

CRT(j) >0
and so by Theorems 3.15 and 3.44, j € HOD. -

THEOREM 3.46 (HOD Hypothesis). Suppose that there exists an extendible
cardinal. Then there is no sequence of nontrivial elementary embeddings,

ji : HOD — HOD
such that the direct limit,
lim j; o --- 0 jo(HOD),

<w

is wellfounded.
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ProoFr. Assume toward a contradiction that the direct limit is well-
founded. Then for every ordinal A,

Ji(A) =2
for all sufficiently large i < w. Therefore by Theorem 3.45, j; must be the
identity for all sufficiently large i < w. =

THEOREM 3.47 (HOD Hypothesis). Suppose that there exists an extendible
cardinal. Let T be the Xy-theory of V' with ordinal parameters. Then there is
no nontrivial elementary embedding,

j:(HOD.,T) — (HOD.T).

ProoFr. By Theorem 3.45, there exists 4 € Ord such that for all y > A, if

k:HODNV,;; — HODN Vk(y)+1

is an elementary embedding with k(1) = A, then k € HOD. Let A be the
least such A. Clearly A is definable in V' and so A is definable in (HOD, T').
Suppose toward a contradiction that

j:(HOD.T) — (HOD, T)
is a nontrivial elementary embedding. Therefore j(4g) = Ao and so for all
? > Ao.
Jj| HOD NV, € HOD,
which is a contradiction. —

3.8. The HOD Conjecture. The HOD Dichotomy Theorem together with
the speculation that there is an extension of inner model theory to the level
of supercompact cardinals suggests the following conjecture. Of course one
could modify the conjecture by replacing the theory

ZFC + “There is a supercompact cardinal”
with the theory
ZFC + “There is an extendible cardinal”

or even by a still stronger theory, but at this stage its seems rather unlikely that
this is actually necessary. However, the weaker conjecture obtained from the
stronger theory given by some (reasonable) large cardinal hypothesis might
be easier to prove.

DEerINITION 3.48 (HOD Conjecture). The theory
ZFC + “There is a supercompact cardinal”
proves the HOD Hypothesis.

We end this section by listing several consequences of the HOD Conjec-
ture. These are in the context of just ZF and suggest there may be rather
surprising approximations to the Axiom of Choice which simply follow from
the existence of large cardinals (such as extendible cardinals). Details can
be found in [20]. There is a much stronger version of Theorem 3.49 in [25]
but for the purposes of this account that version is not really relevant. The
stronger version simply reduces the rank of the parameter ¢ to nearly the
least supercompact cardinal (where supercompactness is as defined in [20]).
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THEOREM 3.49 (ZF). Assume the HOD Conjecture. Suppose o is an
extendible cardinal. Then there is a transitive class M C V such that

(1) M E ZFC.

(2) M is 2y(a)-definable for some a € V.

(3) Every set of ordinals is generic over M for some partial order P € V.
(4) M & S is an extendible cardinal.”

THEOREM 3.50 (ZF). Assume the HOD Conjecture. Suppose & is an
extendible cardinal. Then for all A > 0 there is no nontrivial elementary
embedding j : V)i — V.

Theorem 3.49 suggests the following conjecture which if provable would
show an extraordinary connection between the existence of extendible
cardinals and the Axiom of Choice.

DEerINITION 3.51 (Axiom of Choice Conjecture (ZF)). Suppose that J is
an extendible cardinal and that G C Coll(w, V;) is V' -generic. Then the
Axiom of Choice holds in V[G].

For the statement of the following theorem L(P(Ord)) denotes the
transitive class given by the union:
U{L(P(a))| o € Ord}.
This is the smallest inner model of ZF which contains all sets of ordinals.

THEOREM 3.52 (ZF). Assume the HOD Conjecture. Suppose that J is an
extendible cardinal. Then the following hold in L(P(Ord)).

(1) 6 is an extendible cardinal.

(2) The Axiom of Choice Conjecture.

We make a final comment. Assuming ZF, the Axiom of Choice holds if
and only if

L(P(Ord)) E Axiom of Choice.

Thus while proving the Axiom of Choice Conjecture would argue for the
Axiom of Choice just from the existence of an extendible cardinal, by
Theorem 3.52, just proving the HOD Conjecture would also suffice for
this purpose.

84. The coding obstruction. If one can prove the following conjecture then
one verifies a minor weakening of the HOD Conjecture.

CONIJECTURE 4.1. Suppose 0 is an extendible cardinal. Then there exists a
weak extender model N . for ¢ is supercompact such that

N C HOD.

Defining a weak extender model for ¢ is a measurable cardinal in the
natural fashion, Kunen’s theory of L[ U] yields:

THEOREM 4.2 (after Kunen). Suppose that d is a measurable cardinal. Then
there exists a weak extender model N for o is measurable such that

N C HOD.

Thus one just needs to generalize Kunen’s construction of L[U] to the
level of supercompact cardinals. The purpose of this section is to show that
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this cannot easily be done. Before giving the details we introduce the key
notion of an iteration tree which is the basis on which iterability hypotheses
are formulated. Iteration trees were first defined by Steel and the basic theory
is given in [11]. The definition we give is from [20] and is more general in
that a wider class of extenders is allowed.

We also prove a preliminary positive result, Theorem 4.31. This implies one
of the results implicit in [11], that assuming a natural iteration hypothesis,
Kunen’s theorem can be (directly) generalized far beyond the level of mea-
surable cardinals and up to the level of superstrong cardinals. Superstrong
cardinals are defined at the beginning of Section 5.

4.1. Iteration trees and iteration hypotheses. We review some definitions
from [20]. To be consistent with the terminology used in the fine-structure
theory of extender models, the premice of [20] we shall call coarse premice.
The definition of a coarse premouse is below.

DEFINITION 4.3. A coarse premouse is a pair (M.5) such that M is
transitive, 0 € M, and

(1) M & ZC + X,-Replacement.

(2) Suppose that F : Ms; — M N Ord is definable from parameters in M,
then F is bounded in M.

(3) ¢ is strongly inaccessible in M .

We fix some notation.

DEFINITION 4.4. If E is an extender, then

) jg:V — Mg = Ulty(V, E) is the ultrapower embedding.

) f is a generator of E if & # jp(f)(s) foralls € [E]%? and f € V.

) ve =sup {& + 1|¢ is a generator of E'}.

) K = CRT(E) = CRT(]E) and K}, = ]E(HE)

) p(E) =sup{a|V, C Ultg(V E)}.

) e =sup{a|jep(a) <ve}.

) SP(E) is the set of all cardinals y < 1z such that there is a generator &
of E such that sup(jg[y]) < & < je(y).

(8) E is w-hugeif p(E) = /. where 4 > k[ is least such that jz(1) = A.

(1

(2
(3
(4
(5
(6
(7) s

REMARK 4.5. (1) Note that p(E) > kg + 1. 1z is a cardinal. and
1 = sup(SP(E)). However assuming for example that there is a
supercompact cardinal, it is not always that case that 1z € SP(E).

(2) SP(E) is the set of cardinals z for which E induces uniform ultrafilters
on 1, these are the spaces associated to the (uniform) ultrafilters of E.
Every cardinal : € SP(E) must have cofinality at least kz. however
SP(E) need not contain even all the regular cardinals : such that
kg <1< 1.

DEFINITION 4.6. Suppose that (M,d) is a coarse premouse. An iteration
tree, T, on (M.6) of length 7 is a tree order <7 on 7 with minimum element
0 and which is a suborder of the standard order, together with a sequence

(Mo Ep. oo ia<nf+1<ny<ra)
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such that the following hold.

(1) My= M.

(2) jya: M, = M, forally <r a <.

(3) Suppose that o + 1 < 7. Then o + 1 has an immediate predecessor,
a*, in the tree order <7 and
a) E, € joo(M N Vs) and M, F “E, is an extender which is not

w-huge”:

b) Ifa* < athenig, +1 <min {p(Ep)|a* < f< a}:
¢c) My, = Ulty(M,-, E,) and

ja*.a+l : Ma* — Ma+l

is the associated embedding.
(4) If 0 < B < n is a limit ordinal then the set of  such that o <7 f is
cofinal in  and My is the limit of the M, where oo <7 f relative to
the embeddings: j, g.

DEFINITION 4.7. Suppose that (M.J) is a coarse premouse and that 7T is
an iteration tree on (M, J) with associated sequence,

(Mo Eg. jooia<nfp+1<ny<ra).

Suppose that & € Ord. Then the iteration tree, 7, is a (+0)-iteration tree if
forallae + 1 < 7,

sup {1z, | f* <a <} +0 < p(E,).
where for each f + 1 < #, f* is the T predecessor of f + 1.

REMARK 4.8. By the definition of an iteration tree, if f* < a < f then
necessarily
g, + 1< p(Ea)-
Thus every iteration tree is a (+0)-iteration tree and every iteration tree of
finite length is a (+1)-iteration tree.

DEFINITION 4.9. Suppose that (M., J) is a coarse premouse. An iteration
strategy of order wy + 1 for (M.J) is a function I such that the following
hold.

(1) Suppose that 7 is an iteration tree on (M, &) of limit length such that
LTH(7) < w;. Then T € dom(I) and I (7T) is a maximal wellfounded
branch of 7 of limit length.

(2) Suppose that 7T is an iteration tree on (M.d) of limit length such
that LTH(7) < ;. Suppose that for all limit # < LTH(T), I(T|n) =
{&<n|&<7n} Then I(T) is a cofinal wellfounded branch of 7.

DEFINITION 4.10. Suppose that (M, ) is a coarse premouse and that 7 is
an iteration tree on (M, J) with associated sequence,

(Mo Ep. jpo:a<nf+1<ny<ra).
The iteration tree 7T is strongly closed if for alla + 1 < n:

(1) T isa (+1)-iteration tree; and
(2) LTH(E,) is strongly inaccessible in M, and p(E,) = LTH(E,) in M.
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DEFINITION 4.11. Suppose that (M, J) is a coarse premouse. A strongly

closed iteration tree
T =My Ep. jyo:a<nf+1<ny<ra)
on (M.9) is a O-strongly closed iteration tree if for all oo + 1 < 17,
LTH(E,) < JjE, (KE,) .
where for each a + 1 < 7,
JE, t Mo — Ultg(M,, E,)

is the ultrapower embedding (as computed in M,,).

DEFINITION 4.12. Suppose that (M.d) is a coarse premouse and that 7T is
a 0-strongly closed iteration tree on (M. d) with associated sequence,

(Mo Ep. joo o<y f+1<ny<ra).

Then

(1) T is maximal if LTH(E) < kg, forall f < a* <a + 1 <7.
(2) T is strongly maximal if K, < kg, forall f<a” <a+1 <.
(3) T is non-overlapping if ki, < kg, forall f+1 <7 a+1<n.

DEFINITION 4.13 (Weak (w; + 1)-Iteration Hypothesis). Suppose that
(M., 9) is a countable coarse premouse and that

n:M—)V@

is an elementary embedding. Then (M,J) has an iteration strategy of order
i + 1 for 0-strongly closed maximal iteration trees on (M.J).

DEerFINITION 4.14 (Weak Unique Branch Hypothesis). Suppose that
(Ve.d) is a coarse premouse that 7 is a countable 0-strongly closed maxi-
mal iteration tree on (Vg.d) of limit length. Then 7 has at most one cofinal
wellfounded branch.

REMARK 4.15. The Weak (w; + 1)-Iteration Hypothesis and the Weak
Unique Branch Hypothesis are special cases of the fundamental iteration
hypotheses of [11]. The necessity of the restriction to strongly closed iteration
trees for the Weak Unique Branch Hypothesis is given in Theorem 4.16.
Note that 0-strongly closed iteration trees which are strongly maximal are
necessarily non-overlapping.

We give two counterexamples to the attempt of formulating variations
of the iteration hypotheses above by weakening the requirement that the
iteration trees be 0-strongly closed and maximal. The proofs are given in [20].

THEOREM 4.16. Suppose that there is a supercompact cardinal. Then there
exist an extender E such that

VE = (22K) Me ,

where k = kg and My = Ulty(V. E). and a 0-strongly closed strongly maximal
iteration tree
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T =(My.Ep. jra:a<nf+1<wy<ra)

on Mg of length w such that

(1) kg, > Kk} forall o < w,
(2) T has two wellfounded branches.

THEOREM 4.17. Suppose that there is a supercompact cardinal. Then there
exist an extender E such that

ve = (27)",

where k = kg and M = Ulty(V, E), and a 0-strongly closed strongly maximal
iteration tree

T =(My.Ep. jya:a<nf+1<wy<ra)

on Mg of length w? such that

(1) ke, > K5 forall o < @2,
(2) T has only one cofinal branch and that branch is not wellfounded.

4.2. Martin—Steel extender sequences. Animportant precursor to the fine
structural models of Mitchell-Steel of [12] are the Martin—Steel inner models
of [11] and these represent the natural generalization of the definition of
L[U] to larger inner models.

Before giving the relevant definitions, we note that replacing U by a single
extender cannot work. Of course this requires being a bit careful about
defining L[E] where E is an extender.

DEFINITION 4.18. Suppose E = (E, : a € [#]<?) is an extender. Then
L[E] denotes L[Pg] where P = {(a.B)| B € E,}.

The following lemma shows that using just one extender cannot suffice to
generate even an inner model with 2 measurable cardinals (if that extender
is short in the sense that LTH(E) < ). This may seem surprising at first
since a single extender, even with the requirement LTH(E) < &}, can witness
the existence of large cardinals far beyond the level of a single measurable
cardinal.

LEMMA 4.19. Suppose that E is an extender such that LTH(E) < jg(k)
where
Je:V = Mg =2 Ulty(V.E)
is the ultrapower embedding. Let U be the normal ultrafilter on k given by jg.
Then LIE] = L[U].

Using longer extenders does not really help but the requisite analysis is
more involved since if there are two measurable cardinals then there is an
extender £ such that in L[E] there is an inner model with two measurable
cardinals and so

LIE]# L[U].

where U is the normal measure on kg given by E.
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THEOREM 4.20. Suppose that F is an extender and E = F|j (&) for some
& < jr(kp) such that

Vn+w - MF = Ulto(V,F),
wheren = jp(&). Thenin L[E] there is no inner model with a Woodin cardinal.

REMARK 4.21. If one drops the requirement that £ = F|y for some
n < p(F) (still requiring n < jr (&) for some & < jr(kr)) thenitis relatively
consistent (from a proper class of measurable cardinals) that in all set-generic
extensions of V/, the following holds:

(1) For every set A, there exists an extender E such that 4 € L[E] and
such that LTH(E) < jg(¢&) for some & < jg(kE).

A natural conjecture is that if sufficient large cardinals exist in V', then (1)
must hold outright in V.

Thus one really needs to consider sequences of extenders and the Martin-
Steel extender models are of the form L[E] where

E C (Ord x Ord) x V

is a predicate defining a sequence of (total) extenders. The predicate E is
defined such that for all (e, #) € dom(E), the set,

{aeV|(e.p).a)e E}.

is an extender which we denote by E¢. In the case of the Martin—Steel
inner models, the extender E g is the extender derived from an elementary
embedding
jiV-M

such that P“(a) C M and such that o < j (k).

For (a. ) € dom(E). E|(a. B) is the extender sequence given by restrict-
ing E to the set of all (. y) such that (. y) <z (a. f) in the lexicographical
ordering of pairs of ordinals:

El(a.p) = {((n.y).a) € E|(n.y) <z (. )}

and L[E |(a, B)] is formally defined as L[P] where P is obtained from
E|(a. B) in the natural fashion as defined above in the case of a single
extender.

DErINITION 4.22. An extender sequence,
E = (Ef : (o ff) € dom(E £))

is a Martin—Steel extender sequence if for each pair (o, ) € dom(E):

(1) (Coherence) There exists an extender F such that
a) a < p(F) and p(F) is strongly inaccessible.
b) Ef = Fla.
c) (shortness) a < jr(kr).
d) jr(E)|(a+1,0) = E|(a. p).
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(2) (Novelty) For all g* < g, (o. p*) € dom(E) and
Ej. 0 LIE|(e. p)] # Ef 0 LIE|(e. p)].
(3) (Initial Segment Condition) Suppose that
k<a®<a,
where « is the critical point associated to E}.
Then there exists f* such that (a*, f*) € dom(E) and such that
Ef. N LIE|(a” +1.0)] = (E§f|e”) N LIE|(a” + 1.0)].

The Martin—Steel extender models are actually defined in [11] as L[P]
where P is a predicate defined from a sequence of sets of extenders. Such
sequences are called Doddages and the approach of constructing extender

models from Doddages has the advantage that the resulting inner model can
be ordinal definable.

DEFINITION 4.23. A Doddage is a sequence € such that
dom(€) C Ord x Ord

and such that for all (. f) € dom(€), £(a. f) is a set of extenders of
length c.

DEFINITION 4.24. Suppose that € is a Doddage. Then L[£] denotes L[P¢]
where P; is the set of all (. f. 5. @) such that

(1) (. p) € dom(é).

(2) s € [a]*, .

(3) a € E(s) forall E € (. B).

Suppose £ is a Doddage. For each (a. f) € dom(€) we denote &(a. f)
by 5',?.

DeriNITION 4.25. A Doddage,

£ =(£} : (o p) € dom(&))

is a Martin-Steel Doddage if for each pair (o, f) € dom(£) and for each
extender E € SE,

(1) (Coherence) There exists an extender F such that
a) a < p(F)and p(F) is strongly inaccessible,
b) E = Fla,
¢) (shortness) a < jr (sr),
4) jr(@)l(a +1.0) = (. p).

(2) (Novelty) For all 8* < B. (a. p*) € dom(€) and for all E* € £2

ﬂ* s
E* N LIE|(a. p)] # E N LIE|(cv. P)]-
(3) (Initial Segment Condition) Suppose that

kg <a' <a.

Then there exists (a*, *) € dom(€) and there exists E* € SE‘; such
that

E*NLE|(a* +1.0)] = (Ela*) N L[E|(a* +1,0)].
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DEFINITION 4.26. Suppose £ is a Martin—Steel Doddage. Then é 18 good
if for all (o, ) € dom(€), for all Ey, E; € £2, EgN L[E] = E| N LIE].

THEOREM 4.27 (Martin-Steel). Suppose that the Weak (w; + 1)-Iteration
Hypothesis holds and that £ is a Martin—Steel Doddage such that € € Vs for
some strongly inaccessible Mahlo cardinal 6. Then £ is good.

THEOREM 4.28 (Martin—Steel). Suppose that the Weak (w; + 1)-Iteration
Hypothesis holds and that there is a supercompact cardinal. Then there exists
a Martin—Steel Doddage £ such that there is a superstrong cardinal in L[E].

The following lemma follows from the definition of the coherence
condition.

LEMMA 4.29. Suppose that & is a Martin-Steel Doddage, (o, f) € dom(E).
and that F is an extender of minimum length which witnesses the coherence

condition for € at (a. B). Then kp = 1.

REMARK 4.30. (1) Theorem 4.31, which is from [20], is the general-
ization of Kunen’s theorem that L[U] is uniquely specified by the
measurable cardinal x associated to U. We include the proof for the
sake of completeness and because it provides a good introduction to
the basic comparison arguments of inner model theory.

(2) The assumption that (§.&;) € Vs for some strongly inaccessible
Mabhlo cardinal § is only necessary because of how the Weak (w; +1)-
Iteration Hypothesis is formulated. Similarly for Theorem 4.27.

One really just needs that (§.&) € Vs for some strongly
inaccessible 0 such that

Vs E <& and &, are Martin-Steel Doddages.”

which must hold if § is strongly inaccessible and Mahlo.
Alternatively, one could just assume there is a proper class of
strongly inaccessible cardinals.

THeOREM 4.31. Suppose that the Weak (w1 +1)-Iteration Hypothesis holds.
Suppose that & and &, are Martin—Steel Doddages such that

dom(&)) = dom(&))

and such that (&,. &) € Vs for some strongly inaccessible Mahlo cardinal 0.

Then

L[&] = L[&].
and moreover for all (a.f) € dom(&y). for all Ey € & p). for all
E; € & (e B),

EyN L[go] =EnN L[(‘jl].
Proor. We sketch the proof. Fix ¢ such that
(Eo. Ey) € Vs

and such that J is a strongly inaccessible Mahlo cardinal.
It is convenient to fix some notation. Suppose that £ and F are Martin-
Steel Doddages such that dom(£) = dom(F). Define £ = F if
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(1.1) L[] = L[F]. i i i
(1.2) Forall (a. B) € dom(&), forall E € £(a. B). for all F € F(a. ).
ENL[E]=FNL[F).

Fix (&.&.0) and suppose toward a contradiction that the theorem fails.
Suppose that (Vg,d) is a premouse such that & € V; and such that there
exists a countable elementary substructure,

X < (V@,é)

such that (M., J,,) has an (w; + 1)-iteration strategy for O-strongly closed
maximal iteration trees where (M. d),) is the transitive collapse of X .

Thus 3 3
Vs E & £ &1.
Fix a countable elementary substructure,
X < (Ve.9).

such that (M.Jdy,) has an (w; + 1)-iteration strategy where (M.J,,) is the
transitive collapse of X.

By the elementarity of X, we can suppose without loss of generality that
(£0.€1.9) € X. Let (EM.EM) € M be the image of (. &) under the
collapsing map. Thus

MnVs, EEM £ EM.
Fix an (w; + 1)-iteration strategy for (M. J,,) and following this strategy we
shall define two iteration trees

T:(MZ,EZ,j;CX:agwl,ﬂ<w1,y<7a>
and
5:<M&S,E"g,jfa a<ow,Lf<onLy<s a>

on (M. d),) each of length w; + 1 such that for all f < w;, the predecessor
of f + 1 relative to each of the two iteration trees is as small as possible for
that iteration tree.

To define S and 7, we define a continuous increasing sequence

((Bs.Br): p <o)
of pairs of ordinals and define (S|fs.7|fr) by induction on f with
(0s,0+) = (0,0). The limit stages are immediate. Therefore we can suppose
that f < w; and that

Jops i M — M,
and

Jdpr M = M]
are given. We define ((f+1)s. (84 1)7) and at the same time we will define
Ep if (f +1)s # Bs and define Eg; if (B + 1)7 # B7. It is convenient to
use the following notation. Suppose 4. B are subsets of Ord x Ord, then

A<, B

if A = B orif A is an initial segment of B relative to the lexicographical
order on Ord x Ord.
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CasE 1. Suppose that there exists
(n.7) € jggs (dom(&7)) N jdy, (dom(&))
such that
(2.1) j§gs (dom(EY) (. 7) = jd 5 (dom (&) [(n. 7).
(2.2) there exist
Es € (Jigs (£0")) (n.7) U (g, (&) (1.7)
and . }
Er € (jdp, (&) (1.7) U (idpy (E1)) (1.7)
such that
EsNMg NM] #ErnMj nM].

Let (#.7) be the least such pair (relative the lexicographical order) and
define E "ES to be an extender in M bss which witnesses the coherence condition

for Es relative to j§, (&)7) if

Es € (jops (&) (n.7)

or witnesses coherence condition for Es relative to j§ 5o (EM), with LTH(E ;5 )
as small as possible such that

LTH(ES,) = p(Ef)
and such that LTH(E‘;S) is strongly inaccessible in M/‘)’Ss . Since both
Jops (£)) and Jops (€M) are Martin-Steel Doddages in M 5. and since
&. & € V., it follows that E ;5 exists.
Similarly, define E/))TT to be an extender in M ',)TT which witnesses the
coherence condition for £ relative to either j&— b (5’6‘4 ) if

Er € (jip, (&) .7)
or witnesses coherence condition for E relative to jg’— ﬁT(SIM ) otherwise.
with LTH(EZ—T) and small as possible such that
LTH(E] ) = p(E])
and such that LTH(EZT) is strongly inaccessible in M 57; . Exactly as above,
since both j (&) and j, o (€M) are Martin-Steel Doddages in M -
and since &, &; € V., it follows that E'Z); exists.
Define ((f + 1)s. (B +1)7) = (Bs + 1. pr + 1).
CASE 2. Otherwise. Then
Jdpr (dom(&")) £z iy, (dom(&5"))
and N N
Jogs (dom(&37)) £ jdp, (dom(&7)).

Let (.y)7 = min <j(¥,—/3 (dom(&))) \Jés (dom(f&))) and let
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(.7)s = min (&, (dom(E)))) \jd s (dom(&)")).
where in each case the minimum is relative to the lexicographical order.
Thus (1.7)s # (#.y)7. There are two subcases. If (. 7)s < (1.7)7 then

let £ Es eM ﬁ?s be an extender which witnesses the coherence condition for
some extender

E € (jigs (807)) ((.7)s)
with LTH(E gs) as small as possible such that

LTH(ES,) = p(E},)

and such that LTH(E fs) is strongly inaccessible in M bss . Exactly as above,
since j(‘f_ﬂs (é:é” ) is a Martin-Steel Doddage in M ﬁ?s and since & € Vj it
follows that E_ exists.

Define ((f + 1)s. (B + 1)7) = (Bs + 1. pr).
If (7.7)7 < (.y)s then let EﬂTT eEM /;TT be an extender which witnesses
the coherence condition for some extender

E € (jdg, (&) ((n.9)7)
with LTH(E/))TT) as small as possible such that

LTH(ES, ) = p(Ef,)

and such that LTH(EZ—T) is strongly inaccessible in M ﬂ7; )

Define (( + 1)s. (8 +1)7) = (Bs. pr + 1).
This completes the definition of S and 7. If at some stage f neither case
applies then it follows that (interchanging S and 7T if necessary)

(3.1) jgp, (dom(&7)) <c jdy, (dom(&31)).
(3.2) forall (3.7) € jg_—ﬂs (dom(&)).

S T _ S T
ENMENM] =FnMg nM].

for all

E € (Jigs (&) 1.0) U (g, (EM)) (1.7)
and for all

F e (jdp, (&") n.7) U (idp, (€M) (n.7).
If
Jops (dom(E)) = jd s (dom(E)) .
then either } y
ME Vs ) F dops (€)= Jogs (EM)

Jopg
or

M/)?; n VJ}Z;;T@M) = ]g—/)’T(géw) = ]gﬂT(gy)
(depending on whether j(‘fﬂs ©Oun) < Jd, s, (On) or whether il 5 Oum) <
i 45 (6a)) and this contradicts the choice of (M, EY . EM ., 5y).

IF /55 (dom(&}1)) is a proper initial segment of 7, P (dom(&Q")) then it
follows that
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S S (MY _ S (FM
M O Vis, o) F Jops (&) = Jips (&)
and this again is a contradiction. 3
To see this latter claim fix (170, o) € j 5, (dom(&3")) such that

jés,ﬂs (dom(fé”)) = j07.—ﬂr (dom(fé‘/’)) |(10. 70).
Since j ;. (E31) (9. 70) is defined it follows that
M OV 5, F “(LIED® and (L[F])* exist.”

where £ = j({ﬁT (EM)|(0. 70) and where F = j({ﬂr (EM)|(no. 70). Further
since (M ',)7; , jg: P (0ar)) is iterable,

(D)™ = (Lig)*
and ~

(LIFD*) "7 = (LIFD*.
Now by (3.2). it follows that

M O Vs o) F Jips (E07) = Jips (E17)

as claimed. Therefore at every stage ff < wy, either Case 1 holds or Case 2
holds.

Note that for each extender, £, occurring in either S or 7, in the model
from which E is chosen there exists / such that

(4.1) A= |V, and p(E) = LTH(E) = 4,

(4.2) kg = 1.

(4.3) Aisnot a limit of inaccessible cardinals.

To see that (4.2) holds, it suffices to see that if £ is a Martin—Steel Doddage.
(o, B) € dom(€) and if F is an extender which witnesses the coherence
condition for £(a. B) then necessarily (a. B) € jr(V,) where k = k.

This has two consequences. First, (4.1)—(4.3) imply that both S and T are
non-overlapping; in fact, for all f; < frif f1 +1 <s f»+1 then LTH(Ef}) <
CRT(E g ). and similarly for 7. This is a slightly stronger condition. Second.
by (4.2) both S and 7 are iteration trees involving only short extenders,
and so (4.1)—(4.3) imply that both S and T are (41)-iteration trees (which
implies that they are each (+0)-iteration trees where @ is the least measurable
cardinal of M). Therefore the iteration strategy fixed for (M.d),;) must
supply cofinal, wellfounded branches at all limit stages ff < w;.

We note that unlike the usual comparison arguments, it is not obvi-
ously the case that the lengths of the extenders in these iteration trees
are nondecreasing, more precisely it is not obvious that for all f; < /s,
LTH(E }651 ) < LTH(E ksz ). For example, suppose that E }651 is chosen to witness

the coherence condition relative to j§ 5 (£)"). Then there is no reason to
expect that E ;} coheres j(‘f 5 (5~1M ) and so at the next stage of the construction
of (8. 7T) there may be an “earlier” disagreement.
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We obtain a contradiction is the usual fashion. Let
Z < H(w,)
be a countable elementary substructure such that {S.7} € Z. Let
bs ={f<w1|f<s o}

and let by = {f < w1 | f <7 w;}. Thus bs and by are each closed cofinal
subsets of w;. Let fz = Z N w,. The image of (S.7 ) under the transitive
collapse of Z is (S|(fz 4+ 1). T1(fz + 1)).

Let N be the transitive collapse of X" and let

n:N — H(w)

invert the transitive collapse. Thus f, € bs N b7 and

(5.1) n(M/}SZ) = Mg and n]M/}SZ = j,gz,wl’

(5.2) n(M/}SZ) = Mg and n]M‘S = jl‘gz o

We now come to the key points. Let a5 be such that 87 = (5 )* computed

relative to <s, and let o be such that 8z = (o )* computed relative to <7
By (5.1)—(5.2) and since the iteration trees are non-overlapping:

(6.1) Forall 8> f. LTH(E;)?) > Bz and LTH(E/)T) > Bz:
(6.2) Forall f > .
MES N Vﬂz+(u = M/}SZ N VﬂZer
and
M NVg,i0=M] NVj,i0
(6.3) Either
ESs 0 M5 0 M, = (ELmn(ES;)) 0 ME, 0 M.
or
Ely M, 0 M, = (ESIrn(ET) ) 0 M 0 M

(6.4) For each a such that aZ < a <, LTH(ES ) < LTH(E?).

(6.5) For each a such that o) < a < oy, LTH(ET ) < LTH(E]T).
The third of these claims, (6.3), follows from (5.1) and (5.2) since both S
and 7 are non-overlapping.

To see that (6.4) holds, suppose toward a contradiction that a5 < a < w;
and that LTH(E fs) > LTH(ES). Let & be such that
zZ

(@)" =sup{f <a|p€bs}.
and such that & + 1 € bs, where (&)* is computed relative to <s. Then
& > aand (&)* > af + 1 since @ > o and o + 1 € bs. But
CRT(ES) <min {p(E})|(6)* < p<d} < LTH(E]) < LTH(E%),

and since S is non-overlapping. LTH(ESs) < CRT(EZ). This is a contradic-
zZ

tion. The proof that (6.5) holds is similar as is the proof of (6.1). Finally (6.2)
follows from (6.1) since each of the extenders, E ';? and E7 . is an extender
of minimum possible length which witnesses the coherence condition for a
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Martin-Steel Doddage (such extenders cannot have length which is a limit
of inaccessible cardinals).

We fix some notation. Suppose that f < w; and that (.y) €
Js 5 (dom(&)). Let Mgo_ P (n.7) denote the structure,

(L [J5s (&) 1G] - dss (E7) 1n.y) N L [j5s (E87) 1. 7)]) -

and let M‘gl /),(17, y) denote structure,

(L [jss EM) 1] . gss (EMYy) N L [j5s (EM) 1n.)]) -

Similarly, suppose that § < ;. and that (7.7) € j, ﬂ(dom(go)). Let
MZ; P (7,y) and Mg ﬂ(;y, 7) denote the analogous structures defined relative

to 7.
Let (7.7)s € j(‘faf (dom(&))) be the element involved in the definition

of E fs. By (6.4) and the fact that the extenders ES are chosen of minimal
z
length to witness the coherence condition:

(7.1) Suppose that a5 < a < ;. Let (5,y) be the element of
j5(dom(&)) involved in the definition of ES. Then 7 <  where

7°.9%) = (n.7)s-
We claim that for all £ such that af < p <o

(8.1) j(fag(dom(fo)ﬂ(n,y)g = j§p(dom(&))|(n.7)s = jdz(dom(&))]

(n.7)s:
(8.2) Let (°.y°) = (,7)s. then if a5 < B,

Jip(dom(&0))[(n.7)s = j5p(dom(&))|(5° +1.0)
and
Jd g(dom(&))|(n.7)s = jd 5(dom(&))|(n° + 1.0):
(8.3) Forall (n*.7") € jgs(dom(&))|(n.7)s.
ENMSNM] =FnM;nM],

for all

E € (j5g(&0)) (n.y*) U (J5s(&1)) (n*.y™)
and for all

F e (jipéo) ™ .y*) U (Jdg(&1) *.y™):
M3 (.7)s) = ME ([((1.7)s) = MZ s((n.7)s) = M s((n.9)s):
M (5.7 s((n.9)s) = ML s((n.9)s):

The only potential issue is (8.7): (8.1)—(8.6) follow from (6.1)—(6.5) and
(7.1) by relatively standard arguments. The proof of (8.7) uses (8.1)—(8.6)
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and the definition of S and 7. There are two additional relevant points.
First,
w1 C ]\4‘S

]

and so for alla € MJ . if
M(f1 E “a? exists”

then a” € M(fl (and similarly for M(Z: ). Second, if € is a Martin—Steel
Doddage and if (.y) € dom(€) then since (5. 7) is defined, necessarily

5 4.
(LIE|(n.7)])" exists.
Similarly, let (.y)7 € joa (dom(&))) be the element involved in the

definition of ET . By (6.5), for all B such that o < B < wy;

CAV (dom(ﬁo))\( )7 = Jdp(dom(&))(n.7)7 = j5s(dom(&))]

(’7 V)T,
(9.2) Let (y7.y7) = (.y)7. thenif o < B,

J&g(dom(&))|(n.7)7 = j§y(dom(&))|(nT + 1.0).

and

Jd p(dom(E))|(n.7)7 = Jjd y(dom(&))[(n” +1.0):
(9.3) Forall (n*.y*) € Joﬁ(dom(Eo))\( PIT
EﬁMﬂ mMﬂT:FmM;mM},

for all
E € (j§p(&0) *.y*) U (J5s(E1) n*.y™)
and for all
F e (joT (€0)) ("7 U (Jdp(&1) . 77):
94) MZ ((.9)7) = MZ [((n.7)7) = M ((n.7)7) = MG - ((n.7)7):
9.5) ME ((1.7)7) = ML [(Gn.9)7) = ME o ((n.9)7) = ME _+((n.9)7):
9.6) M, (0n.7)7) = Mz (o))
(97)( Lo )T)) e MJ M.
Using (8.1)— (8 7) and (9.1)—(9.7), the argument is now very much like the

standard arguments in a comparison proof.
By the definition of S, F fs witnesses in M fs the coherence condition for
Z Z

Efs\ns relative to either j(‘)sas (&) or j(‘)sas (€)) where as in (8.2), 5° is the
4 -z Xz

first coordinate of (77.7)s.
Similarly, by the definition of 7, EaTT witnesses in MaTT the coherence con-
4 Z

dition for EZ—T In7 relative to either jg—aT(g’o) or jg—aT(gl) where as in (9.2),
z 0z Q7
5" is the first coordinate of (37,7).
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By (6.3). (8.1)—(8.7), and (9.1)—(9.7). and the novelty and initial segment
conditions for Martin—Steel Doddages,
178 — ’7T
and (1.7)s = (n.y)7. This implies that both Efs and E(Z—T were chosen

according to (Case 1) in the construction of S and 7 and moreover the
corresponding stages of the construction are the same, i.e., for some f < wy,

(Bs. pr) = (aZ.aZ).
and (B + Ds. (B +1)7) = (a5 + 1.0 +1). But
(ESsln) N Mg, 0 MJ = (El-In) 0 Mg, 0 MJ.

where 7 = 7S = 57, and this contradicts the disagreement which must have
been satisfied in the definition of (E ;5 , EﬂTT) =

4.3. Martin—Steel extender sequences with long extenders. Eliminating the
shortness requirement, (1¢) of Definition 4.22, in the definition of Martin—
Steel extender sequences one obtains the natural extension of Martin—Steel
extender sequences to the case of long extenders.

DErINITION 4.32. An extender sequence,
E = (Ef :(a. ) € dom(E))
is a generalized Martin—Steel extender sequence if for each pair (a. B) €
dom(E):
(1) (Coherence) There exists an extender F such that

a) a < p(F)and p(F) is strongly inaccessible,
b) Eﬁ = Fla,

c) jr(E)|(a+1,0) = E[(a. p). i
(2) (Novelty) For all g* < B, (o, f*) € dom(E) and

Ej. N LIE|(. p)] # Eff N LIE|(a. B)].

(3) (Initial Segment Condition) Suppose that
k<a®<a,

where « is the critical point associated to E}.
Then there exists #* such that (a*, f*) € dom(E) and such that

Eg. NLIE|(a® +1.0)] = (Ef|a™) N LIE|(a* + 10)].

4.4. Fast club forcing. We fix some notation. For each strongly inaccessi-
ble cardinal J, let Qs be the following partial order (which adds a fast club
at §). Conditions are pairs (¢, X') where ¢ is a bounded closed subset of ¢
and X is a set of closed cofinal subsets of 0 with | X| <.

Suppose (d. Y), (c. X) € Q5. Then (d. Y) < (c. X) if the following hold.

(1) ¢ =dn(sup(c) +1)and d\c C NX,
2) X CvY.
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Thus Qj is (<d)-closed. Suppose G C Qj is V -generic and let
Co =U{cl|(c,X) € G}.

Then Cg is a closed cofinal subset of 6 such that for all closed cofinal sets
D c o with D € V, Cg\D is bounded in d (so Cg is a fast club in §).

LemMma 4.33. Suppose k is strongly inaccessible and A C k. Suppose
G C Qy is V-generic and in V[G] there is a club D C Cg such that

DnyeL[A]

forally < k. Then V,, C L[A].

Proor. Fix a term 7 for D. By the homogeneity of Q. we can suppose

lIF“tNye L[A]forally < k”

and that
1 I+ “zis closed, cofinal in Cg.”

For each y < k. let D, be the set of (¢, X') € Q, such that

(1.1) y < sup(e),

(1.2) for all < sup(c), either (¢, X) IF “a € t” or (¢, X) IF “a ¢ 1.”

(1.3) {a < sup(c)|(c, X) Ik “a € £} is cofinal in sup(c).

Thus for each y < k. D, is dense in Q,. Further D, is (<x)-closed. More
precisely if
((car Xo) < 1p)
is a decreasing sequence in D, where # < «, then
(¢,X) € D,,
where

(2.1) ¢ = (U{cala<n}) U{sup (U{cala<n})}.

(2.2) X =U{X,|a <7}

LetD = {D, |y < x}. Thus a filter 7 C Q, is D-generic if and only if for
each y < k there exists (¢, X) € Do N F such that y < sup(c).

If F is a D-generic filter let D be the interpretation of 7 by F. Thus D
is closed cofinal in k and for all y < k, D Ny € L[A]. The key claim is the
following.

(3.1) Foreach B C k, there exists a pair (Fy, F;) of D-generic filters such

that if

(Mot x < K)
is the increasing enumeration of D z,N D r, thenforalla < k., o0 € B
if and only if

min{n € Dx, |na <n} <min{n € Dx, |1, <n}.

Since for all y < k. (Dx, Ny.Dx Ny) € L[A], (3.1) implies that for all
y < Kk, BNy € L[A] and the lemma follows.

The proof of (3.1) follows by noting the following. Suppose (cy. Xo) € Q.
and that either (cy. Xy) € D or ¢y = 0. Then for each # < & such that
sup(co) < 7. there exists (c;. X) € D such that
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(41) (C],X]) < (Co,Xo),
(4.2) n < sup(cr),
(4.3) ey Ny = co.

One uses this to construct decreasing sequences
((ca- X3) 1 @ < )
and
(el x):a< k)

of conditions in Dy by induction on « such that for all a the following
hold.

(5.1) coﬂco —(Z)
(5.2) d, nely=cdnel
(53) Ifa > Oandalsahmlt then

a) cg = U{cg|f<a}Usup (U{cy|f<a})
b) ¢ —U{cﬂ\ﬂ<a}Usup(U{cﬂ\ﬂ<a})
c) max( 9) = max(cl).
d) if « is the #-th nonzero limit ordinal then # € B if and only if
min(c?,\c?) < min(cl ;\cl).
The filters
(6.1) Fp generated by {(cJ. X)) : a < K},

a

(6.2) F generated by {(c}. X1) : a <K},
witness (3.1) since
(7.1) Dr, N Dx = {max(c)) | a is a nonzero limit ordinal }.
(7.2) Dr, N DF = {max(c})|a is a nonzero limit ordinal }. -
4.5. Weakly X,-definable inner models.
DEFINITION 4.34. A sequence
N = (N, : a € Ord)
is weakly Xy-definable if there is a formula ¢(x) such that
(1) Forall <1 <n2 < n3.if (Ny)"n |B = (Ny)" | B then
(Ng) | = (Ng) | = (Ng)"s | B;
(2) Forall B € Ord, N|B = (Ng)"|p for all sufficiently large 7.
where for all y, (Ny,)" = {a € V, | V, E ¢[a]}.

DEerINITION 4.35. Suppose that N C V is an inner model and N F ZFC.
Then N is weakly X,-definable if the sequence

(NNVy:aeOrd)
is weakly X,-definable.
REMARK 4.36. If P C V is aclass which is X,-definable then the sequence
(L[IP1NVy @ a € Ord)
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may not be weakly X,-definable. However inner models N which are
Y,-definable are weakly X,-definable and as a special case HOD, being
%,-definable, is weakly X,-definable.

This implies of course that the sequence

(HOD NV, : a € Ord)

is weakly X,-definable. More generally, for each a € Ord, let T, be the
Y,-theory of V' with parameters from V. Then the sequence

(Ty : a € Ord)
is weakly X,-definable.

REMARK 4.37. The increasing enumeration (6, : a € Ord) of all
supercompact cardinals is weakly X,-definable.

DEerFINITION 4.38. Suppose that N is a transitive inner model of ZFC
which is weakly X,-definable and Vs <y, V. Then (N)"* denotes the union
of the sequence

(N o <d) = (N)".
where ¢ is a formula which witnesses that
(NNVy:ae Ord)
is weakly X,-definable.

REMARK 4.39. This is well defined in the sense that it does not depend
on the choice of the formula ¢ which witnesses that (N N V,, : @ € Ord) is
weakly X,-definable.

DErFINITION 4.40. A cardinal  is a strong cardinal if for every A there is
an elementary embedding
j:V-M
such that CRT(j) = . j(k) > A. and such that V; C M.
LEMMA 4.41. Suppose that
N = (N, : a € Ord)
is weakly X,-definable and 6 is a strong cardinal. Then N N Vs = (N)"5.

ProoF. Let ¢(x) be a formula which witnesses that N is weakly
2,-definable.

Assume toward a contradiction that N|6 # (N)"s. Then there exists 7 > &
and f < ¢ such that

N|B = (Ng)"1|p # (Ny)"|B.

Since 0 is a strong cardinal, Vs <z, V" and so there exists f < 7y < 0 such
that

N|B = (Ng)"n|B.
But then

(1.1) B<no <o <7.
(1.2) (Ng) | = (Ng)",
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(1.3) (Ng)"m|p # (Ng)"
which is a contradiction. =

LemMma 4.42. Suppose that N is a transitive inner model of ZFC, N is
weakly ¥,-definable, o is an extendible cardinal, and that

Vs C N.

Then V = N.
PrOOF. Let ¢ be a formula which witnesses that
(NNVy:aeOrd)
is weakly X,-definable. Since 0 is a strong cardinal, by Lemma 4.41,
(Vo 1< 3) = (Ny)".
Since ¢ is an extendible cardinal, for a proper class of «,
Vs < Vi
and so for a proper class of «,
(Vo :a< k)= (Ny)=
Therefore
(Vo:aeOrd)=(NNV,:acOrd)
andso VV = N. -

THEOREM 4.43. Suppose that there is an extendible cardinal. Then there is
a class-generic extension V]G] of 'V in which the following hold.

(1) [G] — (HOD)"14)
(2) V[G], = V, where y is the least strongly inaccessible cardinal of V.
(3) Every extendzble cardinal of V' is an extendible cardinal in V[G].
(4) Suppose E C Ord and d are such that the following hold.
(a) L[E] is weakly Z,-definable.
(b) 6 is an extendible cardinal in V[G].
(c) Let X C 0 be the set of all k < 6 such that there is an elementary
embedding,
J VG = VIG] )4
with CRT(j) = k and j(k) = &. where A is the least strongly
inaccessible cardinal above k. Then there exists Y C X such that
Y né e L[E] for all £ < 6 and such that
sup(Y) = sup(X) = 4.
Then L[E] = V[G].
ProoF. Let G be V' -generic for the backward Easton iteration
(Py : @ € Ord),
where the following hold for each .
(1.1) If o is strongly inaccessible and Mahlo in VP then

]Paﬂ :PQ*B*Q:

where B adds a Cohen generic subset to ot and Q is the fast-club
forcing Q, defined in V"*® with y = a.
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(1.2) If @ = B+ 1 and p is strongly inaccessible and Mahlo in V¥ then
]P)aJrl = ]Pa * T,

where H codes (G,. Va1, (P 1 & < a)) into the powerset function
before the next strongly inaccessible cardinal above. The set being
coded is naturally a set of ordinals by the definition of of Py, as
the iteration P4 * B * Q, and so H can be chosen canonically.

(1.3) Otherwise Py, = P,.

By standard lifting arguments, every extendible cardinal of V' remains
extendible in V[G].

We note that the following must hold in V'[G] where for each strongly
inaccessible Mahlo cardinal y of V'[G], C, is the fast club added by G, ..

(2.1) Suppose that
m: V[Gler1 = VIGa(e) 11
is an elementary embedding such that CRT(z) < & and such that & is

strongly inaccessible in V'[G]. Let y = CRT(x). Then n(C,) = Cy,)

and
Cn(y) Ny = Cy.
We have
(3.1) X C ¢ is the set of all Kk < J such that there is an elementary
embedding,

J 2 VIGLa = VIG] i+
with CRT(j) = & and j(k) = 6 where A is the least strongly
inaccessible cardinal above k.
Therefore by (2.1),
(4.1) X C Cs. where C is the fast-club added by G at stage J.
Thus,
(5.1) Y is a cofinal subset of Cs such that Y N ¢ € L[E]for all & < 6.

Since E is weakly X,-definable in V'[G] and since ¢ is a strong cardinal
in V[G], by Lemma 4.41,

(6.1) LIE]N V[G]s = (L[E])"1b,
Further since 0 is strongly inaccessible and Mahlo in V[G].
(7.1) V[G]s C V]G4
Therefore by Lemma 4.33 and (5.1)
V[G]s C L[E].
But then by Lemma 4.42, V[G] = L[E]. —|

Theorem 4.43 has quite a number of implications which constrain the
possibilities for defining weak extender models for supercompactness which
generalize L.

We end with this section with two theorems which deal with generalized
Martin—Steel extender sequences. The first theorem is a corollary of the
proof of Theorem 4.43 and the basic argument is given in [24]. The second
theorem is a corollary of Theorem 4.43.
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THEOREM 4.44. Suppose that V- = HOD and that there is an extendible
cardinal. Then there is a generalized Martin—Steel extender sequence E such
that E is X,-definable,

V = L[E].
and such that for each (o, f) € dom(E),
a < Iﬁ}zﬁ +1.

Theorem 4.44 could just simply indicate that one needs additional con-
ditions in the definition of generalized Martin—Steel extender sequences
beyond the Novelty Condition and the Initial Segment Condition. The
following variation of Theorem 4.43 essentially rules this out.

THEOREM 4.45. Assume that there is an extendible cardinal. Then there is
a class-generic extension V]G] of V' in which the following hold.

(1) V[G] = (HOD)"1¢],

(2) Every extendible cardinal of V' is an extendible cardinal in V[G].

(3) Suppose that E is a generalized Martin-Steel extender sequence such

that E is X»-definable and such that

VIG] # LIE].
Then for all (o, f) € dom(E), if kg is an extendible cardinal in V[G]
then

a < K,}:-/c; +1.

PrOOF. Let V'[G] be the generic extension given by Theorem 4.43.
Suppose (a. f) € dom(E), kg is an extendible cardinal of V[G]. and that
a > K,z/c; +1.

Leto =k Eg and X C 0 be the set of all K < J such that there is an elementary
embedding,
J 2 VIGhw = VIG] i)

with CRT(j) = k and j(k) = J. where /1 is the least strongly inaccessible
cardinal above k.

Let

Y = {H,E;]m |0 +1.7) € dom(E) and § = F&Z;m} )

By the Novelty and Initial Segment Condition,

(1.1) sup(Y) =4.

By the Coherence Condition, ¥ C X. Therefore by Lemma 4.33,
the Coherence Condition again, and the proof of Theorem 4.43, V[G] =
LIE]. .

85. The comparison obstruction.

DEerFINITION 5.1. A cardinal x is superstrong if there is an elementary
embedding
jiV-M
such that CRT(/) = x and such that V) C M.
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Theorem 4.45 arguably rules out any direct generalization of Kunen’s
L[U] at the level of one measurable cardinal to the levels past superstrong.
The point is that if £ is a generalized Martin—Steel extender sequence such
that

a < fi}}a +1

for all (o, f) € dom(E) then for all (o, f) € dom(E), if E is the L[E]-
extender given by £ i then in L[E],

p(E) <vg < Kj.

Therefore a new approach is needed and a reasonable candidate is the
family of partial extender models, first defined by Mitchell-Steel, [12].

5.1. Partial extender models. Recall that a transitive set M is rudimenta-
rily closed if

(1) foralla,b € M, {a,b} € M,and Ua € M,

(2) foralla € M. if b C [a]" for some n < w and b is Xy-definable with

parameters from M, then b € M.

The property that a transitive set M be rudimentary closed is formally
defined as being closed under the functions generated by the following
schemes, these are the rudimentary functions, Jensen [4].

(1) f(a0: :an) = da;.

(2) flao.....an) = ai\a;.

( ) (a0: :an) = {alaa]}

( ) (a0: :an) (gO(QO:-- an):---:gm(a0:---:an))-
() (a0: :an)_u{g(b al:---aan)‘bEQO}'

DEFINITION 5.2. Suppose P is a set. Then J,[P] is defined by induction
on « as follows, [4].

(1) Jo[P] = 0.
(2) Jos1[P] = M where M is the smallest transitive rudimentarily closed
set such that J,[P] € M and such that foreachb € M, PNb e M.
(3) Jo[P1=U{Js[P]| B < @} if & > 0 and « is a limit ordinal.
LemMA 5.3. Suppose P € V', a € Ord, and
Jo[P] E ZF\Powerset.

Then
Jo[P] E Axiom of Choice.

DErFINITION 5.4. Suppose that P € V and a € Ord. Then J,[P] is strongly
acceptable if for all f < a and for all K < g, if

P(k) N J[P] # P(k) N Jp1[P]
then |J4[P]| < K in Jpi1[P].

DErFINITION 5.5. E is an partial extender if E is an M -extender for
transitive set such that M F ZFC\ Powerset.

DEFINITION 5.6. Suppose E = (E, : a € dom(E)) is a sequence of partial
extenders and that for all o € dom(E). LTH(E, ) < «. Then for all # € Ord.
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J, = J,[Pgl.
where Pp = {(a. a,x) |a € dom(E), (a.x) € E, }.
DEFINITION 5.7. Suppose that M is transitive,
M E ZFC\Powerset
and that £ is an M -extender. Let
JjE: M — N = Ulty(M. E)
be the ultrapower embedding. Then

(1) KE = CRT(jE) and I‘E,zv = jE(K,E).
(2) An ordinal ¢ < LTH(E) is a generator of E if for all f € M for all

a € [E]52,
Je(f)(a) #&.

(3) vg =sup{& + 1| ¢ is a generator of E}; vg is the natural length of E.

(4) The M -extender E is a short extender if v < jrp(kg) and E is a long
extender if jp(kg) < vg.

(5) 1 is the least cardinal y of M such that vy < jg(y).

(6) F is the Jensen completion® of E|vg if F is the M-extender of length

n given by jg where
n = ((jele)")".

(7) vy is the least @ < vg such that E|0 ¢ N.

In the following definition, the requirement that J© £ ZFC\Powerset
follows from the indexing requirement, but we repeat it for emphasis.

DEerINITION 5.8. Suppose that E is a partial extender sequence and
a € dom(IE). Then E is a good partial extender sequence at o if the following
hold where E is the partial extender E,.

(1) JZ is strongly acceptable and JE E ZFC\ Powerset.

(2) E isa JE-extender.

(3) (Indexing) E is the Jensen completion of E|vg and o = LTH(E).

(4) (Coherence) Let

jeJJE = Ulty(JE E)
be the elementary embedding given by E£. Then
Je(Ela)|(a + 1) = E|a.

5.2. Comparison by least disagreement. We consider a fairly general class
of structures and we shall use the following definition repeatedly.

DErFINITION 5.9. Suppose M F ZFC, M is transitive, E is a sequence of
partial extenders from M, and § < A < Ord™. Then ¢ is witnessed by the
partial extenders on the sequence E to be A-supercompact in M if there
exists a € dom(E) such that

3The Jensen completion was suggested by Sy Friedman as an alternative to the indexing

scheme of Mitchell-Steel [12], and Jensen [5] was the first to develop the detailed fine-structure
theory based on this indexing scheme.
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(1) E is an M -extender,
(2) kg =d and 4 < 1,
(3) jelA] € Mg,
where E is the partial extender given by E, and where
Je M — Mg = Ult()(ME)
is the ultrapower embedding.

We consider transitive structures of the form
(M.E) E ZFC

such that the following hold for all # € dom(E) such that E is an
M-extender, where E is the partial extender given by Eg.
Suppose that kg < 1,
JE - M= Mg = Ultg(./\/l,E)
is the ultrapower embedding, and let 1 = 1. Then
(1) 1 < K}
(2) (First Supercompactness Condition) Suppose that jr[i1] ¢ Mg and
let & <1 be least such that jg[0] ¢ Mg. Then the following hold.
a) Suppose that 6 < 1 and that kg is supercompact in M. Then
(cof (0))M < kg and 1 = (6F)M.
b) Suppose = 1. Then 1 is a limit cardinal of M.
(3) (Second Supercompactness Condition) Suppose that jg[1] € Mg.
Then for some & € Ord™:
a) (Largest Generator Condition) vg < jg(1) and vp = & + 1.
b) (First Initial Segment Condition) E|n € Mg for ally < &.
c) (Second Initial Segment Condition) if E| ¢ Mg then
(cof ()Mr < jp(kE).
(4) (Cohere%e Condition) M|p = Mg|f and ff = sup(je[y]) = je(y).
y = ()M
(5) (Suitability Condition) No d < kg is (<kp)-supercompact in M.
Thus we are assuming that Jensen indexing is being used and that M|p
makes sense. If M is of the form of L[E] then this is immediate, but we are
not assuming that M has this form.
We really have in mind that

M = (Ja[P],PﬂJa[P]),
for some set P € V', J,[P] is strongly acceptable, and that
E = P|dom(E).

But there is no need to be so explicit at this stage. With notation as above
and by any reasonable notion of coherence

M|p = Ulty(M., E)|p.

Further f is a successor cardinal in Ulty(M, E) and so Ulty(M, E )| makes
perfect sense by setting

Ultg(M. E) | = (H(B))VeWM-E)
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if M were simply a transitive set, and making the obvious adjustments for
the additional predicates of M if M itself is a structure.

We assume that as part of the structure (M, E), there is a wellordering
< of length Ord™ such that for all uncountable regular cardinals y
of M,

<m N (H )M

is a wellordering of (H (y))™ in length y.
Thus we are really considering structures

(M.E) E ZFC + GCH,

where M itself is a structure with additional predicates including the
wellordering, <. All of this we suppress to simplify notation.
Therefore for every element ¢ € M., «a is definable in the structure

(M.E)
from ordinal parameters, and this will be an important feature for us.

REMARK 5.10. The requirement (3) combined with (4) implies

(1) vEg < VZ- +1,

(2) vg = vy if and only if v is not a limit of generators.

This is a very natural version of a weak initial segment condition, see
Definition 6.31 on page 90, and it would be a reasonable requirement to
impose on all the partial extenders on the sequence E but we will not need
this for our abstract treatment.

We do not impose the weak initial segment condition (which would imply
in requirement (2) thatd = 1) and instead use the more complicated require-
ments listed above (which are slightly more general than we need in [25])
because we need in [25] to apply our main negative theorem, Theorem 5.35.

There are fairly general arguments, see Remark 5.13, that for the structures
one is ultimately interested in for this account, one can always require the
weak initial segment condition to hold whenever 1 is a successor cardinal
except in the situation where

lg = (5+)M

and (cof (0))M < k.

This accounts for the formulation of the First Supercompactness Condi-
tion. The sequences defined in [25] allow for more complicated failures of
the weak initial segment condition if kg is not already 1g-supercompact at
the stage where E is indexed.

It is because of the coding constraints of Section 4 that one must allow
failures of the weak initial segment condition.

For the remainder of this section, writing (M,E) £ ZFC indicates that
(M,E) is a transitive structure satisfying the conditions specified above,
though for emphasis, we will also occasionally explicitly add the hypothesis
of transitivity.

DEFINITION 5.11. Suppose that (M, E) £ ZFC.
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(1) (M. E) is finitely generated if for some a € M, every element b € M
is definable in (M, E) from a.

(2) X < (M., E) s finitely generated if for some a € M, X is the set of all
b € M such that b is definable in (M, E) from a.

Clearly. X < (M.E) is finitely generated if and only if (My.Ey) is
finitely generated where (M y.Ey) is the transitive collapse of X . Further
since every element ¢ € M is definable in the structure

(M.E)

from ordinal parameters, every a € M belongs to a C-least finitely generated
elementary substructure of (M, E).

We need an abstract notion of backgrounding. A rather weak version is
defined below and suffices for our purposes.

DEFINITION 5.12. Suppose (M. E) F ZFC and that (M, E) is transitive.

(1) (M.E) is weakly backgrounded at k if for all M-extenders E given by
E with k = kg, if kg < p, if

Jely] € Mg =2 Ultg(M. E),

and if U is the normal measure on (Pn(y))M given by E. then & is
a cardinal in V' which is y-supercompact in ¥ and there is a normal
fine k-complete ultrafilter U* on P, (y) such that U = U* N M.

(2) (M.E) is weakly backgrounded if (M, E) is weakly backgrounded at
k for all K € Ord™

REMARK 5.13. Suppose M is a transitive set and M F ZFC. Following
Hamkins [3], for each uncountable regular cardinal x of M and for each
cardinal y of M, M satisfies the k-approximation property at y if for all
ACy,ifANc € M foralle € M with |g|¥ < kthen 4 € M.

A very conservative version of a backgrounded construction is as follows
and here we are motivating the formulation of the First Supercompact-
ness Condition, the other conditions are strongly motivated by current
constructions.

The final model (M®°,E>) is constructed as a limit of approximations
(M,.E,). constructed at some ordinal stage «. where in passing from
(My.Ey) to (Mgi1.Eqp1) one only adds an extender in the following
situation and for this discussion we set

(M. Eym) = (Ma, Eq).
There exists an elementary embedding
j:V-M
such that

(1 (M E) E ZFC.
41 C M. CRT(j) < 4 < j(CRT(j)). A is strongly inaccessible.

)
2) v
(3) (M Exolj(2) = (M Ea)lj(4).
(4) There exists 0 < 1 such that (F|0) N M ¢ M where F is the V-
extender of length A given by ;.
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Let 6 < 4 be least such that (F|0) N M ¢ M where F is the V-extender
of length /4 given by j, let E be the M-extender given by (F|6) N M., and let

N = j(M)|(sup(j1(5)™D) = Melje(E)™M).
where
JE t (MEp) = (Mg, Epq,) = Ultg(M,Enm). E)
is the ultrapower embedding.
The natural step would be to add Ord" to dom(E,,) with E as the
next extender. The coding constraints of Section 4 strongly suggest that one
should only do this if (in essence) there exists ¢ € N such that

e |0V < kiand Elo ¢ M.
Therefore this is the requirement which must be (in essence) satisfied in order
to change E », in defining the next approximation to M°°. That this suffices
is by strong acceptability:
e Adding a new bounded subset of £} must (lead to the) collapse of k3
in generating the next (sound) approximation to the final model.

The issue arises when one can be sure that the required set o exists. We
claim that if no such set ¢ exists, then necessarily,

Jj(g) = sup(jig]) = 0.
We verify this. First note that if sup(j[zz]) = j(ig) then by the definition
of 0, necessarily = j(ig). This is because if sup(j[ig]) = j(ig) then
necessarily 1z is a limit cardinal in M.
Now suppose that sup(j[iz]) < j(ig). We claim

e M must satisfy the kg-approximation property for all y < 1.

Suppose 4 C y and A Na € M for all ¢ € M with |¢|™ < kg. Applying
j.j4)nt € M forall t € M with [t|™ < j(kg) (since j(M) = M).
Further E|j(y) € M and so j[y] € M. Thus j(4) N j[y] € M and this
implies that 4 € M.

Since M has that kg -approximation property at y for all y < 7z and since
JIM) = M:

e M has the j(kg)-approximation property at y for all y < j(ig).
Thereforeif @ < j(1z) M has the j (k) approximation property at |#|* and
it follows easily that ¢ exists. If @ = j(1z) then j[1z] € M and so arguing
as above, M has the kg-approximation property at iz. The only potential
issue here is if

iz = ()M,
But then 6 > j(1) and so E|j(1) € M and this implies j[iz] € M.

This implies that M has the j(kg)-approximation property at j(1z) > 6
and so again ¢ must exist.

This verifies the claim above that if no such set o exists then necessarily,

Jj(e) = sup(jig]) = 0.
Now suppose that ¢ does not exist, kz is witnessed to be (<A)-

supercompact in M by E 4. and that (M,E,,) is weakly backgrounded.
Thus M has the kg-approximation property at all y < A and so M has
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the j(kg)-approximation property at all y < j(A). This implies that the
following must hold.

(1) cof(ig) < KE.

(2) There exists ¢ € M|;j((i})™) such that |¢|™ < k} and such that

Elo ¢ M.

Now again the coding constraints of Section 4 strongly suggest that if one
changes E then one should use E*|¢* where E* = F N M and where
0* < j((})™) is least such that (2) is witnessed to hold by some set

o € Ulty(M., E*|0%).

Thus since no such ¢ exists in A/, which implies that * > 0, necessarily
0* = £ + 1 for some ¢ which is a generator of E and this puts one in the
situation corresponding to the First Supercompactness Condition.

We define a fairly general notion of iteration.

DEFINITION 5.14. Suppose (M.E) £ ZFC and (M.E) is transitive.
A semi-iteration of (M, E) is a continuous (linearly) directed system

((NasFa)ana,/)’aEa a< ﬂ < 7])

(with 7 > 0) such that the following hold for alla < 7 and foralla < 8 < 7.

(1) (M. Fy) = (M. E) and N, is transitive for all a < 7.
(2) E, is an N,-extender, N, = Ultg(N,. E,). and

Toa.a+l - Na — Na+1

is the ultrapower embedding.

(3) (Suitability Condition) No d < kg, is (<kg, )-supercompact in A,.

(4) (Non-overlapping Condition) 1, < K} < Kg,.

(5) (First Supercompactness Condition) Suppose that 7, o 1[1£,] & Nas1
andletd < i, beleast such that 7, 4 11[0] ¢ Nai1. Then the following
hold.

a) Supposed < 1z, and that kg, is (6+)Ne-supercompact in AV;,. Then
(cof (0))Ne < kg, and 1, = (67)Ne.
b) Suppose § = i, . Then i, is a limit cardinal of N,.

(6) (Second Supercompactness Condition) Suppose that myq1[ig,] €
Nai1 and that kg, < 1g,. Then there exists a generator & of E,
such that
a) (Generator Condition) Either v, =& orvy =&+ 1.

b) (Initial Segment Condition) If vy, = & then & is a limit of generators
and

(COf(é))NaH < Tlo,a+1 (KJE(, )

(7) (Third Supercompactness Condition) Suppose that 7z, o1 1[1£,] € Na1.
1g, is a limit of strongly inaccessible cardinals in N, and let 1 be the
least cardinal of N1 with v <1 < 7441(1g,) such that

Nis1]t E ZFC.

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

58 W. HUGH WOODIN

Suppose that E, has a generator v such that
Vg, <v <1

and let vy be the least such generator. Then there exist a transitive
(NM,En) F ZFC and an N -extender F such that

a) Foralla € [LTH(F)]<*. F, € N.

b) Na+1|l = Ulto(N,F) 1, KE, < Kf, jF(KJF) = K,Ea, and jF(lF) =1.
¢) Nod < kr is (<kp)-supercompact in V.

d) For some y < ir. vy = sup(jr[y]). and either

Jjrly] € Ulty(NV. F)

ory = (67N =17 and (cof (0))V < kp.
(8) (Closeness Condition) For all a € [LTH(E,)]<?. (Ey)s € N,.

REMARK 5.15. Note that with notation as in the statement of the Third
Supercompactness Condition, vy cannot be a limit of generators of E,.
Further by the Second Supercompactness Condition there exists a generator
¢ of E, such that either vy = ¢ or vp = { + 1 and necessarily v is just
the least generator v of E, such that v > . Therefore if y witnesses the
requirement (7d) then one of the following must hold.

(1) y = kr.
~ N N
(2) vp =¢+1landy = (\f\*) where jr(&) = €.

~ AN A
(3) vi =andy = <]£]+) where j (&) = ¢

The point here is that since vy = sup(jr[y]).
jr. Also note that in the case where vp =¢,

E[Ne must be in the range of

(cof(f))N““ < Kg,

and so jp (&) = sup(jr[£]).

REMARK 5.16. These conditions are motivated by the elementary embed-
dings produced by iteration trees. The proof of the main theorem,
Theorem 5.35, would be a bit simpler if we eliminated the Third Supercom-
pactness Condition and required as part of the Second Supercompactness
Condition that

Vg, =vg, +1
if v, | is a limit of generators and

_ *

VE, = VE

@

otherwise.

This is true for the iteration embeddings (of ZFC structures) which can be
generated by (maximal) iteration trees at the finite levels of supercompact,
such as those in [24].

However at the infinite levels of supercompact, this stronger condition
can fail. But in the proof of Theorem 5.35, this potential failure is handled
by the Third Supercompactness Condition.

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

IN SEARCH OF ULTIMATE-L 59

The reason the stronger condition can fail is that £, might originate as the
last extender of an active structure which occurs as a model in the iteration
tree before the stage where E, is chosen. In this case the active structure
with E,, as the last extender is the model at the stage where E,, is chosen and
moreover this model is a semi-iterate of that earlier model.

Finally if 1z, isnot a successor cardinal then there can exist many cardinals
between vy and the Jensen index of E, . In this case the identity v < v +1
need not be preserved under semi-iterations and so vg, < vp + 1 might fail.

We isolate in two definitions, Definitions 5.17 and 5.24, the key assump-
tions that we shall need. Our position based on the results of [24] is that these
should follow under very general assumptions from any theory of weakly
background structures for which comparison can be proved through itera-
tions by least disagreement. In fact we shall only need Definition 5.24 but
Definition 5.17 provides a clearer context for motivating both the definitions.

DEFINITION 5.17. Suppose that (M,E) £ ZFC and that (M.E) is
transitive. Then (M., E) satisfies comparison if for all

X < (M.E)
and all
Y < (M.E),
the following hold where (My.Ey) is the transitive collapse of X and

(My,Ey) is the transitive collapse of X .
Suppose that X and Y are finitely generated. (M y.Ey) # (My.Ey).and

XNR=YnNR.

Suppose that neither (My.Ey) or (My.Ey) is a semi-iterate of the other.
Then there exists semi-iterations,

(N FY). 7y 5 By < B <)
of (My,Ey), and
((NQY,Fg),niﬂ,Eg ra< B <ny)
of (My,Ey) such that
(1) (N By ) = (NG ).
(2) (First Disagreement Condition) E§ # EJ .
(3) (ﬁ’econd Disagreement Condition) Suppose that By < Al By < A, and
that
PA)NMy =PA)NMy.
Then
né{nx|73(i) # n({ny|73(/1).

REMARK 5.18. (1) The larger the structure (M,E) the stronger the
requirement that comparison hold is.
For example if every element of M is definable in (M. E) then there
are no nontrivial finitely generated X < (M.E) and comparison
holds vacuously. However if cof (Ord™) > w then X € M for every
finitely generated X < (M. E).
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(2) We comment briefly on why the requirements specified in Defini-
tion 5.17 are reasonable.
Condition (2) is clearly the result of comparison through least dis-
agreement where the semi-iterations are given by the cofinal branches
of the maximal iteration trees.
Finally the last condition, (3), lies at the core of comparison by least
disagreement. Having this provably fail (while maintaining E§ # E|)
would seem to require an entirely new approach to inner model theory.
In fact we could weaken (3) for our purposes and add the assumption
that 4 is strongly inaccessible in My with 1z < Aand 1py < 4.

REMARK 5.19. Suppose that with notation as in Definition 5.17,
(My.Ey) is a semi-iterate of (M y,Ey).
More precisely suppose that

n:(My.Exy) > (N, Ey) = (My,Ey)

is given by a semi-iteration of (My,Ey).

One can show by appealing to the fact that (M y, Ey) is finitely generated.
that the semi-iteration giving 7 must have finite length and moreover that
it must be an internal iteration with each extender being the extender gen-
erated by a single ultrafilter. Thus these cases of X and Y are really rather
special.

The following theorem is a corollary of the main theorem of [24] and
results of [25] but the only relevant result of [25] is one which allows
one to exploit the Weak Unique Branch Hypothesis (which only allows
short extenders in the iteration trees) versus a slightly stronger iteration
hypothesis.

Recall that x is m-extendible, where m < w, if there is an elementary
embedding

J i Veim — Vj(m)er
such that CRT(j) = k.

THEOREM 5.20 (Weak Unique Branch Hypothesis). Assume that for each
m < @, there is a proper class of m-extendible cardinals. Then there exists a
partial extender sequence

E = (E, : « € dom(E))
such that the following hold.

(1) L[E] is weakly backgrounded and L[E] is weakly Z,-definable.

(2) (L4[E).E|e) satisfies comparison for each ordinal o such that
(L4[E],E|a) E ZFC.

(3) For each & and for each m < w. there exists o € dom(E) such that
(a) a>¢,
(b) E, is an L[E]-extender which witnesses that k is m-extendible in

L[E] where k = CRT(E,,).
(4) L[E] E “The Weak Unique Branch Hypothesis.”

Thus one also gets an equivalence.
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THEOREM 5.21. The following are equivalent.
(1) There exists a countable transitive set M = ZFC such that

(a) M E “For each m < w. there is a proper class of m-extendible

cardinal.”
(b) M E “The Weak Unique Branch Hypothesis.”
(2) There exists a countable transitive (M, E) E ZFC such that

(a) (M.E) E “For each m < . there is a proper class of m-extendible

cardinals.”
(b) (M.E) E “The Weak Unique Branch Hypothesis.”

(¢) (M, E)|a satisfies comparison for each o such that (M,E)|a &

ZFC.
We need a version of Definition 5.17 for pairs.

DEFINITION 5.22. Suppose that (M. Eg) £ ZFC and that (M;.E;) E
ZFC. Suppose each structure is transitive and « is a regular cardinal of both

structures. Then the pair

(M. Ep). (M, Ey))

is a coherent pair at k if
(M0 = (1)

and
(Mo. Eo)| ()M = (ML E)|(sF)M.
DEFINITION 5.23. Suppose that
((Mo. Eo), (M. Ey))
is a coherent pair at k. A semi-iteration at k of the (ordered) pair,
(M. Eo), (M. Ey))
is a continuous (linearly) directed system
(WNa-Fo). 7o p. Eq < B <)
such that the following hold for all a < ff < #.
(1) (Mo o) € {(Mo,Ey). (M, Ey)} and
((WNa.Fo).tap. Eq < B <)

is a semi-iteration of (N, Fy).
(2) If Nog = M then k < 1 for some 1 € SP(E).

DEFINITION 5.24. Suppose that (M, E) E ZFC, (M, E) is transitive, & is
a measurable cardinal in V', U is a normal measure on x, and U "M € M.

Let
My, Ey) = Ulty((M.E), U)

and suppose that
((M, E), (MU, EU))

is a coherent pair at k. Then (My.Ey) satisfies comparison backed up by

(M. E) at « if the following hold.
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Suppose X < (M, E), X is finitely generated, U N M € X,
(Mx.Ey)
is the transitive collapse of X, ky is the image of x under the transitive
collapse. and
(M. Eq)
is the image of (X N My.X N Ey) under the transitive collapse.
Suppose that (M7, EY) is not a semi-iterate of (M, Ey). Then there exist
semi-iterations,
((Ng,Fg),ngﬁ,Eg ca< B <no)
of (My,Ey), and
(WLEL). 7l ELra < f <)
of the pair ((My.Ex). (M{.E{)) at kx such that
(1) (/\/0 FO) (Nl Fl)

Mo’ m-
(2) (First Disagreement Condition) E # E.
(3) (Second Disagreement Condition) Suppose that gy < A 1g < 4. and
that
P NNG =P()NNG.
Then
70| P(4) # 7., |P(4).
REMARK 5.25. We will only use condition (3) in the situation where A is
strongly inaccessible in My = A with
max(izo. 151) < A
and much more.

REMARK 5.26. The semi-iteration of the coherent pair ((/\/l v.Ex).
(MEEY )) is not like the iteration of a phalanx in [12]. It really is closer to
a semi-iteration of M y where Uy is allowed to be the initial extender. But
even that is not completely accurate since the next extender can act on M2,
and yet have critical point strictly below j{ (ky) where

o My.Ey) — Ultg((My.Ex). Ux) = (M. Ef)
is the ultrapower embedding.

The following lemma shows that the requirement in Definition 5.24 that
UnMeM
is necessarily satisfied in many cases. This lemma is a weak variation of the
Universality Theorem, Theorem 3.26.

LEMMA 5.27. Su[j)gose that (M.E) E ZFC, (M.E) is weakly back-
grounded, o < Ord”™", and that 6 is witnessed by the M- extenders on the
sequence E to be supercompact in M. Suppose o < k < Ord™ and that U is
a o-complete ultrafilter on k. Then U N M € M.

PrROOF. Let 4 = |V, N M| and let x4 be a 6-complete normal fine
ultrafilter on Ps(A) such that
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(1.1) MNPs(4) € u.

(1.2) uN M e M.
The ultrafilter x must exist since M is weakly backgrounded and since ¢ is
witnessed by the M-extenders on the sequence E to be supercompact in M.

Fix a bijection

niA— Vh‘rH/J nM

with 7 € M and let I be the set of all ¢ € P5(1) N M such that for each
¢ < k there exists # < 4 such that

(2.1) n €a.

(2.2) n(n) is a 5-compete ultrafilter in x in M,

(2.3) forall 4 € P(k) N n[o]. A € n(y) if and only if & € A.
The key point is that / € u. This is easily verified by working in M and
using that in M, u N M is a 6-complete normal fine ultrafilter on Ps(4).

Define

f:I— A

by f(g) = n such that

(3.1) n(n) is a 5-complete ultrafilter on & in M,

(3.2) n €ao,

(3.3) #n(y) Nxn[o] = U N xlo].
Since I € u, there must exist 779 < A such that

{oel|f(a)=no} € p.
Thus 7(ny) = U N M and this proves the lemma. =

As a corollary of Lemma 5.27, we obtain the following strong version of
Theorem 3.40.

THEOREM 5.28. Suppose that ¢ is an extendible cardinal and that k > 0 is
a measurable cardinal. Then k is a measurable cardinal in HOD.

Proor. By Lemma 3.37, we can reduce to the case that k is not w-strongly
measurable in HOD. But then by Theorem 3.39, HOD is a weak extender
model, for J is supercompact and so by (the proof of) Lemma 5.27, k is a
measurable cardinal in HOD. =

We prove three easy lemmas and the latter two are quite useful. These
require a definition. For this definition and these three lemmas, the notations
(M, E) and (N, TF) indicate that the structures are transitive.

DEFINITION 5.29. Suppose that (M, E) F ZFC and that
n: (M,E) — (N,F)

is an elementary embedding which is cofinal. Then 7 is close to (M, E) if for
each X € M and eacha € n(X),

{ZePX)NMlaen(Z)} e M.

The following lemma which is essentially immediate from the definition
of close embedding, identifies a useful feature of close embeddings. This
feature is a weak form of coherence.
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LEMMA 5.30. Suppose that (M, E) E ZFC and that
n:(M,E)— (WN.F)
is an elementary embedding which is close to (M, E). Suppose 1 < Ord™ and
nli] € N.
Then P(1) N M =P()NN.
Proor. Clearly P(1) N M C P(1) N N. Now suppose 4 € P(1) N N.

Then n[A] € N. Let
a = (n[A]. n[1])

and let X € M be a transitive set such that « € n(X). Since 7 is close
to M, U € M where
U={ZePX)NnM|aen(Z)}.
Thus 4 € Ulty(M, U) C Mandso P(1) NN C P(1) N M. —|
LemMa 5.31. Suppose that (M, E) E ZFC and that
n:(M.E) = (W.F)

is an elementary embedding which is given by a semi-iteration of (M.E).
Then 7 is close to (M, E).

Proor. The key point is that the composition of close embeddings is close.
We verify this.
Suppose that
o : (Mo, Eo) = (M. Ey)
and
m s (ML Ep) = (M, Ea)
are each close embeddings. Fix Y € Mg and a € ;o 7y(Y). We must show
that
{Z cP(Y)N M, ’ a € m OT[Q(Z)} e M.
Let
W ={Z eP(ro(Y))NMilaem(Z)}.
Then W € M and in M, W is an ultrafilter on 7o(Y).
Let
W*={ZePPPY)NMy|W enro(Z)}.
Then W* € Mg and in M, W* is an ultrafilter on S(Y), the space of all
ultrafilters on Y.
Fix Z € P(Y) N M,. Then

a €momny(Z)
if and only if
no(Z) € W,
Let
Z*={UePP(Y)N M| Z e U}.
Thus 7o(Z) € W if and only if W € no(Z*). But W € np(Z*) if and only
itz e W=,
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Therefore a € n o mp(Z) if and only if Z* € W*, and this implies
{ZeP(Y)NMgyla €nony(Z)} € M.

This proves 71 o 7y is close to (M. Ey).
The lemma now follows easily by induction of the Ilength of
semi-iterations. -
The next lemma is an abstract version of the uniqueness of iteration
embeddings.

LEMMA 5.32. Suppose that (M.E) E ZFC and is finitely generated.
Suppose that
o - (M,E) — (N,F)
and
/5 (M,E) — (N,F)
are elementary embeddings each of which is close to (M. E). Then my = 7.
Proor. Let & € My N Ord be such that every element of M is definable
in (M, E) from &. It suffices to show that
(&) = mi (&)

Let &y = np(¢) and let & = m;(&). Assume toward a contradiction that
o < &q. Let
U={Zc¢|éem(Z)}.
Thus U € M. Let
ju i (M.E) = (My.Ey)
be the ultrapower embedding given by U and let

ky: My.Ey) = (N.F)

be the factor embedding such that 7; = ky o jy. Let & be the element of
My such that ki (EY) = &.

Let (Ny.Fy) be the transitive collapse of X where X is the setofalla € A/
such that a is definable in (N, F) from &. Then

(Ny.Fy) = (M.E).

But X C ky[My]since & = ky (&) and since my = ky o jy.
Thus we have
(1.1) &Y < ju(é)since ky (&) = &y < & =m (&) = ky o ju(&).
(1.2) Let Xy bethesetofalla € My such that a is definable in (Mg, Ey)
from &Y, and let (M y,.Ey,) be the transitive collapse of X . Then

(My,.Ex,) = (M.E)
and necessarily ¢ is the image of ¢V under the transitive collapse of
Xu.
Let
ny : (M.E) - (My,Ey)

invert the transitive collapse of Xy. Thus 7y (&) = & < juy (&) and there is
a canonical elementary embedding
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J: Ulto(./\/l, U) — Ulto(Mu,nU(U)).

Now one can generate an illfounded iteration of M of length @ which is
induced by a linear iteration of a rank initial segment of M, and this is a
contradiction. -

REMARK 5.33. Suppose M E ZFC is a transitive set in which there is a
supercompact cardinal with Ord" as small as possible. Then there is a linear
iteration of M in length w, by ultrapowers, such that the direct limit is not
wellfounded.

In fact, any linear iteration

T =M. Up), jix 1 i <k < w),
by ultrapowers such that

(1) for all & < Ord™ there exists i <  such that A; > jo (), where
U; € M; is a normal fine x;-complete ultrafilter on (P, (4;))* and
where k; = CRT(jy,).

(2) there exists x < Ord™ such that CRT(j,) < jo. (k) for alli < w.

must have ill-founded direct limit.

This is by the minimality of Ord"” (taking a generic collapse and
then appealing to X |-absoluteness) and since by (1)—(2). Ord" is in the
wellfounded part of the direct limit.

Thus in the proof of Lemma 5.32, it is critical that the linear iteration of
length @ have the simple form of being induced by a linear iteration of a
rank initial segment of M.

LEMMA 5.34. Suppose (M. E) E ZFC is finitely generated. U € M, and
that in M, U is a k-complete normal ultrafilter on k. Let
(My.Ey) = Ulty((M.E), U).
Then the following are equivalent.

(1) (My,Ey) is a semi-iterate of (M, E).
(2) Noé < k is witnessed to be (<k)-supercompact in M by E.

Proor. Clearly (2) implies (1) and the witness is the semi-iteration
((Na: Fa)ana,ﬂsEa a< ﬁ < 77)
of (M.E) where 7 = 1 and E| is the extender given by U.
Now suppose that (1) holds and that
. (M,E) — (MU,EU)
is given by a semi-iteration of (My,Ey). Let
ny : (ME) - (My.Ey)
be the ultrapower embedding.
By Lemma 5.32, 7 = ny and this implies (2) since & = CRT(ny). =
We now come to our main theorem. The fundamental idea is to simply
use the basic arguments from, for example, [12] for establishing that various

extenders, which belong to an iterable structure, must be on the sequence of
an iterable structure. The definitions of a coherent pair and of comparison
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for such pairs were formulated by isolating very general features sufficient
for the implementation of these arguments.

The situation here however is quite different because by universality (for
example, Lemma 5.27) there can be extenders which belong to the structure
whose associated critical point cannot be the critical point of any extender
on the sequence (because of the Suitability Condition).

The issue then is exactly how is this potential conflict resolved. The theo-
rem shows that the only resolution is through a failure of comparison based
on least disagreement.

THEOREM 5.35. Suppose that o is supercompact and that Q > 0 is a

strongly inaccessible cardinal. Then there is no weakly backgrounded structure
(M.E) E ZFC such that the following hold.

(1) Q = Ord™ and 6 is witnessed by the M-extenders on the sequence &
to be supercompact in M.

(2) There exists a measurable cardinal 6 < k < Q and a normal measure
U on k such that the following hold where

(MU,EU) = Ulto((M,E), U).

(a) (M.E),(My.Ey)) is a coherent pair at k.
(b) UNM e M.
(¢) (My.Ey) satisfies comparison backed up by (M. E) at k.

PrOOF. Assume toward a contradiction that (M,E) is weakly back-
grounded and that (M.E), U, and & satisfy (1) and (2). Note that by
Lemma 5.27, the requirement (2b) follows from the assumption that (M, )
is weakly backgrounded.

Let

ey : (M.E) = (My.Ey)
be the ultrapower embedding as defined in (M, E) using U N M. Let

X < (M.E)

be the elementary substructure given by the set of all ¢ € M such that « is
definable in (M, E) from {U N M}.
(1.1) Let (M.E{) be the transitive collapse of (X N My. X NEy).
(1.2) Let (M y,Ey) be the transitive collapse of X and let sy be the image
of k under the transitive collapse of X.
(1.3) Letdy be the image of § under the transitive collapse of X .
(1.4) Let Uy be the image of U N M under the transitive collapse of X .
(1.5) Let
el : My, Ey) — (M, EY)
be the image of ey under the transitive collapse of X.

By Lemma 5.34, (M¥,E¢) is not a semi-iterate of (M, Ey). Therefore,
since (My.Ey) satisfies comparison backed up by (M, E) at x, there exist
semi-iterations

(V2. Fo). 7o Ea e < f < o)
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of (My,Ey), and
(NG Fo) o g Eg s < f <)
of the pair (My.Ex), (M$.E{)) at £y such that
(2.1) (V2.F0) = (A F) ).

o> n>

(2.2) E # E}.
(2.3) Suppose that 150 < 0. 15 < 0. and that

NYNP(O) =Ny nP(O).

Then 718’,70|73(0) #+ n(l)_m |P(0).
We prove the following.
B.1) (V. F}) = (M}.EY).

(3.2) 7'50,7 = 770;71 oef.
Assume toward a contradiction that (N, F}) = (My.Eyx). Then

o’
and

75(1),;7l : My, Ex) — (N, Fl )

Mo’
are each embeddings of the finitely generated (M y, Ey) into the same struc-

ture and by Lemma 5.31, each embedding is close to (My, Ey). Therefore

by Lemma 5.32,

0 _ 1
0.0 = 0.y

and this contradicts (2.3).
This proves (3.1). Thus (N . Fj) = (M. Ef) and so

770;70 : My, Ex) = (N FO )

no*
and
75(1),;7l oep : (My.Ex) — (/\/;710,15‘1 )
are each embeddings of the finitely generated (My.Ey) into the same
structure.
By Lemma 5.31, 7g, is close to (M, Ey) and 75, is close to (M), Ef).

But ey is trivially close to (My.Ey) and so since close embeddings are
closed under compositions (see the proof of Lemma 5. 31) 1 .0 eps is close

to (My.Ey). Therefore by Lemma 5.32, 7:8’,70 = n(lm oep. Th1s proves (3.1)
and (3.2).

By the Suitability Condition, Definition 5.14(3), of semi-iterations,

We next prove the following.

(51) KEgy = Oy. lEg =kyand ky € SP(Eg).
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Assume toward a contradiction that B Ox.Then k E] # 0y and by the
three properties of semi-iterations specified as the Suitable Condition, the
First Supercompactness Condition, and the Closeness Condition; both
and
But then by (3.2). and for all sufficiently large

0 < 5)(,

we have
(6.1) sP(EJ)USP(E}) C 0,
(62) 0 < ky,
(6.3) ngm|73(0) = n(l)_m|73(49).
This contradicts 5.2. This proves that « E) = Jox. Note that we have only

used the much weaker version of the Second Disagreement Condition (see
Definition 5.24) where one requires in addition that 4 be strongly inaccessible
in the models.

By (3.2). and since KE) = Oy, necessarily Kl = Oy . We now prove the rest

of the claims in each of (5.1) and (5.2).
If1p < Ky then Ay = My and so by (3.1), 1g > ky. We now use (3.1)
and (3.2) to show that
(7.1) ky € SP(E]).
This will finish the proof of (5.1) and (5.2).
Since g > kx. by the First Supercompactness Condition (5) in the
definition of a semi-iteration, Definition 5.14 on page 57, necessarily
né_m [kx] € /\/;711 = /\/,2)
and so by (3.1)-(3.2).
ng_”o[kax] € /\/,2)
But then by backwards induction,
(8.1) m) \[rx] € NY.
Thus since kg = dy. necessarily Ky € SP(EY). This proves (7.1).
Assume toward a contradiction that 1z > ky. Then again by the First
Supercompactness Condition of semi-iterations,
71'8_1 [8] S NOS
where N
&= ((fix)+) v

By Lemma 5.30 and the closeness of 7y to A, this implies that
Ple) NN =P(e) NN,

and so since CRT(n}, ) > 75 (k) > e.
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Ple) NANG =Ple) NN,
Let Gy be the N)-extender given by 7z8’,70. Then
Golng,, (kx) € Ny = N,
and so by (3.2),
Uy € N”ll .
But we have that i1z > Ky and 1z > ¢. Therefore by the First
Supercompactness Condition of semi-iterations,
”(1),1 [e] € M}
and so just as above
Ple) NNy =Ple) NN,
But
Y|
‘N;% - '/\/;71
and so Uy € J\/O1 which is a contradiction since by (3.1), /\/'01 = M} =
Ulto(./\/lx, UX).
This proves (7.1) and (7.2). and finishes the proof of (5.1) and (5.2).

We continue with Gy as specified above and let G| be the /\/'Ol—extender
given by ném. Let &) be least such that G|y ¢ J\/,?O. Let 68 be least such that

EJ|EY ¢ NY. We note (then prove) the following.

(9.1) & < ng_”o(mx).

92) & = 700 (D).

(93) fo = n(l]_m(lﬁlx) + 1.

(9.4) There exists kg € N7 such that n?_no(kag) = ”(1),:71 (ky).
The last claim, (9.4), follows trivially from (9.1)—(9.3), and it is 9.4 that
we need.

It is useful to note, while proving (9.1)—(9.3). that since

00 ol X
Joae = Joa © €U

and since ky < 11, necessarily
(10.1) Goljg,, (kx) = Giljg,, (Kx).
(102) Gi[j, (ky) €AY = D
Further for all 4 € P(ky) N My = P(ky) N MF:
A€ Uy < Ky €eY(A)
= oy (5x) € jo,, 0 ex (4)
= oy (kx) € j,(4).

By our general assumptions, in particular the Second Supercompactness
Condition in the definition of semi-iterations on page 57, together with (8.1),
there is a generator & of Eg such that

(11.1) either vy, = Corvy, =&+ 1,
0 0
(112) & <8, (1gg) = 78, ().
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(11.3) if v¥, = & then & is a limit of generators of E§ and (cof ()M <
0

778,1 ("“Eg)~
Therefore,
0
(12.1) & =&+ 1or & = & and (cof ()M < xf, (kgg)-
The key point is that by (12.1), if £) = & then

7}, (&) = sup(a}, [E0D).
Therefore, since
(13.1) Go|LTH(H ) = H where
a) H=mnj, (E§|E)if &) =¢+ 1, and
b) H is the extender given by n{, [E|&i]if & = ¢,
(13.2) ”(1),170 is close to NV?;
necessarily
7} 0 (€0) = &o.
The claims (9.1)—(9.3) now follow from (3.1), (3.2). (5.1), and (5.2).
Let ko € N} be such that

0 _ 1
n],no(’{’o) - 72:0,;71 (K’X)'
Thus &y is strongly inaccessible in N and

Ko < 7o, (Kx) = 7] (lEg).

Further
(14.1) vi, =Ko + 1.
0
Let N
Ao = ((ko)")™
and let 1
= (s
Thus 7'[?’,70 (/1()) = 7'[(1)’,7] (/11) Let 2 = 723(1)’,70 (/10) = 7'[(1)’,7] (/11)
Let
5* = 7'[8’,70(5)() = 7'1,'(])’,7] (5}() = 723(1)’,7l o 65(5)()
and let

0 1
Y C (Pae ()0 = (Pye ()"0
be the least Solovay set (see Lemma 3.4) which is definable in A*|1* where
* 0 1
N = N’?o = M?l
and where 1* is the least strongly inaccessible cardinal of N* above A. For

eachf < A, let (Y*)y = 0o if o € Y* and sup(o) = 0. This is well defined.
We prove the following:

(15.1) VZg < Vg
Assume toward a contradiction that vy, = v Let 1 <5 < no be least
0

such that
n(l),;y (AO) € SP(E;?):

where here and below we set 7} | to be the identity. Since
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71y (Z0) = 1, (A1)
and since
Sup(ﬂ(]),m ] < ﬂ(ly,m (Z1)
it follows that # must exist. The relevant points are as follows:

(16.1) sup(a?, o)) = sup (=1, (o) 0 {8, (/)(x,, (ko)) | € AT}).

(16.2) sup(x,, [i1]) = sup (x,,, (21) 0 {m,, (1), (62)) | £ € ME).
Note and this is a key point:
VES = Ko + 1
and so
NP = {8, (f)(@) | a < ko, f € My},
This implies
(17.1) sup(ad,, ol) = sup (S, (o) N {8, ()L, (k) | € My }).
Thus by (16.1), (16.2), and (17.1),
(18.1) sup(x,, [ia]) = sup(, ().
By the choice of 7,
(19.1) sup(x!,, Lal) = sup(z!,, 20, (o)),
We have that 1y = (k) ! and that ko is strongly inaccessible in NY.
Therefore by the properties of semi-iterations and the choice of #,
752,;7+1[7T(1).;7 (Zo)] € Nnoﬂa
and this implies that
7-[2,7’]0 [T[?,r/ (;“0)] € Nnoo’
since CRT(y ;) > 7, 11 (kg) > 7, (do).
Let
0o = sup(m, ,,[n},,(20)]) = sup(a} ,, [Z0]) = sup(7g,,, [41])-
Thus
(20.1) (¥*)g = 70,0, (o)1
(20.2) (Y*)g, = 5, [41]-
This is a contradiction since

Ty 71 (20)] N 70, (Ox) = g

and
1 1
0[] N7, (Ox) = KE):

noting that k) = dx and

(5x) —CRT( >0y.

'7770)

This proves (15.1).
Let vy be the least generator of EJ such that Vo < vg noting that since
0

Vio = Ko + 1. v, cannot be a generator of Eg .
0 0
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We can reduce to the case that
o = ((KO)Jr)UltO(MX,E )’

where E* = EJ|v%,. since otherwise,

EO:

((&0)+)U1tO(MX,E*) _ ((KO)Jr)UltO(MX,E(?) _ ((KO)JF)N‘O

and we can simply repeat the proof of (15.1) to again obtain a contradiction.
By (7.2).1 E) = Kx and so since Ky 1s a measurable cardinal My, 1 E isa

limit of strongly inaccessible cardinals in M y.
Therefore 778,1 (1 Eg) is a limit of strongly inaccessible cardinals in A7. Let

1 be the least cardinal of A with vzg <1< nd,( Eg) such that

NP1 E ZFC.

By the Third Supercompactness Condition of semi-iterations, and since
vo < 1, there exist a transitive (M, E ;) F ZFC and an N-extender F such
that

(21.1

21.2

(
(21.3
(

for all a € [LTH(F)]<*. F, € N,
Nt = Ulty(N, F)]z, ir(KF) —K:E():ande(lF) =1

No cardinal of N/ below KF 18 (</~;F) -supercompact in .
For some y < 1, vy = sup(jr[y]). and either

Jrly] € Ulty(N. F)

or for some cardinal Jr of N,y = (5;)/\7 = 1 and
(COf(5F)) < Kfr.
Fix y as given by (21.4). Since vy = sup(jr[y]) and since

o = ((KO)Jr)UltO(MX,E*)’

21.4

—_— — —

where E* = EQ|v: £o- necessarily y = ((I%)+)N for some strongly inaccessible
cardinal N such that
Kr < k< IF.
The point here is that xo must be in the range of jr and so & is the strongly
inaccessible cardinal of N such that jr (&) = kg. Therefore by (21.4),
(22.1) jr[ € Ulto(/\”/ F).
(22 2) T[] Mo []F[V]] e ;707
noting that (22.1) implies (22.2).
Now we can just repeat the proof of (15.1) one last time and obtain a
contradiction, finishing the proof of the theorem. Note the following:
(23.1) 711,, (Uo) sup(f,, [vo])-
232 oloo]) = sup(a0,, (o) 0 {8, (1), (50) | £ € M)

(23.2) su 1
(23.3) sup no,,l[m = sup(h,,, (1) N {m,, ()b, (20)) | £ € M),
(23.4) (

23.4) sup(ng,, [41]) = sup(z;,, (A1) N {”om o ey (f)(mg,, (kx)) | f € ./\/lx})
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Thus
(24.1) sup(x},, [vo]) = sup(x},, [21]).
Let
0 = 1, () = sup(z , [vo]) = sup(m, [21]).
Therefore,

(25.1) (Y*)p = my,, [1].
(25.2) (Y*)p ==}, (Grly) = =}, Lr Y],
since vy = sup(jr[y]). But

775(1)’,7][},1] No* =0dy = KE|

and
) W LiF[y11NS* = kp >y
This is again a contradiction. 4

86. The amenability obstruction. We show that there is no inner model
with a supercompact cardinal which is a fine structure model such that
every level is an amenable sound structure. There is no abstraction of com-
parison or iterability involved here and we shall also prove versions where
the amenability condition is significantly weakened. Thus these constraints
apply to a much wider class of inner models than the comparison constraints
of the previous section.

We actually show there is no such inner model (with amenable and sound
levels) in which there is a cardinal x which is k™“-supercompact.

The nonstrategic-extender models of [24], which reach the finite levels of
supercompactness, are amenable and sound at every level, and so the extent
of those constructions in reaching levels of the large cardinal hierarchy is
best possible.

Further the variations on amenability that we consider include both the
cases where at each level the predicate is only required to be amenable to
an initial segment of the structure, or even more generally, simply specifies
an w-sequence of predicates each which is only required to be amenable to
some initial segment of the structure.

These generalizations exclude a variety of natural attempts to extend the
structures of [24] to the infinite levels of supercompactness.

Finally we shall show in Lemma 6.29 that these generalizations are all
equivalent and moreover just corollaries of the theorem of Shelah, [16].
that if the Approachability Property holds at k(@1 then s cannot be & -
supercompact.

6.1. Soundness. We define an abstract notion of soundness. This is just
the natural definition given, for example, the basic definitions of modern
fine structure theory, and here we follow the basic framework of [12].

DEFINITION 6.1, (1) Let L(gen) be the language of set theory together
with unary predicates P and P.
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(2) Suppose that M = (J,[P].P|a.P,) and that P, C J,[P]. Then
M defines an L y,)-structure where P interpreted by Pla and P
interpreted by P,,.

(3) Suppose M is a (transitive) Lig,-structure. Then Py is the

interpretation of P and P is the interpretation of P.

REMARK 6.2. We shall always assume that an L 4,)-structure is either of
the form
M = (]a []P], a)

in the P-active case, or of the form
M = (Jo[P].P|a)

in the P-passive case. In particular, we are restricting to transitive structures.

For the following definition we implicitly restrict to L ge,)-structures which
are weakly amenable, see Remark 6.17. The case of more general structures
will involve altering the definition of a (z,,)%;-formula, see the discussion
after Remark 6.17.

DEFINITION 6.3. Egm)
for 1 <n < w. Suppose 6 is a formula of E(gm).

is L(gen) €xpanded by adding 3-ary predicates T,

(1) @1is (£4.)Z1 if 0 is a Xi-formula relative to £gep).-
(2) 0 is (£y)Znp if there is a ¥j-formula ¢(xo, . ... Xy, Xpi1, Xmi2) Of
L (gen) such that

0 = ElxmzlmerlElmerZ <Tn(xm: Xm+1> xm+2) A d’) .

DEFINITION 6.4. (1) For each formula ¢(xo.....x,, x,.1) of £(+gen)
(with free occurrences of x,1). T4(xo. ..., x,) is the Skolem term

given by ¢ and for each 1 < n < w, (z.,)Sk, is the smallest collection
of terms closed under composition and containing all the terms 7,
where w is (20 Zn-

(2) Aformula y is a generalized (z ., )E,-formula, where 1 < n < o, if for

some (¢ ., )X,-formula @¢[xo, . .., x,,]. collection of terms closed under
composition and containing all the terms 7, where y is (2, )Z,. Thus
Jr

for any C(gen)-formula ¢. the arity of 74 is m where m is largest such

that x,,4 is a free variable of y (and 7, is defined only if m > 1).
(3) A formula vy is a generalized (z.,)E,-formula, where 1 < n < w, if
for some (¢, )X,-formula ¢[x. . ... x,].

W=0(X0..... X :0G0.....0m).

where

a) foreachi < m. ag; € (¢.,)Sky, and g; is free for x; in @,

b) ¢(x0.....X, : 00.....0,) is the formula obtained from y by
substituting a; for each free occurrence of x;.

Suppose M is a L (gen)-StTUCEUTE. By induction on 1 < n < w, we define
the interpretation of 7}, in M. denoted T/™. and the n-th projectum of M.
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denoted p . Simultaneously we define the interpretations of 74 which we
denote r;\’l. To simplify notation a bit we adopt the following conventions.

(1) ¢(x¢.....x,) indicates the free variables of w are included in
{x0.....x,} and that x,, is a free variable of ¢.
(2) Suppose ¢(xo, ..., x,)isaformula, m > 0, and s € | M|<“. We write
M E ¢[5] to indicate both |s| = m + 1 and that
ME @[so.....85m].
DEFINITION 6.5. Suppose M is a L ge)-structure. Suppose 1 < n < w.
(1) Suppose that &(xg,...,Xpu11) IS @ (c4m)Zy-formula and that

74 (X0, . .., Xm11) is the corresponding (z,.,)Sk,-term. Then for each
(a; 11 <m) € |IM|~?,
(a; i <m) € dom(fé\/l) and for each b = ré"‘(ao, o ap)if

a) ME ¢lag.....an.b].
b) forall c < b, M E (=¢)[ao.....ay.c].
(2) Foreach X C M|,
ThM'(X) = {(¢.5) | s € X<,y is generalized (c,.,)Z,. M E ¢[5]}.
(3) pMisthe least ordinal p < a, such that Th, (pU{g}) ¢ | M| for some
q € |(M|, where a = | M| N Ord.
(4) TM(c.q.b)ifand only if @ < pM. g € |IM|.and b = Th (e U{q}).
DEFINITION 6.6. Suppose M is a L, -structure. Suppose X C |M
X#0,1<n<w, and pM > 0forall0 < k < n.

(1) SM(x) = {TM(S) |5 € dom(z!) N X< and t € (L(gm))Sk,,}.
(2) HM(X) is the L (gen)-structure given by the transitive collapse of
(SM(X). Py N S;MX). Prg 0 SM(X)) .

DEFINITION 6.7. Suppose M is an amenable L ,,)-structure. Then M is
w-sound if for each k + 1 < w, one of the following holds.

(1) k> 0and p =0.

(2) There exists a € M such that M = H,ﬁ‘j‘rl (p,?le uU{a}).

REMARK 6.8. The definition of soundness here does not involve any notion

of a standard parameter or any properties of the standard parameters such
as solidity. Thus it is far weaker than the usual notions of soundness.

b

REMARK 6.9. We illustrate why sound structures are so useful. Suppose
M is an amenable w-sound, E(gen)-structure, 0 < k < w,and

o> 0.
Let p = p{ and let ¢ € M be such that
M =i (p. {q}).

Let N = (M|p. T) where T = Th*'(p U {¢}). naturally coded as a subset

of M|p.
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(1) N is an amenable L g, -structure.

(2) N is w-sound and pV = Pt ' .

(3) Suppose 4 C M |p. Then the following are equivalent.
a) Ais (z,.,)X-definable in A/ from parameters.
b) A is (£ )Xk 1-definable in M from parameters.

6.2. The amenability obstruction.

DEFINITION 6.10. Suppose that P C Ord x V. Then J[P] is amenable if
for all o € dom(IP), the following hold.

(1) (J4[P],P|a) E Comprehension.

(2) Py C Ja[P).

(3) Forall f < a, Py N Jg[P] € Jo[P].

REMARK 6.11. The requirement that if « € dom(IP) then
(Jo[P], Pla) E Comprehension

just simplifies things conceptually and is not necessary. For exampleif & > o,
it implies that « is a limit ordinal.

Note that in the case where PP is a good partial extender sequence, we
require (see Definition 5.8) that if & € dom(IP) then

(Jo[P], Pla) E ZFC\Powerset,
which is of course a much stronger condition.

We now include soundness and define when J[P] is amenable and sound.
We shall define soundness more generally just after Remark 6.17 but that
definition will be based on a reformulation of the definition of (z.,)Z,-
formulas together with a reformulation of Definition 6.7 to include the case
when M is not amenable, see Definition 6.22.

DEFINITION 6.12. Suppose that P C Ord x V' and that J[PP] is amenable.
Then J[P] is sound if for each o € Ord:

(1) (Jo[P). P|c. ) is w-sound,
(2) if o € dom(P) then (J,[P]. P
Of course, if J[IP] is amenable then for each oo € dom(P), the structure
(JOZ []P)]: ]P) a, @)
is trivially w-sound since (J,[P]. P|a) F Comprehension.
The following lemma is immediate from the definitions.

LeEMMA 6.13. Suppose that P C Ord x V', J[P] is amenable, and J[P] is
sound. Then GCH holds in J[PP].

REMARK 6.14. Assuming GCH, if  is k T®-supercompact then necessarily
k is k(@ *+D_supercompact. Rephrased (and now not assuming GCH), if
j:V-M
is an elementary embedding with critical point x, the following are
equivalent.
(1) j[Vn+w] eEM.
(2) j[Vitws1l € M.

a,P,) is w-sound.
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More generally for any set X and for any y < k&, if
jIXle M

then j[X7] € M.

LEMMA 6.15 (GCH). Suppose that k is k*®-supercompact and that
P C V. Then there exist 6 < k and an elementary embedding

n: (H(y).PNH(y)) — (H(x(y).PnH(z(y)))

such that

(1) n € V,, and CRT(nt) = .
(2) y = 0" and n(y) = (n(y))**V.

PRrOOF. Since GCH holds, & is £+ @V -supercompact. Let

j:V-M
be an elementary embedding such that CRT(j) = x and M* C M where
) = ot _ = |H(ﬁ+(w+l))|.

Let N = j(M) and let
j(j)oj:V =N
be the iteration embedding. Then
JIH(EH) € () 0 j(Ve) = N

witness that the conclusion of lemma holds in N at j(j) o j(x) for

J(j) o j(®). .
THEOREM 6.16. Suppose that P C Ord x V and that J[IP] is amenable and
sound. Then

J[P] & “There are no cardinals k which are k™ -supercompact.”

Proor. We work in (J[P],IP). Assume toward a contradiction that there
exists k such that x is k™®-supercompact. Therefore by Lemmas 6.13
and 6.15, there exist & < x and an elementary embedding

7 (J,[PLPy) = (Ju)[PL.Pl(p))

such that

(1.1) y = 0@+ and crT(7) =4,

(1.2) n(y) = ((6)) V.

Let 7 = sup(n[y]). The key point is that there can be no closed set C C 5
such that

(2.1) |C| < 7o),

(2.2) C iscofinal in 7.

(2.3) Cn¢ e Jy[Plforall & < 7.

Note that this claim implies that weak-[J must fail at 7. In fact
the relevant principle is AP+ which is an even weaker principle. See
Definition 6.25.
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Assume toward a contradiction that C exists. Let
D={<y|r(&)eC}.
Thus D is w-closed and by (2.3), D is cofinal in y. Let &y € D be such that
IDN&| >0,
Then C N (&) covers n[D N &y] and by (2.1),
P(C N ) € J,[E].

This implies that z[0 "] € J,[P] and so

n|H (") € J,[P).

But then n[y] is definable from parameters in J,[P] and this is a contradiction
since
(J,[P]. P|ly) E ZFC\Powerset.

This proves the claim.
Let a > 7 be least such that for some 0 < k& < w,

pit <,
where M = (J,[P]. Pla) if « ¢ dom(P) and
M = (Ja[P]a]P Oé,]P)a)

otherwise. We assume o € dom(P). The case that o ¢ dom(P) is easier.
Fix k to be least such that p,ﬁ" < 7. Thus

plﬁ\/l — 7.[(5)+w.
We first prove the following:

(3.1) k> 1.

Assume toward a contradiction that & = 1. By soundness, there exists
q € J,[P] such that

M =H{" (" U{g}) = ST (p{" U {g}).
Thus there is a partial function
fim@)™ =
such that 1" is a surjection and such that f is generalized (¢, )X;-definable

in M from parameters. Because M is amenable, we can reduce to the case
that f is Z;-definable from parameters in the structure

M = (J,[P], Pl Py,).
Fix a X;-formula ¢ (xo, x1. x2) and ¢y € J,[P] such that
S ={(a.b) € Ju[P]| (Ju[P]. Pla. Py) F @la. b, col} .
We can require that ¢ (xo. x1. x») has the form
(3 < a)y [x0. x1.x2.Po N JE[P]]

where w is a (¢, )2Z;-formula not mentioning P, the predicate for P,.
Fix 7(6)™ < ap < a such that ¢y € J,[P]. For each oy < f < o, let fg
be the set of all (a.b) € J4[P] such that
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(J[PLP|B) F wla. b, co.Po N J¢[P]]
for some ¢ < f such that P, N J¢[P] € Jg[P].
Thus /s C f. fp € Jo[P]. and
f:U{f/;|ao<ﬂ<a}.
There are two cases.
Cast 1. cof(a) # ot@th),
There must exist 7(J) " < f# < « such that /4 has range cofinal in 7. But
5 € JulPl.
This contradicts the choice of «.
Cast 2. cof(a) =ot(@+D),
Let 6 < 7(6) " be least such that f'|0 has cofinal range in 77. Thus
cof(0) = cof(y) = s+ @+,
Fix X C 6 such that

(4.1) |X| = g+
(4.2) f|X has cofinal range in 7.

We have H (n(6)**) C J,[IP] and so clearly X € J,[IP]. This implies there
is an increasing cofinal continuous function

g: 5+(w+1) 7
such that g is X;-definable from parameters in (J,[P], P

g|¢ € JolP]

for each & < 6@+ Let C be the range of g. Then C satisfies (2.1)—(2.3)
which is a contradiction.
This proves (3.1). Letn = k — 1 > 0. Thus

it >,

o, P,) and such that

and either p) = a or pM is a cardinal of J,[P]. Let p = p" and fix
q € J,[P] such that
M =" (pU{q}).

The structure,

N = (J,[P].T)

is amenable where 7 = Th2'(p U {¢}) (naturally coded as a subset of p)
since
(J,[P]. P|p) £ Comprehension.

In fact since p is a cardinal of J,[IP], either
(J,[P].P|p) E ZFC\Powerset

or
(J,[P].P|p) E ZFC\Replacement,

which is a much strong claim.
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The key point is that

N M
P1 = Pn+i

and that for some p € J,[P]
N =1 (p u{p}).
We can now just repeat the proof of (3.1). —

One can weaken the notion of amenability quite a bit and still prove
Theorem 6.16. The point here is that the definition of soundness does not
require amenability though we will alter the basic definitions slightly when
generalizing to nonamenable structures.

As we have already indicated, these generalizations rule out many natural
approaches to extending the constructions of [24] in an attempt to reach the
infinite levels of supercompactness.

REMARK 6.17. Define P to be weakly amenable if for all o € dom(P).
there exists a limit ordinal y < a such that

(1) Py C J,[P].

(2) Forall f <y, Py NJg[P] € Jo[P].
Then the proof of Theorem 6.16 adapts to prove the corresponding theorem
for weakly amenable IP. This requires dealing with more cases since there are
now two relevant cofinalities, cof (o) and cof (y). Note though that if y < «
and P, ¢ J,[P] then necessarily

Pt <y,

where M = (J,[P]. P|a. P,). Thus the additional cases only arise in proving
(3.1) in the proof of Theorem 6.16 and the rest of the proof is exactly the
same. We leave the details to the reader since there is a more general theorem,
Theorem 6.30, which we shall obtain as a corollary of Theorem 6.16 and
Lemma 6.29.

In fact all these theorems are really equivalent since we shall prove in
Lemma 6.29 that if J[P] is w-weakly amenable and sound as defined below
then there exists P* such that

J[P] = J[P"]
and such that J[P*] is amenable and sound.

REMARK 6.18. The backgrounding scenario described in Remark 5.13
illustrates how one might naturally be led to consider weakly amenable
structures which are not amenable. We continue that discussion and focus
just on the case where M is weakly backgrounded and E, witnesses that
kg 18 A-supercompact in M. Notation now is as in Remark 5.13.

We have set

N = M| sup(j[(1)M]) = M| sup(j (1)),

and the coding obstruction of Section 4 has been interpreted to require that
one must (in general) have that there exists a set ¢ € A such that |o[ < &
and such that £ N o ¢ M. Otherwise one cannot add E to the sequence to
construct the next approximation to the final model.
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If no such ¢ exists then we argued that cof (1z) < kg which implies that
Jg) = sup(jlig]).
Now replace N with
N== M| (G (™M)

Thus since M is weakly backgrounded and since [E 4 witnesses that kg is
supercompact in M, there does exist

geN”
such that |g|V" < &} and such that £ N ¢ ¢ M. The structure
(N, E)

is weakly amenable since 0 = j(i).
This suggests altering the indexing scheme to allow in this situation that
E be added with index Ord"" so that

(N*,EN*,E)

is that next approximation to the final model, and so this suggests devel-
oping an alternative fine-structural hierarchy which allows such generalized
indexing schemes.

But this cannot work to reach the infinite levels of supercompact.

One can further generalize by only requiring that for each a € dom(P),
P, specifies an w-sequence of predicates each of which is weakly amenable
to J,[P].

DEFINITION 6.19. Suppose that o € dom(PP) and « is a limit ordinal. Then
(Jo[P]. Pl Po)

is w-weakly amenable if
Py C @ x Jo[P]

and for each n < w, there exists a limit ordinal y,, < « such that

(1) (Pa)n C J,,[P],

(2) (Po)n N J:[P] € J,[P] for each & < y,.

DerNITION 6.20. Suppose that P C Ord x V. Then P is w-weakly
amenable if for all @ € dom(P).

(1) (J4[P).Pla) F Comprehension,

(2) (Jo[P].P|a, P, ) is w-weakly amenable.

The notion of soundness is exactly as defined for the case of amenable P
except that (¢, )X,-formulas are redefined as follows.

DEFINITION 6.21. L+ i8 L(gep) reduced by eliminating P.

DEFINITION 6.22. Suppose 6 is a formula of £ g, "

(1) 0is ()X if there is a Xy -formula ¢ (xo. x1) of L o) Such that

6 = 3xo (“xo C P A “xo is finite” A ) .
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(2) 0 is (i) Zpp if there is a ¥j-formula ¢(xo, . ... X, Xpi1, Xmi2) Of

L7 such that
(gen)

0 = 3%, 3xm413%m2 (T (X Xms 1. Xm2) A D) .
For the amenable L(y)-structures, this change in the definition of
(£gen) Zn-formulas amounts to simply replacing P with P* where
dom(P) = dom(P*),
and for each o € dom(P),
Py = {Po NJ:[P] & < a}.

Therefore we could have simply made this part of our abstract definitions
in Section 6.1 of L ge)-structures and (z,, )Z,-formulas.

With this change, we can naturally define when an Ly, -structure M
is w-sound without restricting to the case that M is an amenable L(gep)-
structures which we did in Definition 6.7. Thus we can define when J[P] is
sound for an arbitrary class

PcOrdxV,
and this we do in the following definition.

DEFINITION 6.23. Suppose that P C Ord x V. Then J[P] is sound if for
each a € Ord, M is w-sound where M = (J,[P],Pla. D) if « ¢ dom(P),

and
M = (Ja[IP)]: Pla, Pa)
otherwise.
LemMa 6.24. Suppose that P C Ord x V and J[P] is sound. Then GCH
holds in J[IP].

6.3. Weak amenability and the Approachability Property. The analysis of
J[P] which are w-weakly amenable and sound involves the Approachability
Property, AP.

DEFINITION 6.25 (Foreman—Magidor). Suppose that s is an infinite
cardinal. Then AP+ holds if there is a sequence

(Co:a< k™)
such that for all limit a < x*:
(1) C, is aclosed cofinal subset of o and ordertype(C,) < .

(2) If cof (o) < & then |Cy| < .
(3) Forall f< a. C, N = C, for some y < a.

REMARK 6.26. (1) AP,+ holds for all regular cardinals x assuming
GCH and we are only really interested in the situation where GCH
holds.

(2) The usual definition of AP, is slightly different. The definition above
highlights the principle AP,+ as a very weak version of [,,.

Note that in clause (3) of the definition, if one required y to be a limit
ordinal whenever f is a limit point of C, then one has a [J,; sequence.
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(3) One advantage of formulating AP+ as in Definition 6.25 is that it
gives the notion of a witness for AP+ and we shall use this freely.

The following lemma implicit in the introductory remarks of [2] gives the
two equivalent formulations of AP ,+. We also refer the reader to [2] for an
historical perspective noting that the AP family of principles have origin in
prior work of Shelah [16].

LEMMA 6.27 (Foreman-Magidor: [2]). Suppose that k is an infinite
cardinal. Then the following are equivalent.

(1) AP, holds.

(2) For all

X <H(k™)
if | X| = k and k C X then there exists a closed cofinal subset C C
X N k™ such that
(a) ordertype(C) < .
(b) if cof (X Nk™) < K then |C| < &,
(c) CNnéeXforallE <sup(X Nk™).
PrOOF. We first show that (1) implies (2). Assume that AP+ and that
X <H(™)
is such that | X| = k and that x C X. Thus there exists a sequence
C={(Ch:a<k")
such that C witnesses AP .+ and such that C € X. The key point is that there
is an enumeration
(Zg:0<k*)eX
of bounded subsets of x* and closed unbounded set D C ™ such that
(I.1) De X,
(1.2) forallé € D, forall f< &, C:NPe{Zy|0 <&}
Let C = C,, where ap = X N k™. Then

(2.1) ordertype(C) < &,

(2.2) ifcof (X Nk™) < k then |C| < &,

23) CNnéecXforallé< X Nk™.

This proves (2). Now suppose (2) holds and let
X=(X,:n<k")
be a continuous elementary chain such that for all 7 < k™

(3.1) X, < H(k*") and X, € X;41.

(3.2) k C X, and |X,| = &.

Foreachn < k™. leta,, = X, N x™ and let C,, be a closed cofinal subset of
oy, such that

(4.1) ordertype(C,,) < k.

(4.2) If cof (X, N k™) < k then |C,, | < k.

(4.3) Co,N¢ € X, forallé < X Nk,

These sets exist by (2). Since X is continuous, for each limit 7 < ™, and for
each & < 7,
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Co, N e Xy
for all sufficiently large 6 < #. Thus the sequence
(Coyin < k™)
can easily be expanded to a sequence
(Co:a< k™),

which witnesses AP,+. The relevant point here is that for each k < 7y <
n < k1, one can always choose a sequence

(De oy <<y,
which witnesses AP, on the interval (ay,. ay, ). .

The following easy lemma shows that GCH is in some sense equivalent to
soundness. Lemma 6.29, which we prove below, shows that GCH together
with AP is in the same sense equivalent to soundness and amenability.

LemMmA 6.28. Suppose that P C Ord x V. Then the following are
equivalent.

(1) J[P] £ GCH.

(2) There exists P* C Ord x V such that

(a) J[P*]is sound.
(b) J[P] = J[P*].
(c) P* is Xy-definable in (J[P].P).

Lemma 6.29 also shows that Theorem 6.16 and its generalization to the
case of w-weak amenable J[IP] are equivalent and moreover just corollaries
of the theorem of [16] that if the Approachability Property holds at x @+
(this is AP, where 2 = xt(@*1)) then x cannot be k*?-supercompact.

LEMMA 6.29. Suppose that P C Ord x V and that J[P] E GCH. Then the
following are equivalent.

(1) For each uncountable cardinal k of J[P]. AP+ holds in J[IP].
(2) There exists P* C Ord x V such that
(a) J[P*]is amenable and sound.
(b) J[P] = J[P*].
(c) P* is Xy-definable in (J[P].P).
(3) There exists P* C Ord x V such that
(a) J[P*] is w-weakly amenable and sound.
(b) J[P] = J[P*].
(c) P* is Xy-definable in (J[P].P).
ProOF. We work in (J[P].P). It suffices to prove that (1) implies (2) and
that (3) implies (1).
We first assume (1) and prove (2). Suppose & is an uncountable cardinal
and let
C=(Ch:<a<k")
be the (J[P]. P)-least witness that AP+ holds.
Let

D = {ﬁ<a< k| (Jo[P]. P

o.Cla) < (Je-[PL.P|s".C)} .
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Given P* |k such that
Jo[P*] = H (k).
define P*|x™ to be the (J[P], P)-least set
Hc st x J[P]
such that
(1.1) H|x = P*|x.
(1.2) If (J,[H]. H|n) ¥ ZFC\Powerset then H,, = (:
and such that the following hold for all k < # < ™ such that
(J,[H]. H|) £ ZFC\Powerset.

(2.1) & is the largest cardinal of J, [H].

(2.2) Suppose cof(7) < cof(x). Then H, is a cofinal closed subset of 7
such that ordertype(H,) = cof () and such that H, N ¢ € J,[H] for
all & < 7.

(2.3) Suppose cof(y) = cof (k). Let n* € D be the least element of D
above 7. Then there is a set £ C « which codes

(Jy=[PL.Ply*. Cln")
and there are increasing continuous cofinal functions
f :cof(k) = n
and
g :cof(k) = K
such that
H, = {(f(¢).g(&)NE) [ < cof(k)}.
(2.4) Suppose that cof () > cof(x). Thenn € D,
Jy[P] € J,[H]
and H, = C,.
Note that in (2.3), since GCH holds, since « is the largest cardinal of J, [H].
and since cof () = cof (k). for each & < # and for each y < cof (k).
(Je[H])” € J,[H].

Therefore the set |, is necessarily amenable to J, [H] where H, is as defined
in (2.3) but for any choice of ( /. g) and for any set E C .
Also note the following regarding (2.4). Suppose k < 7 < k™ and

(J,[H]. H|y) £ ZFC\Powerset.
Then either cof (7)) = w or the set
{¢ <n|(Je[H] H|E) < (J,[H]. H|n)}

is closed and cofinal in #.
With these two observations it follows that for any choice of P*|x such
that
JH[P*] = H(K');
H exists satisfying (1.1). (1.2) and satisfying (2.1)-(2.4) forallk <y < k™.
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It follows that J[P*] is amenable and sound, and that J[P] = J[P*].
Clearly P* is X,-definable in (J[P].P). This proves that (1) implies (2).
We now assume (3). Clearly we can just reduce to the case that P = P*.
Fix
X < (J+[PL.P|s")
such that kK C X and |X| = k. We prove that there exists C C X N k™ such
that

(3.1) Cisclosed cofinalin X N k™,
(3.2) ordertype(C) < k and if cof (X Nk™) < & then |C| < &,
(33) CNnéecXforeaché < X Nk™.

By Lemma 6.27, this implies AP+ holds.
Let y = cof(k). We can reduce to the case that

cof (X Nk') >
for otherwise the existence of C is immediate since foreacha € X Nk™,
P,(a) C X.
Let X Nk < a < k™ be least such that
pit =k
for some n < o where M = (J,[P].P
M = (J,[P],Pla) if @ ¢ dom(P).

We can further reduce to the case that & € dom(P) and n = 1 since
otherwise we can reduce to the case that M is an amenable structure in
which case by the proof of Theorem 6.16, C exists satisfying (3.1)—(3.3).

The structure M is 1-sound and so

M = UM (s U{p})
for some p € M. Thus there is a partial surjection
firk—=XNk"

such that 1" is generalized (¢, )Z;-definable in M from p. Arguing as in the
proof of Theorem 6.30, for some m < w, the partial function

fomy 16— XNkK"

a,P,) if @« € dom(P) and

has cofinal range and is generalized (¢, )X;-definable in M (m) from p where

M(m) = (Ja[]P]a Pla, ]P)a|m):

where
Py |lm =P, N (m x J,[P]).
Here f,,) is simply f as defined in M,,,).
Since cof(k) < cof (X N k) < &, there exists ¢ < & such that
range( f(,|¢) is cofinal in X N x*. Therefore letting 6 = cof (X N &™),
there exist ¢ € M and a cofinal continuous function

g:0 XNkt

such that g is generalized (z,,,)Z|-definable in M ,,). We assume that m is
as small as possible over all possible choices of H yielding

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

88 W. HUGH WOODIN

My = (J,[P]. P, H),

such that
H C m x J,[P]
and such that for each & < m there exists § < « such that

(4.1) Hy C Jo[P].

(4.2) Hy N Jp[P] € Jo[P] for all f < a:
and relative to all possible generalized (z,., )X -formulas with parameters.
If m = 0 then My is amenable, and by the proof of Theorem 6.16, C exists
satisfying (3.1)—(3.3). Therefore we can reduce to the case that m > 0.

For each k < m, let Oy = sup((P,)x) and let I be the set of all finite
sequences (f : k < m) such that f; < 0 for each k < m. For eacha € I,
let

M, = (Jo[P].Pla, P,).
where P, is the set of all (k,b) such that k < m and b € (P,);|Bk. and
a = (P : k <m).Let g, be g as interpreted in the structure M,. Thus,
(5.1) The set I is directed under the order a < b if a; < b; for all i < m.
(5.2) Foreachn <, there exists @ € I such g,(n) = g(n) forallb > a.

We claim the following:
(6.1) For each k < m, cof(0)) = 4.
Let

s ={i<m]cof(6;) <o}
and let

t ={i<m|cof(6;) >3}.
For each # < 6. let a, € I be such that

g(n) = gan)
for all @ > a,,. There must exist a cofinal set 49 C 6 and ¢ € I such that for
ally € Ag and for all i € s,
(an)i < ¢;.
Therefore by the minimality of m, it follows that s = (). Similarly there must
exist d € I such that forall7 < ¢ and for all i € ¢,
(an)i < dl‘.
This implies ¢ = (), again by the minimality of m. This proves (6.1).
Note that by (5.2) and (6.1),
(7.1) For each n < d, there exists a € I such that gl = g,|.
There are two cases.
Case 1. cof(a) > 6.

For each a € I and for each sup(a) < ff < a. let gz, be g as interpreted
in the structure
M pa) = (Jp[PL.P|S.P,).
where as above PP, is the set of all (k, b) such that k < m and b € (P, )|
and
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(Pr : k< m) =a.
This all makes perfect sense even though we cannot require that
(J4[P]. P|f) E Comprehension,

which we have generally imposed at active stages.
Since cof () > § it follows that for each # < 0 there exists @ € I and
S < a such that

gln = gpaln
Foreacha € 1, M(ﬁ,a) € J,[IP], and so for each 7 < 9,
glnl € Ja[P].
Therefore letting C = g[d]. C witnesses (3.1)—(3.3).
Case 2. cof(a) < 0.
Since cof (o) < & there must exist fy < o such that for all k < m,
(8.1) Ok < fo.
(8.2) (P)x N Je[P] € Jg, [IP] for all & < 6.
Again since cof (o) < J. there must exist limit ordinal f such that, f, <
f < a.anelmement r € Jg[IP], and a cofinal increasing continuous function

h:0 = XNk"
such that 4 is generalized (z,.,)%;-definable from r in the structure
(J5[P]. P|B. Py |m).
Foreach a € I, let h, be & as interpreted in the structure
M pa) = (J5[PL.P|S.Py).

where P, is as defined above.

Thus exactly as for g and M,,):

(9.1) For each 5 < 4, there exists @ € I such hy(n) = h(n) for allb > a.
By (6.1) and (9.1),
(10.1) For each n < &, there exists a € I such that |y = h,|7.

Finally exactly as in Case 1, for each a € I, M,y € J,[P], and so for each
n<o,

hn] € Jo[P].
Therefore letting C = h[6]. C witnesses (3.1)—(3.3). =

As an immediate corollary, we obtain the following generalization of
Theorem 6.16.

THEOREM 6.30. Suppose that P C Ord x V and that J[P] is w-weakly
amenable and sound. Then
J[IP] E “There are no cardinals k which are k™ ®-supercompact.”

Proor. By Lemma 6.29 there exists P* C Ord x V' such that

(1.1) J[P*]is amenable and sound.
(1.2) J[P] = J[P*].
(1.3) P* is X,-definable in (J[P]. P).
The theorem is an immediate corollary of this by Theorem 6.16. .
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6.4. Good partial extender sequences revisited.

DErINITION 6.31. Suppose that E is a good partial extender sequence and
a € dom(E). Let E be the J,[E]-extender given by E at o and let
JE + Jo[E] = Ulto(JL[E]. E)

be the ultrapower embedding. Then E satisfies the weak initial segment
condition at o if

E|je(n) € Jo[E]
forally < 1.
The weak initial segment condition at « is equivalent to a level of
supercompactness for the associated extender E.

LeEmMa 6.32. Suppose that E is a good partial extender sequence and
o € dom(E). Let E be the J,[E]-extender given by E at o and let

JE  Jo[E] = Ulto(JL[E]. E)
be the ultrapower embedding. Then the following are equivalent.

(1) E satisfies the weak initial segment condition at c.
(2) Suppose 1 < 1 is a cardinal of J,[E] and y = (17)7=E). Then jg[y] €
Ulty(JL[E], E).

ProoF. We first assume (1) and prove (2). Let # = jg(1). Thus
E|jr(n7) € Jo[E]
and
Jo[E] = Ulto(Jo[E], E)|a.
By the elementarity of jp.
Ulty(J,[E], E) E ZFC\Powerset

and thus (2) holds.
Now assume (2) holds and fix # < 1. Let1 = ||’~[Fl and let y = (1*)”=[F],

Thus by (2),
JE[y] € Ultg(Jo[E], E).
But this implies that
JE[J,[E]] € Ulto(Jo[E], E),
since

Ulty(JL[E]. E)|a = JL[E].

By the strong acceptability of J,[E].
P(1) N Jo[E] C J,[E]

and so it follows that

E|je(n) € Ultg(Jo[E]. E).
Finally by the strong acceptability of Ulty(J,[E]. E) and since

a = jg(4),

where 4 = (17 )7=I¥1, this implies that E|jz(n) € Jo[E]. -
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LeEMMA 6.33. Suppose that E is a good partial extender sequence which
satisfies the weak initial segment condition at all o« € dom(E). Then for all
a € dom(E), E, can be coded by a set E such that for some 8 < o,

(1) Either (J4[E]. E|B) £ ZFC\Powerset or (J5[E]. E|f) F ZFC\Replacement.

(2) E C J4[E] and E N J£[E] € J4[E] for all £ < B.

(3) (J4[EL E) and (J4[E]. Eq) are logically equivalent.

The main theorems from [24] actually yield amenable structures at the
finite levels of supercompactness because of satisfying the weak initial
segment condition.

These can easily be extended to the levels of w-extendible cardinals where
one obtains the close version of amenability indicated in the previous lemma.
But since the focus of [24] is the finite levels of supercompact, we restrict the
statement of Theorem 6.35 to such levels as well.

REMARK 6.34. Insome sense, Theorem 6.35 represents, modulo the itera-
tion hypothesis, the strongest possible result for the extent of a fine-structural
hierarchy of inner models where some version of amenability holds at all
active stages.

Thus the finite levels of supercompactness emerges as a canonical and
natural threshold within the large cardinal hierarchy beyond which a
new approach is required for the construction of fine-structural inner
models, [25].

The results of [24] combined with those of [25] yield the following theorem.
Just as for Theorem 5.20, the only use here of the results of [25] is to reduce
the iteration hypothesis to the Weak Unique Branch Iteration Hypothesis.

THEOREM 6.35 (Weak Unique Branch Hypothesis). Assume that for each
m < w, there is a proper class of m-extendible cardinals. Then there exists
a good partial extender sequence B = (E, : a € dom(E)) such that the
following hold.

(1) J[E] is weakly backgrounded and L[E] is weakly X,-definable.
(2) J[E] satisfies comparison.
(3) For each & and for each m < w, there exists a € dom(E) such that
(a) a>¢,
(b) E, is a J[E]-extender which witnesses that k is m-extendible in
J[E] where k = kg, .
(4) E satisfies the weak initial segment condition at all o € dom(E).

6.5. Weak extender models and comparison. The definition of compari-
son, Definition 5.17, can naturally be generalized to arbitrary inner models.
There are many possible versions and a natural rather weak version is as
follows where the notion of close embedding is as given in Definition 5.29
but applied to all elementary embeddings, j : M — N, where M and N are
transitive models of ZFC.

DEFINITION 6.36. Suppose that N is a weak extender model, for ¢ is
supercompact and that
N E “V =HOD.”
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Then N satisfies weak comparison if for all X, Y <5, N the following hold
where Ny is the transitive collapse of X and Ny is the transitive collapse

of Y.
Suppose that Ny and Ny are finitely generated models of ZFC,
N)( 75 Ny, and

NyNR=NynNnR.
Then there exist a transitive set N* and elementary embeddings
Ty : Ny — N*

and
Ty . Ny — N*
such that 7y is close to Ny and 7y is close to Ny.

REMARK 6.37. The elementary embeddings witnessing weak compari-
son are not required to have any special form. Thus suppose there is an
elementary embedding

T N)( — Ny
such that 7 is close to Ny and that N * is the ultrapower of Ny by a countably
complete nonprincipal ultrafilter of N. Then there trivially exist elementary
embeddings

iy : Ny — N*
and

ny : Ny — N*
such that 7y is close to Ny and ny is close to Ny.

Thus one can require that the elementary embeddings witnessing weak
comparison each be nontrivial.

The conclusion of weak comparison is downward absolute to N and
moreover the definition of weak comparison can be applied with N = V/
provided there is a supercompact cardinal in V' and that ¥ = HOD.

Thus the following is a natural test question for the existence of a gener-
alization of L at the level of supercompact cardinals based on anything like
the current methodology for the construction of such inner models.

QUESTION 6.38. Suppose that there is a supercompact cardinal and that
V' = HOD. Can weak comparison hold?

The results we have discussed arguably show that for the construction
of fine structural extender models which are weakly backgrounded, going
beyond the level of w-extendible cardinals requires the following:

(1) Allowing the weak initial segment condition to fail.

(2) Allowing levels which are not even w-weakly amenable.

(3) Altering how comparison is proved if one can provably (from some
large cardinal hypothesis) reach the level a weak extender model for
supercompactness.

Therefore we cannot just use good partial extender sequences to generate
these models with anything remotely like the current methodology. A natural
alternative is to augment extender models with their iteration strategies.
These are strategic-extender models.
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87. Epilogue. The emerging picture based on the results we have surveyed
in the previous sections is that in generalizing inner models to level of weak
extender models for supercompactness, one must not only have failures of
the weak initial segment condition but moreover that the hierarchy cannot
consist of models constructed from just a sequence of partial extenders.

The only alternative at present is an inner model theory based on a strategic
premice—this is a hierarchy of structures constructed from both a partial
extender sequence and the iteration strategy for the initial segments of the
structure—for backgrounded structures this would be the iteration strategy
inherited from V' assuming (some version of) the Weak Unique Branch
Hypothesis.

Of course if one must pass to the strategic hierarchy then the strategic-
extender structures can no longer be layered and so a fundamentally new
approach to the strategic-extender hierarchy is required compared to the
current approach, [15]. This is all the subject of [25].

REMARK 7.1. From the broader perspective, here is the picture which is

emerging.

(1) At the lowest levels, reaching past measurable cardinals, the fine-
structure models can be simply defined (at reasonable closure points)
and there is no distinction between the extender and strategic-extender
hierarchies.

(2) Ascending to levels below that of one Woodin cardinal there is still no
distinction (again at reasonable closure points) between the extender
and strategic-extender hierarchies.

(3) Passing one Woodin cardinal and up to the finite levels of super-
compactness, the extender and strategic-extender hierarchies strongly
diverge but both exist.

(4) Reaching the infinite levels of supercompactness requires a complete
failure of amenability and moreover at some point past the finite levels
of supercompact, the extender hierarchy fails and one is left with just
the strategic-extender hierarchy.

The following summarizes, in more detail and within the context of the
obstructions identified in the previous sections, the approach of [25] and the
key issue is what happens with the iterability problem.

The coding obstruction is handled by ensuring that at all extender-active
stages, the projectum is at most the image of the critical point. This strategy
has already been used in unpublished work of Steel and Neeman-Steel. This
is discussed at length in [24].

This approach also facilitates the comparison proof and so there are a
number of reasons to take this path.

The amenability obstruction is handled because in meeting the coding
obstruction one must allow the weak initial segment condition to fail,
and so one is forced to allow structures which are not even w-weakly
amenable at their extender-active stages. These structures arise naturally
in the backgrounded construction and previous approaches would attempt
to circumvent them.
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The comparison obstruction is handled because one compares (in the
general case), suitably iterable structures against backgrounded structures
restricting to the situation where the background structure does not move.
This is forced by passing into the hierarchy of strategic-extender structures.
Steel has independently realized that this methodology is the key to extend-
ing the fine-structure theory of nonstrategic-extender models to the hierarchy
of strategic-extender models, and he has developed the machinery for this.

Finally one is forced into the strategic-extender hierarchy in order to
connect with AD™ for the proof of iterability (which is an induction). The
proof of iterability is only possible by connecting with the general theory
of AD"-models and that connection does not exist in the nonstrategic case.
This connection is through the HOD’s as computed within the AD"-models.
These models are already known (in many cases) to be strategic-extender
models and known under fairly general conditions to never be nonstrategic-
extender (or pure extender) models.

The fundamental reason for the necessity of this methodology is the fol-
lowing. If one assumes iterability, for example the Weak Unique Branch
Hypothesis, and that there is a huge cardinal then there is nothing which
prevents the construction of the much simpler nonstrategic-extender models
up to the level where one violates the comparison obstruction, Theorem 5.35.

Therefore the Weak Unique Branch Hypothesis must be false and the
construction is vacuous. Further in this case, the only credible possibility
which remains is that iterability is proved by induction and not on the basis
of some general iteration hypothesis for V" such as the Weak Unique Branch
Hypothesis.

Verifying this is in fact what happens is the main task ahead [25]. In par-
ticular, it is necessary to verify that there are no further hidden obstructions
and that can only be done by carefully working through all the details.

As conjectured in [20], one can formulate the axiom, V' = Ultimate-L,
based on the strategic-extender models, without referring to the detailed
fine-structure theory of these models, or even using the definition of the
structures yielding the levels of the models.

The main point here is that in the context of a proper class of Woodin
cardinals, there are naturally defined approximations to Ultimate-L and
the collection is rich enough to make a definiton of the axiom, V =
Ultimate-L, possible without specifying the detailed level-by-level definition
of Ultimate-L.

The approximations form a hierarchy and it has been verified that for an
initial segment of the hierarchy, the approximations are strategic-extender
models. The conjecture of course is that all the approximations are strategic-
extender models and there is quite a bit of evidence for this conjecture.
However this is not the key issue.

The key issue is whether the axiom V' = Ultimate-L formulated in terms of
these approximations must necessarily hold in some weak extender model for
supercompactness assuming that there is an extendible cardinal. Presumably
any proof of this must yield as a corollary that these approximations are all
strategic-extender models.
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Before giving the requisite preliminary definitions, we note that the situa-
tion is analogous to being able to formulate the axiom, V' = L, without
specifying the definition of L. This is easily done as illustrated by the
following lemma.

LemMa 7.2. The following are equivalent.

(1) V=L

(2) For each Xy-sentence ¢. if V = ¢ then there exists a countable ordinal

o such that
N E ¢,

where N = N {M | M & ZFC\Powerset and Ord™ = a}.
We recall the definition of the universally Baire sets, [1].

DEFINITION 7.3 (Feng-Magidor-Woodin). A set 4 C R is universally
Buaire if for all topological spaces Q and for all continuous functions 7 :
Q — R, the preimage of A by n has the property of Baire in the space Q.

If there is a proper class of Woodin cardinals then the collection of the
universally Baire sets has very strong closure properties. Large cardinal
hypotheses are necessary for this since for example, if /' = L then every
set A C R is the image of a universally Baire set by a continuous function,
f:R—=R.

THEOREM 7.4. Suppose that there is a proper class of Woodin cardinals and
that A C R is universally Baire. Then every set

BcPR)NL(A.R)
is universally Baire.

Theorem 7.4 combined with the seminal Martin—Steel Theorem [10],
which shows that if A C R isuniversally Baire and there is a Woodin cardinal
with a measurable cardinal above, then 4 is determined, one obtains the fol-
lowing theorem which is central to analyzing the structure of the universally
Baire sets.

The axiom, AD™, is a technical variation of the axiom, AD. which asserts
that all sets A C R are determined. While it remains an interesting open
question whether AD™ and AD are equivalent (over ZF + DCg), the
AD-models of interest are all AD™-models.

THEOREM 7.5. Suppose that there is a proper class of Woodin cardinals and
that A C R is universally Baire. Then

L(A,R) E AD".

DEFINITION 7.6. Suppose that 4 C R is universally Baire. Then @% is
the supremum of the ordinals « such that there is a surjection. 7 : R — «,
such that 7 € L(A4,R).

If A C Risuniversally Baire and there is a proper class of Woodin cardinal
then O®LUR) js a measure of the complexity of A4.

The connection with inner models for large cardinals begins with the
following theorem.

(4.R)
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THEOREM 7.7. Suppose that there is a proper class of Woodin cardinals and
that A is universally Baire. Then ®=AR) is 4 Woodin cardinal in HOD R,

For the formulation of V' = Ultimate-L we give and the analysis we shall
do, it is convenient to use the following notation from the theory of AD™.
The definition of the Solovay Sequence originates in [17].

DEFINITION 7.8 (ZF + AD"). (1) © denotes the supremum of the set
of a € Ord such that there is a surjection 7 : R — a.
(2) (Solovay Sequence) (@, : a < Q) is the sequence defined by induction
on « as follows.
a) Qg is the supremum of the set of £ € Ord such that there is a
surjection 7 : R — ¢ such that z is OD.
b) O,y the supremum of the set of ¢ € Ord such that there is a
surjection 7 : P(®,) — & such that 7 is OD.
¢) ©, = sup {@5 | < a} if « 1s a nonzero limit ordinal.
d) © = 0Qq.

REMARK 7.9. Assume AD™ and that V' = L(P(R)). Let
(O, :a < Q)

be the Solovay sequence. Suppose that o < Q and that either &« = 0 or « 18
not a limit ordinal. Then the following hold.

(1) ®, is a Woodin cardinal in HOD.

(2) Let 6 be the largest Suslin cardinal such that 6 < ®,. Then ¢ is a

strong cardinal in HOD N Vg, .

Thus if V' = L(A,R) and the largest Suslin cardinal is on the Solovay
sequence then it must be both a limit of Woodin cardinals and a strong
cardinal in HOD*“R®) Ve.

We fix some notation to simplify various statements.

DErINITION 7.10. Assume there is a proper class of Woodin cardinals.
(1) I'*° is the set of all universally Baire sets.
(2) T < I'*° if the following hold.

a) TCI*®and T =P(R)NL(I.R),

b) L(T.R) £ ~ADg.

We note the following lemma from the basic theory of AD™. With notation
as in this lemma, @LT®) is a Woodin cardinal in HOD* (CR) and S isa strong
cardinal in

HODL(FR) |®L(F,R)
where ¢ is the largest Suslin cardinal of L(I", R).

Lemma 7.11. Suppose there is a proper class of Woodin cardinals and that
I' < '°. Then there is a largest Suslin cardinal in L(T',R).

The following theorems are from [23]. These theorems connect aspects
of the large cardinal structure of the HOD of an AD™ which satisfies V' =
L(P(R)). with the structure of the Suslin cardinals in that determinacy
model.
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THEOREM 7.12. Suppose there is a proper class of Woodin cardinals,
I' C I'*°, and that
I'=PR)NLI.R).

Then T <1 T if and only if ©T®) js 4 Woodin cardinal in HOD* TR,

THEOREM 7.13. Suppose there is a proper class of Woodin cardinals and that
[ <1 ', Let 6 be the largest Suslin cardinal of L(T',R). Then the following
are equivalent.

(1) 6 is a limit of Woodin cardinals in HODXI'®),
(2) 6 < QHIR) and § = (@)L TR,

Assume there are infinitely many Woodin cardinals with a measurable
cardinal above them all (for example assume there is a proper class of
Woodin cardinals). Then for many universally Baire sets 4 C R, the inner
model,

HODLWR),

has been verified to be a strategic-extender model. The natural conjecture is
that (assuming there are infinitely many Woodin cardinals with a measurable
cardinal above) this must be true for a/l universally Baire sets.

This suggests how to formulate the axiom V' = Ultimate-L and the fol-
lowing is the formulation of the axiom V' = Ultimate-L implicitly defined
in [20], except that the large cardinal hypothesis is altered.

DEFINITION 7.14 (V' = Ultimate-L). (1) There is a proper class of
Woodin cardinals.

(2) For each X,-sentence ¢, if ¢ holds in V' then there exists a universally
Baire set 4 C R such that

HOD*“® - ¢,
The following version of the axiom is given in [22].

Axiom 1. (1) There is a proper class of Woodin cardinals.
(2) There is a proper class of strong cardinals.
(3) Foreach X4-sentence ¢. if ¢ holds in V' then there exists ' <1 '™ such
that
HOD "™ 1 Vg E 6.

where @ = @LT'R)

This version of the axiom implies the following intermediate version
which therefore became an elegant candidate for the formulation of
V' = Ultimate-L.

Axiom 2. (1) There is a strong cardinal which is a limit of Woodin
cardinals.

(2) For each X3-sentence ¢, if ¢ holds in V' then there exists a universally
Baire set 4 C R such that

HOD R A Vg E 4,

where @ = @LMAR),
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The main motivation behind these variations was the intuition that if
' = Ultimate-L then the models,

HODLTR) A prg.

where ® = OL'R) and T' g '™, should resemble V if I' is sufficiently
closed. We shall see below however that this is very likely impossible.

A more pragmatic motivation for considering these kinds of variations is
simply that with more reflection and a stronger large cardinal hypothesis,
the consequences. such as those indicated in Theorem 7.26 below, are easier
to obtain.

On the other hand, one clearly wants a version which can hold in a weak
extender model for supercompactness.

For X,-sentences there is no difference in formulating 7 = Ultimate-L in
terms of reflecting to HOD” “AR) Versus reflecting to

HODX“® 1y,
where @ = @LMAR),

LeEmMma 7.15. Suppose that there is a proper class of Woodin cardinals.
Then the following are equivalent.

(1) For each X;-sentence ¢. if ¢ holds in V' then there exists a universally
Baire set A C R such that

HOD ) & ¢,

(2) For each Z,-sentence ¢. if ¢ holds in V' then there exists a universally
Baire set A C R such that

HOD ™ 1 g & ¢,
where ©® = @LAR)
PrOOF. Let d4 be the largest Suslin cardinal of L(A.R). By the general
theory of AD™, there exists a set 7 C &4 such that in L(A4,R) every set is
OD with parameters from {7} UR.

This implies by Vopenka’s Theorem adapted to L(A4,R), that there exists
aset X ¢ OLR) guch that

HOD “® = [[X].

Let Ty be the theory, ZFC\Replacement together with X;-Replacement
and the sentence which asserts that for all Z ¢ Ord, Z* exists. Then for all
a € Ord, if

HOD*“® Ny, E Ty,

(4R) The lemma follows easily from this. —|

necessarily o < @F

Lemma 7.15is false for I'l,-sentences and this claim follows easily from the
proof of Lemma 7.15 since that proof shows that if for every set ¥  Ord, Y#
exists, then there is a IT,-sentence which holds in ¥ and in HOD* (4R) A Ve
where ® = ®L“®) byt which cannot hold in HOD*“®).

This suggests the kinds of variations in the formulation of /' = Ultimate-L
indicated above and the following lemma motivates the second formulation,
given above as Axiom 2, since it shows that Axiom 1 (even weakened to just
¥3-sentences) implies Axiom 2.

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

IN SEARCH OF ULTIMATE-L 99

LEMMA 7.16. Suppose there is a proper class of Woodin cardinals, I <1 T'*°,
and that for all A € T, (A, R)# € L(I",R). Then there exists A € T such that
for all X3-sentences ¢, if

HODET® (1 E ¢
then
HOD*“®) v F ¢,
where ® 4 = OLAR) ynd @p = OLITR),
PrOOF. Letd be the largest Suslin cardinal of L(T", R) and fixd < 79 < Or

such that
HOD!'™® y, < HOD!™®  pg .

Note that 7 exists since Or is strongly inaccessible in HOD" ™™ Let4 €T
be such that
max(d,79) < Oy,

where ®, = OLR) By the Moschovakis Coding Lemma, [13]. J is the
largest Suslin cardinal of L(A4,R) and so by the general theory of AD™ (and
in particular by the proof that d is a strong cardinal in HOD* (TR) A Vor), it
follows that

HOD"® 1 yg = HOD" ™™ N g

This implies that for all X3-sentences ¢, if
HOD" "™ NV, F ¢

R

then
HOD "B " yg k¢

and so A witnesses the lemma. =

The following lemma also holds for the variation of V' = Ultimate-L
given above as Axiom 2, and the proof is the same.

LemMa 7.17. Suppose there is a proper class of Woodin cardinals, I <1 T'*°,
and that for all A € T, (A.R)# € L(I'.R). Suppose that

HOD*'® n Ve, E “There is a proper class of Woodin cardinals.”

Then
HOD "™ A Vg E “V = Ultimate-L.”

where @p = @LIR),
Proor. Fix a Z,-sentence ¢ such that
HOD ™ n yg & 6.
By Lemma 7.16, there exists 4 € I" such that
HOD"“® 1 g E 4.

Thus by the A?-Basis Theorem, there exists in L(I',R) a A?-set Z which
codes (X, R)# where X C R is such that

HOD*™"® Ny, k¢
and @y = OLX®)_Since ¥? has the scale property in L(I". R).
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(Viyser NHODY®) Zz A HOD R < (V.. Z)
and again by the scale property for X2, Z N HOD* '™ jg universally Baire in
HOD ™™ A g .
Therefore X N HOD*™®) witnesses the necessary instance of reflection. -

REMARK 7.18. Suppose there is a proper class of Woodin cardinals which
are limits of Woodin cardinals. Then by the results of Sargsyan, there exists
I' < '™, such that for all 4 € T, (4,R)* € L(I',R) and such that

or = (®6F)L(F’R),
where Jr is the largest Suslin cardinal of L(T", R).

The reason for not simply declaring Axiom 2 as the axiom V =
Ultimate-L is a recent result which shows (assuming what seem to be
extremely plausible assumptions) that if L(4,R) £ AD™ then

HOD*“R) n Ve E “There are no supercompact cardinals,”

where ® = OL4R) n fact one obtains that no cardinal K < OLUAR) of
HOD*“®) i A-supercompact where A is the least L(A4, R)-cardinal above «.
The “plausible assumptions” concern the representation of the rank initial

segments of HOD*“® below the largest Suslin cardinal of L(A4,R) as the
direct limit of structures in an appropriate hierarchy of strategic-extender
structures.

The restriction to rank initial segments of HOD ™™ pelow the largest
Suslin cardinal of L(A4,R) suffices here since

(1) If U € HOD*“® is a countably complete uniform ultrafilter in

HOD*“®) on some ordinal y, then necessarily y < @LAR),
(2) If ® = OLUR) then

(Ls(4.R), HOD"®NL;(R)) <5, (Lo(4.R), HOD"®NLg(R)),

where ¢ is the largest Suslin cardinal of L(A4, R). This is a corollary of
the proof that 0 is a strong cardinal in HOD!“®) |®.

Such a representation would yield the following conjecture which is all
one needs. Define that a set X C P(Y) generates a countably complete filter
if Ng # () for each countable set o C X.

DErFINITION 7.19 (HOD-Ultrafilter Conjecture). Suppose that 4 C R,
L(4,R) E AD", U € HOD*“® and

HOD!“® & «Uisa countably complete ultrafilter.”
Then U generates a countably complete filter.

The HOD-Ultrafilter Conjecture implies that «v; must be the least measur-
able cardinal in HOD*“®) This is already known, and that analysis yields
the following theorem.
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THEOREM 7.20. Suppose that A C R and L(A,R) E AD". Then w|’ is the

least measurable cardinal in HOD*“® and every ultrafilter U € HOD*4R)

(4.R)

on | which is countably complete in HOD* generates a countably

complete filter.

The proof of Theorem 7.20 highlights a subtle aspect of the HOD-
Ultrafilter Conjecture, even if one restricts to just ultrafilters on w{ . There
are countable sets

o C P(w;) NHODMAR),
which cannot be covered by countable sets ¢ € HOD. This is because the
cardinal successor of @]  in HOD*“® has countable cofinality.

The following theorem from [23] provides some evidence for the HOD-
Ultrafilter Conjecture. The strength of this evidence is arguable since B can
be chosen so that @“R) is the only Woodin cardinal of HOD4 ™),

THEOREM 7.21. Suppose that A C R and L(A.R) E AD". Then there
exists B C R such that B € L(A.R) and such that for all U € HODg(A’R)
for which

HODng(A’R) E “U is a countably complete ultrafilter,”

the filter generated by U is countably complete.

Assuming V' E AD, if N is an inner model of ZFC then © is always a
limit of strongly inaccessible cardinals of N which have cofinality @ in V.
This shows that if

V EAD" +“V = L(P(R))”
and if the HOD-Ultrafilter Conjecture holds in V' then there can be no
supercompact cardinals in HOD N Vg. The basic argument is given in the
proof of Theorem 7.24.

A much tighter connection between the HOD-Ultrafilter Conjecture and
the degree to which supercompactness can occur in the model,

HOD! R A g,

where ® = OL-R)_ follows from the following theorem from [23].
THEOREM 7.22. Suppose that L(A.R) £ AD*, k < OLUR) js 4 cardinal of
HOD*“®and
7= (| [*)HAR),
Then there is a countable set ¢ C A such that o ¢ t for any sett € HOD*R)
such that ordertype(r) < k.

REMARK 7.23. The proof of Theorem 7.22 actually shows that if N C
L(A,R) is an inner model of ZFC (containing the ordinals) and if < 4 <
OLMR) js a cardinal of L(A4,R). then A is a limit of strongly inaccessible
cardinals of N which have countable cofinality in L(A,R) (and hence have
countable cofinality in V).

Theorem 7.22 combined with the HOD-Ultrafilter Conjecture yields the
following theorem. For this theorem, the distinction between HODAR)
and HODX“®) 1. where ® = @24 R is not relevant.
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An immediate corollary of Theorem 7.24 is that assuming the HOD-
Ultrafilter Conjecture holds for L(A4, R) then

HOD*“R) n Ve E “There are no supercompact cardinals,”

where ©@ = @LUAR),
THEOREM 7.24. Suppose A C R, L(A.R) = AD™, and that the HOD-

Ultrafilter Conjecture holds for L(A.R). Suppose k is a cardinal ofHODL(A’R)
and . = (|| 7)XAR) | Then

HOD R & “4 is not A-supercompact.”

PROOF. Assume not and let U € HOD*“®) be such that
HOD R n Ve E “U is a k-complete fine ultrafilter on P, (4).”

Since the HOD-Ultrafilter Conjecture holds for L(A.R), U generates a
countably complete filter. Therefore for all countable ¢ C / there must exist

7 € HODM(4R)

such that ¢ C 7 and such that ordertype(z) < k. This contradicts
Theorem 7.22. -

Thus the models,
HOD ™™ A pg

where Or = OLTR) and T < T'°°, very likely cannot resemble V' in context
of large cardinals no matter how I" is chosen. Any resemblance is limited to
the level of X,-sentences.

By Theorem 7.12, allowing Wadge initial segments I' C ' for which

L(T.R) E ADg

(equivalently, which do not satisfy I' <« ') cannot help which was the
original point for focusing on I' <« I'*°. Here again, plausible assumptions
give a much stronger result, specifically that there can be no strong cardinal
in HOD"'®|@r-.

The next theorem is from [23] and highlights a very useful consequence
of the axiom V' = Ultimate-L. This a typical consequence of the axiom
V' = Ultimate-L which is easier to obtain if one assumes a version with
stronger large cardinal assumptions and with more reflection as in [22].

THEOREM 7.25 (V' = Ultimate-L). For each cardinal k. if V[G] is a set-
generic extension of V' then there exists an elementary embedding
n:(Hk")) - N
such that (m, N) € V and such that N € HOD"°],

The following theorem from [23] summarizes some of the key conse-
quences of the axiom V' = Ultimate-L where the Generic-Multiverse is the
generic-multiverse generated by V', [21].

These are proved in [22], assuming Theorems 7.32 and 7.25, but only for
the somewhat stronger formulation of J = Ultimate-L which is given there.
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In light of the necessity of the revision of the formulation of V' =
Ultimate-L, those theorems of [22] are not really relevant now.

THEOREM 7.26 (V' = Ultimate-L). (1) CH holds.

(2) ¥V =HOD.

(3) V is the minimum universe of the Generic-Multiverse.

The conclusions (2)—(3) of Theorem 7.26 actually follow from
Theorem 7.25 by fairly general arguments and we briefly sketch how. These
arguments are from [22].

We first prove the following corollary of Theorem 7.25 which is a very
strong version Theorem 7.26(2). We then use Theorem 7.27 to prove
Theorem 7.26(3), which we isolate as Theorem 7.28 below.

THEOREM 7.27 (V' = Ultimate-L). Suppose V[G]is a set generic extension
of V. Then
¥ C (HOD)"1¢I,

Proor. Fix a partial order P € V' such that G is V' -generic for P and
let 5 = |P|”. We prove that for all regular cardinals k > 6. (P(x))" C
(HOD)"1¢1 and this will show that ¥ C (HOD)"1¢1,

Fix a regular cardinal k > ¢ and let (S, : @ < k) € V be a partition of
the set

S={a<k| (cof () = w}

into stationary sets such that there is a closed unbounded set Cy C & such
that Cy € V' and such that for eachy € Cy N S,

neuU{S:[<<n}.

Note that if C C k& is a closed cofinal set with C € V[G] then there must
exist a closed cofinal set D C C such that D € V. Therefore each S, is a
stationary set in V[G].

By Theorem 7.25 there exists an elementary embedding

7 (H(x) =N
such that N € (HOD)"I%1l and such that (z. N) € V. Let
(Tg: p<n(r)) =n((Se:a<k)).
Working in V[G], define
Z ={p<n(k)| Ty C # 0 for all closed cofinal sets C C sup(n[x])} .

Thus Z € (HOD) "V since (T : f < n(x)) € (HOD)"1¢. Note that for all
& € 8. n(&) = sup(n[¢]). Therefore since each set S, is a stationary subset
of kin V[G].

k] C Z
and so since foreachn € Cy N S,
neU{S:[<<nt.

necessarily,
Z = 7n[k].
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Foreach X € N, let X* = {a < k|n(a) € X}. Since N € (HOD)"1¢1 and
since n[k] € (HOD)"16],
{X*| X € N} c (HOD)"“],
Finally (P(k)) " dom(n) and so
(P(k))” = {X*| X € N}.
which implies that (P(x))” c (HOD)"1¢1, 4

TaEOREM 7.28 (V' = Ultimate-L). V is the minimum universe of the
Generic-Multiverse.

PrOOF. Suppose that V[G] = Vy[Gy], G C Pis V' -generic for some partial
order P € V', and Gy C Py is Vy-generic for some partial order Py € V. We
must prove that V' C V.

Fix a cardinal 6 € V such that |P|” < J and such that [Py|"* < J. The key
points are that in V,

RO(P x Coll(w.d)) =2 RO(Coll(w,d)).
and that in V.,
RO(P, x Coll(w.d)) = RO(Coll(w,d)).

Suppose g C Coll(w.d) is V[G]-generic. Therefore by the homogeneity of

Coll(w,d).
(HOD) Vigl — (HOD) ViGllel — (HOD) Mo[Gollg] — (HOD)VO[g] C 7.
By Theorem 7.27, V C (HOD)"8l and so V' C (HOD)"lsl 14, -

REMARK 7.29. Usuba [19] has proved a remarkable theorem. If sufficient
large cardinals exist in V' then the Generic-Multiverse has a unique minimum
element.

Thus arguably any candidate for the axiom V' = Ultimate-L must imply
that V" is the minimum universe of the Generic-Multiverse.

The problem of whether V' = Ultimate-L implies that the Q Conjecture
1s more subtle and this is because of the restriction to X,-sentences in the
formulation of the axiom. The stronger versions given as Axioms 1 and 2
each imply the Q Conjecture.

What one seems to need in order to prove the Q Conjecture from V' =
Ultimate-L is the following conjecture which also follows from the previously
discussed “plausible assumptions.”

DEerFINITION 7.30 (® Conjecture). Suppose L(A.R) = AD™. Then
(©9)LAR) s the least Woodin cardinal of HOD (4R,

The following theorem from [23] provides strong evidence for the @
Conjecture. Note that ® is same allowing x has a parameter for any x € R;
more precisely, if 7 : R — « is a surjection which is OD, for some x € R,
then o < ©y.

THEOREM 7.31. Suppose that A C R and that L(A.R) = AD™. Then for a
Turing cone of x, (@9)= 4R s the least Woodin cardinal of HODf(A’R).

https://doi.org/10.1017/bsl.2016.34 Published online by Cambridge University Press


https://doi.org/10.1017/bsl.2016.34

IN SEARCH OF ULTIMATE-L 105

THEOREM 7.32 (V' = Ultimate-L). Assume the ®y Conjecture and let /. be
the least Woodin cardinal. Then there is a partial order P € V1 such that if
G C P is V-generic then in V[G] every A? subset of R is universally Baire.

Proor. We just sketch the proof which requires basic elements of the
theory of AD™.

It suffices to prove that if K > A and | V,;| = k then there is a partial order
P € V;, such that if G C Pis V-generic then in V'[G] every A} subset of R
is (<k)-universally Baire.

This is expressible by a I1,-sentence, . Assume toward a contradiction
that (—y ) holds. Then since V' = Ultimate-L holds, there exists a universally
Baire set A C R such that the following hold where ® , = @LAR),

(1.1) HOD* R A 1 E (—p).

(1.2) The ®y Conjecture holds for L(A4,R).

Since X2 has the scale property in L(A4,R), every set Z C R which is X3-
definable in L(A4, R), is the projection of a tree T such that 7 € HOD*4®).

Let &4 be the largest Suslin cardinal of L(A,R). Thus d 4 is (<@ ,)-strong
in HOD*“®) and therefore (@)X 4R < §, since (@)L P is the least
Woodin cardinal in HOD*4®),

Let G C Coll(w;.R) be L(A.R)-generic. A key point is that by Vopenka’s
Theorem and the definition of (®,)L4®), HOD*“®[G] is a generic
extension of HOD*“®) for a partial order of size at most (@)L 4R in
HOD*®),

For each A < J,4 there is a unique normal fine countably complete ultra-
filter, U;,in L(4,R) on P, (). Thus every set of reals, which is A?-definable
in L(4,R) is (<d,)-universally Baire in HOD*“®[G], appealing to the
closure of

HOD “® P(0rd)
under the ultrapowers maps 7; as computed in L(A, R) using the ultrafilters
U;. We view 7, as acting on all sets of ordinals where the ultrapowers are
computed using all functions in L(A4,R).

We have that 6 4 is (<@ 4)-strong in HODX“®) and this implies that J 4 is
(<®,)-strong in HOD* (4R) [G]. Thus every set Z C R which is A2-definable
in L(A.R), is universally Baire in

HOD*®[G] N Ve,.
But this includes all the sets Z C R which are A}-definable in
HOD ™ g,
and this proves that
HOD "™ N yg Ey,
which is a contradiction. -

The proof of Theorem 7.32 adapts to prove the following more striking

version of that theorem (assuming there is a strong cardinal). This requires

the following variation of the ®, Conjecture which is really a strong version
of Theorem 7.13.
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DEFINITION 7.33 (®, Conjecture). Suppose that 4 C R,
L(A.R) £ AD*,
and y < LR Then the following are equivalent.

(1) y is a limit of Woodin cardinals in HOD**®) and no cardinal & is
(<y)-strong in HOD*(4®),
(2) y = (0,)“4R) for some limit ordinal o > 0.

REMARK 7.34. (1) The ®y Conjecture characterizes ®, in HOD,
whereas the ®, Conjecture characterizes in HOD, all the ®, where
a > 0 and « is a limit ordinal.

(2) By [23]. assuming AD™ and that V' = L(P(R)), if & > 0 is a limit
ordinal then ®,, cannot be a limit of HOD-cardinals which are (<®,)-
strong in HOD. Thus ®,, is a Woodin cardinal in HOD if and only if
a = 0 or « is not a limit ordinal. This implies Theorem 7.12.

We note the following theorem, [23].

THEOREM 7.35 (Q Conjecture). Suppose there is a proper class of Woodin
cardinals. Then there is a partial order P such that if G C P is V -generic then
in V[G],

v (RVIGN E ADY.

The conclusion of Theorem 7.36 (augmented with the ®, Conjecture) is
simply a much stronger version of the conclusion of Theorem 7.35, showing
that one can require I to be homogeneous and in addition both that A is
© = O in V(R"IC) and that V}, is exactly HOD|®, as computed in the
L(P(R)) of V' (RVI]), where A is the least Woodin cardinal of V.

THEOREM 7.36 (V' = Ultimate-L). Assume the ®, Conjecture and suppose
that there is a strong cardinal. Let 1 be the least strong cardinal. Then there is

a homogeneous partial order P € V, y such that if G C P is V -generic then
in V[G] the following hold where

rg = (1)1

and where Rg = RV1C],

(1) V(I'g.Rg) E ADg + “® is regular” and T = P(Rg) NV (L. Rg).

(2) 4 = OLT6R) gpd v, = HODM e Re) 1 1[G,

The conclusion of Theorem 7.36is actually equivalent to /' = Ultimate-L
assuming that there is a strong cardinal and that the ®, Conjecture holds.

To obtain the Q Conjecture from V' = Ultimate-L and the ®; Conjecture,
we use the following lemma which is a special case of Lemma 217 on page 315
in [20].

LemmMma 7.37. Suppose that there is a proper class of Woodin cardinals and
that for every set Z C R, if Z is A2-definable then Z is universally Baire. Then

HOD E “The Q Conjecture.”

THEOREM 7.38 (V' = Ultimate-L). Assume the @y Conjecture. Then the
Q Conjecture holds.
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Proor. By Theorem 7.32, there is a partial order PP such that if G C P
is V-generic then in V[G] every A? subset of R is universally Baire. By
Lemma 7.37,

(HOD)"11 £ “The Q Conjecture”

and by Theorem 7.27,
¥ C (HOD)"1¢I,
Therefore (HOD)"[¢] must be a generic extension of V. Finally the Q Con-

jecture is absolute between set-generic extensions and so the Q Conjecture
holds in V. -

Finally, a very natural open question is the following where weak com-
parison is as defined in Definition 6.36. This question makes sense by
Theorem 7.26(2).

QUESTION 7.39. Does V' = Ultimate-L imply weak comparison?

We now very briefly consider the Ultimate-L Conjecture and we begin by
noting the following lemma. This lemma explains why in the formulation of
the Ultimate-L Conjecture it is reasonable to require N be a weak extender
model for the supercompactness of d, versus just requiring that N be a weak
extender model for the supercompactness of some cardinal.

LemMA 7.40. Suppose that N is a weak extender model for the supercom-
pactness of k, N is weakly X,-definable, and that 6 > k is an extendible
cardinal. Then N is a weak extender model for the supercompactness of .

Proor. Let A > ¢ be such that V; <5, V" and let

J Vi = Vs
be an elementary embedding such that CRT(j) = J and j(5) > A. Thus,

1.2) V; E “N is a weak extender model for & is supercompact.”
1.3) V;(;) E “N is a weak extender model for & is supercompact.”
1.4) (N)Yis 0V, = NNV, where (N)"i% is N as computed in V).
This well-defined by the elementarity of ;.
Therefore by (the proof of) the Universality Theorem, Theorem 3.26, for
eachd <y < A,

JIV, nN) e (V)
and so for each d < y < A, there exists a d-complete normal fine ultrafilter
U on P;s(y) such that

(2.1) NnPs(y) e U,

(22) UNN € N.
This implies that NV is a weak extender model. for ¢ is supercompact. =

We end with the following conjecture which is the minor variation of the
version of the Ultimate-L Conjecture given in [24] obtained by dropping
one clause.* Proving either conjecture would show in a decisive fashion the
transcendence of the strategic-extender hierarchy.

“Which asserts that there is an extender sequence £ of length § in ¥ whose restriction to
N both belongs to N and witnesses in N that ¢ is a Woodin cardinal.
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The same applies to the weaker conjecture where one drops the require-
ment that N C HOD or the requirement that N be weakly Z,-definable.
Here, for example, one could simply conjecture that if & is strongly inacces-
sible and ¢ is an extendible cardinal in V, then there exists N € V. such
that

N E “V = Ultimate-L”

and such that relative to V., N is a weak extender model for the
supercompactness of ¢.

CONJECTURE 7.41. Suppose that ¢ is an extendible cardinal. Then there
exists a weak extender model N for the supercompactness of o such that

(1) N is weakly 2,-definable and N ¢ HOD,
(2) N E “V = Ultimate-L.”
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