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DUALITY BETWEEN D(X) AND D(X) WITH ITS
APPLICATION TO PICARD SHEAVES

SHIGERU MUKAI

Introduction

As is well known, for a real vector space V, the Fourier transformation
f(a) — J fv)eri<v=>dy acVV
14

gives an isometry between LA V) and L¥VV), where VV is the dual vector
space of V and {, >: VX VV — R is the canonical pairing.

In this article, we shall show that an analogy holds for abelian varieties
and sheaves of modules on them: Let X be an abelian variety, X its dual
abelian variety and & the normalized Poincaré bundle on X X X. Define
the functor & of 0y -modules M into the category of @g-modules by

P(M) = 73 (P QM) .

Then the derived functor R¥ of & gives an equivalence of categories be-
tween two derived categories D(X) and D(X’) (Theorem 2.2).

In § 3, we shall investigate the relations between our functor R¥ and
other functors, translation, tensoring of line bundles, direct (inverse) image
by an isogeny, etc. The result (3.14) that if X is principally polarized
then D(X) has a natural action of SL (2, Z) seems to be significant.

In §§4 and 5, we shall apply the duality between D(X) and D(X) to
the study of Picard sheaves. We shall compute the cohomology of Picard
sheaves (Proposition 4.4), determine the moduli of deformations of them
(Theorem 4.8) and give a characterization of them in the case of dim X=2
(Theorem 5.4). Other applications of the duality will be treated elsewhere.

After the original paper was written, the author learned by a letter
from G. Kempf that Proposition 3.11 and some results in §4 had also been
proved independently by him.
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Norations. We denote by %k a fixed algebraically closed field and
mean by a scheme a scheme of finite type over k. For the product
variety XX YX Z, ny (or p,) and =y , (or p,,) are the projections of XX YxX Z
to X and XX Y, respectively. For a coherent sheaf F on a variety X, r(F)
denotes the rank of F at the generic point of X. FV denotes Hom,, (F, Oy).

§1. Preliminary

Let X and Y be schemes and F an 04, ,-module. We define the functor
Fx_y.r from the category Mod (X) of ¢y-modules into Mod (Y) by

(1-1) yX—'Y,F(?) = ﬂY,*(F® 7‘7:‘15?) )
where ? is an Oy -module or an ¢,-homomorphism.

ExampLE 1.2. Let I'; be the graph of a morphism f: X— Y and F
the structure sheaf @, of I,.
Then &y y» = fx and Fy_ 5 r = f*.

We denote by D(X) the derived category of Mod (X) and by D,.(X)
(resp. D/(X)) the full subcategory of D(X) consisting of the complexes
whose i-th cohomologies are quasi-coherent (resp. coherent) for all i. D-(X)
(resp. D¥(X)) is the full subcategory of D(X) consisting of the complexes
bounded above (resp. bounded on both sides) and D;(X) = D~ (X)N D (X),
DYX) = D(X)ND(X), etc.

For an object F of D~(X'X Y), we define the functor R¥;_, » from D~ (X)
into D-(Y) by

(1.4) RS 1y o(?) = Rey ((F @ 747) .

If F is an Oy-flat module, then R¥ .,  is the derived functor of &, ; ;.
To consider the derived functors has the following advantage:

Prorosition 1.3. Let Z be a scheme and G an object of D-(XXY).
Then there is a natural isomorphism of functors:

RyY—rZ,GORyX——fY,F = Ryzuz,y ’
L
where H = Rry,; (7% +F Q ¥, ,G).

Proof. We use (1) the commutativity of R and the composition of
functors, (2) the projection formula and (3) the base change theorem. (See
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[2] Proposition 5.1, 5.3, 5.6, 5.12)
Let ? be an object or morphism in D (X).

RSy 2,6(RS x.y,#(7))

= Rr, (G R 73Ry, (F & 757)

= Ry (G @ Ry, ,4(e o(F 6 wE0) ®
= Rry,Rey, o (w526 & o F O 737) @
= Rrg, yRecx,z,u(w$,2G QO ko F @ %, ,E7) W
= Ry ((HE 7)) = RS 55,u(2) @

) q.e.d.

ProrosiTioN 1.4. (1) If F has finite Tor-dimension as a complex of
Oy-modules, then we can extend the domain of definition of R¥x_y,r to

Ry et DIX) —> D(Y)

and RS y_y,r maps D*X) into D*(Y).
(2) If F belongs to D;(XXY), then R’ y_y r maps D;(X) into D(Y).
(3 If X is proper and Fe D;(X X Y), then R¥y_, » maps D;(X) into
D;(Y).

Proof. For (1), see [2] Proposition 4.2 and Corollary 4.3. (2) and (3)
follow from [EGA] III 1.4.10 and 3.2.1, respectively. q.e.d.

§2. Fourier functor

Let X be an abelian variety of dimension g (the business is similar
for a complex torus) and X its dual abelian variety. Let # be the nor-
malized Poincaré bundle on XxX. Here “normalized” means that both
Plyxs and 2P|, s are trivial. For % eX (resp. x € X), P, (resp. P,) denotes
Plyxs (vesp. Plos). We put & = P4, and @ = Py 3,. Since X is
complete and & is @4-flat, we have by Proposition 1.4,

PrOPOSITION 2.1. The derived functor R¥: D(X)— D(X) of & can be
defined. It maps DXX), D;(X) and D;(X) into D'(X), D;(X) and D;(X) re-
spectively.

The following theorem is fundamental:
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THEOREM 2.2. There are isomorphisms of functors:
RS oRF = (—1;)*[—g]
and
RS oRY = (—13)*[—gl,

where [—g] denotes ‘‘shift the complex g places to the right’. In other
words, R gives an equivalence of categories between D(X) and D(X), and
its quasi-inverse is (—13)* o RP[g].

Proof. Tt suffices to show that (R¥|p- 1) (R?|p-ur) = (—1)*[—g].
By (1.3) the left side is isomorphic to R¥ .y, with H = Rp,, .(piZ? Q piP),
where p,, are projections of XX XX X. Since PEP Q@ pE? = (mXx 1)*# (which
is easily verified by the seesaw principle), H = Rp,, ,(mX1)*# = m*Rp, 2.
As was shown in the course of the proof of the theorem in [6] § 13, R'p, &
=0 for every i + g and R%p,,Z = k(0), i.e., Rp, ,& = k(0)[—g]. Hence H
is isomorphic to @ [—g], where E is the graph of —1,: X— X. Therefore
RFy .xn = (—1;)*[—g] (see Example 1.2). q.e.d.

In order to apply the theorem, we need

DerFINITION 2.3. We say that W.LT. (weak index theorem) holds for
a coherent sheaf F on X if R:Z(F) = 0 for all but one i. This i is denoted
by i(F) and called the index of F. We denote the coherent sheaf R!®P(F)
on X by F and call it the Fourier transform of F.

We say that LT. (index theorem) holds for F if H{(X, F ® P) = 0 for
all PePic® X and all but one i.

Since (Z @ 7tF)|yys = P; ® F, we see by virtue of the base change
theorem, that L.T. implies W.LT. and F is locally free if LT. holds for F.
We always identify 0,-module F with the complex consisting of F in degree
0, and O elsewhere. Hence if W.LT. holds for F, then R¥(F) is isomorphic
to F[— i(F)]. Hence we have

CoroLLARY 2.4. If W.I.T. holds for F, then so does for F and i(ﬁ‘ )=
g—i(F). Moreover Fis isomorphic to (—1;)*F.

CoROLLARY 2.5. Assume that W.I.T. holds for F and G. Then Ext; (F, G)
= Extii+ (£, G) for every integer i, where p = i(F) — i(G). Especially, we
have an isomorphism Exti, (F, F) ~ Ext}, (B, F) for every i.
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Proof. Exti, (F, G) = Hom,y, (F, G[i])
= Homy s, (RZ(F), RZ(G)[i))
= Homps, (F—i(F)], Gli — iG]
=~ Extiy (F, G) g.e.d.

ExamPLE 2.6. Let k(%) be the one dimensional sky-scraper sheaf sup-
ported by £ € X. Since H{(X, k(%) ® P) = 0 for every i > 0 and Pe Pic® X,
IT. holds for k(%), i(R(%)) =0 and k/(o?) ~ P,. Hence by Corollary 2.4,

W.LT. holds for P;, i(P,) = g and 1/3; ~ k(—x). Note that I.T. does not hold
fOr P e

Combining the above with Corollary 2.5, we have

ProrositioN 2.7. Assume that W.I.T. holds for a coherent sheaf F on
X. Then we have

H{(X, F® P,) = Extg;!™+ (k(8), F')
and
Ext!, (k(x), F) = H-"(X, FQP_).

Proof. By Corollary 2.4, it suffices to show the first isomorphism.
Since P; is locally free, HY(X, F® P;) is isomorphic to Ext} (P_; F).
Hence by Corollary 2.5, it is isomorphic to Ext?:” 0z 5 B = Extit (k(%), B,
where p = i(P_z) — (F) = g — i(F). g.e.d.

CoroLLARY 2.8. The Euler-Poincaré characteristic of F is equal to
(—D®r(B).

Proof. (X, F) = 21 (- D'h(X, F)
= ] (—1)" dim Extiz~® (k(z), F)
= (=) . q.ed.

ExampLE 2.9 ([4] §4). A vector bundle U on X is said to be unipotent
if it has a filtration

0=UcUCc...cU,,cU,=U

such that U,/U,_, = @X for i=1,2,---, n. Since the functor R'Y is semi-
exact for all i, W.LT. holds for U, i(U) = g and the coherent sheaf U is
supported by 0cX. Hence ReS gives an equivalence of the categories
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(Unipotent vector bundles on X) and (Coherent sheaves on X supported
by 0) = (Artinian B-modules), where B is the local ring Og,3 of X at 0.
Moreover we have by Proposition 2.7.

Hi{(X, U) = Ext: (K0), U) .

§3. Relations between R¥ and other functors

The properties of the Poincaré bundle & give relations between & and
other functors. From this we obtain by the universal property of R,
relations between RY and other functors. For example, from the iso-
morphism T ,? = # ® o} P;, we obtain the isomorphism of functors & o T'¥
= (® P_;) o because S(T5?) =y (P Q T o1k =y o Th o (Th_5PQ
7%?) = 7wy (P QriP Qa5 = (DR P_,.

Hence we have
(3.1) (Exchange of translations and ® Pic®)

R¥oTf =(®P_;)oR¥
RS(®P,) = TF-RS.

ExampLE 3.2. W.LT. holds for every homogeneous vector bundle H
on X. The index i(H) is equal to g and H is a coherent sheaf supported
by a finite set of points. Hence R¢Y gives an equivalence of categories
between H, = (Homogeneous vector bundles on X) and C/ = (Coherent
sheaves on X supported by a finite set of points).

Proof. If a coherent sheaf M on X is supported by a finite set of
points, then M ® P = M for all Pe Pic® X and hence &L(M) is a homo-
geneous vector bundle by (3.1). Therefore it suffices to show the first
statement. Put M, = R.(H). Since T*H=H for all xe X, M, P= M,
for all Pe Pic® X by (3.1). Hence by the lemma (3.3) below M, is supported
by a finite set of points. By Theorem 2.2, there is a spectral sequence whose
E, term is R¥?(M,;) and which converges to zero when i+ j+# g. Since
R¥PI(M,) = 0 if j = 0, the spectral sequence degenerates and M, is zero
for every i +# g. q.e.d.

LEmmaA 3.3. Let M be a coherent sheaf on an abelian variety X. If
M® P = M for all Pec Pic° }2', then Supp M is finite.

Proof. Suppose that dim Supp M > 1. Take a curve C contained in
Supp M and let C be its normalization. Put N= M® 020; and L = NJ
“the torsion part of N”. Then N is a vector bundle on C and N®f*P
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=N for all Pe Pic® X, where f is the natural morphism C —» C G X. There-
fore, taking the determinant of both sides, we see that (f*P)® " is trivial
for all Pe Pic® X. This is a contradiction because the morphism f*: Pic® X
— Pic® € is not zero. q.e.d.

Combining Example 2.9 and 3.2, we have

TueoreM (Matsushima, Morimoto, Miyanishi, Mukai). A vector bundle
F on X is homogeneous if and only if F is isomorphic to @7, P,® U, for
some Py, ---, P, €Pic® X and unipotent vector bundles U, .-, U,.

Let Y be an abelian variety, ¢: Y— X an isogeny and ¢: X — Y the
dual isogeny of ¢.

(3.4) (Exchange of the direct image and the inverse image)

P*o RSy = RSy oy
0y o RSy = RFy o p* .

Proof. The second isomorphism is obtained from the first in the fol-
lowing manner. Replacing ¢ by ¢ in the first isomorphism, we have
¢*o RS, = RS, o¢p,. By Theorem 2.2,

pxo RSy = (_1X)*°RyX°R'¢X°§D*ORyY[g]
= (—1X)*°R‘¢X°¢*°R§Y°Ry1/[g]
= (—1)*R¥ op*o(—1p)*
= RS op*.
Hence it sufficesjto show ¢* 0¥y = ¥, 0¢,. By the definition of ¢, (¢ X
D*?, = (1X)*?,. Hence we have
¢*F (7)) = ¥y, (Px @ 12*7)
= 1y (o X D¥P, @ n2*?)
= 7y, (1 X 9)4((1 X 9)*Py @ 73?)
= 1y, (Py @ (1 X ¢)yk?)
= L@ -

y %5 Xx

e e

X< yxx 2 xxx

N

Y o YX V — > XXY q.e.d.
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Remark 3.5. The second isomorphism can be also proved in the same
way as the first by the isomorphism (1 X ¢),Zx = (¢ X 1),&, which was
proved in [7].

ExampLE 3.6. If H is a homogeneous vector bundle on X (resp. Y),
so is ¢*H (resp. p,H). Moreover the following diagram is (quasi-)com-

mutative.
& &
S’D\»l iSD* ¢*T T%»
Ly Sy

Now we investigate other properties of the Fourier functor R¥. Let
m: XX X— X be the group law of X. For 0Oy-modules M and N, we
define the Pontrjagin product MxN of M and N by MxN = m,(pfM &
pEN). x is a bifunctor from Mod (X) X Mod (X) into Mod (X). We denote
its derived functor by fE.

(3.7 (Exchange of the Pontrjagin product and the tensor product)
R7(F%?) = RAF) & R ()
r#(F@?) = R#(F)ERF() [g]

where Fe D(}A( ) and ? is an object or a morphism in D(X).

Proof. Tt suffices to show the first isomorphism. We use th(i iscz-
morphism (1X m)*? = pi? @ pi?, where p,,’s are projections of XX XX X.
R¥(F¥?) = Ruy (2 ® wi(Rm(p¥F @ pi?))
= Ry, (7 Q@ R(1 X m), pi(pi'F & pi?))
= Rry, R X m), (1 X m)*? ® piF ® pi?)
= Rp,,(p%? @ pi? @ piF @ pi?)
= Rp, (pi(Z @ n5F) ® pi(# @ 7%7))

= R#(F) @ R¥(?)

X< xR ™ xxXx X

lm lpza

m

X <& XxX g.e.d.
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Let 4, be the dualizing functor. Since the cancnical module of X is
trivial, 4,(?) = R Hom,, (2, Ox) [g]-
(3.8) (Skew commutativity of R¥ and 4)

Ao RS = ((—1)* RS o dz) [g] .

Proof. We use the isomorphism Z!' = ((—1,) X 14)*# and the Gro-
thendieck duality.

Ax(RF(?)) = AxRry (P Q n%?
= Ry Ay (P Q@ 72*?)
= Rry (P @ n§ds?) [g]
= Ry (—1x) X 12)*P2 @ 254:7) [g]
= (—1)*RF(427) [8] q.e.d.

ExampLE 3.9. Let U and V be unipotent vector bundles on X. As
we saw in Example 2.9, U and V are artinian B-modules. U® V and UV
are also unipotent vector bundles. U/®\V is isomorphic to UxV and l//'\V
is isomorphic to (—1,)*4(0). UxV is U®, V regarded as a B-modules via
the co-multiplication p: B B&B of the formal group B. —1, is an
automorphism of B induced by —13: X— X and 4 is the dualizing functor
of Mod (B).

Next we investigate the relation between RS and ® N for a line
bundle N on X. In the rest of this section we always assume that IV is
nondegenerate, i.e., y(IV) = 0. Hence ¢, ([6] p. 59, p. 131) is an isogeny.

(310) 2% N=(QNogioRFP > ® No(—1,)%) (?)

where ? is an object or a morphism in D(X).

Proof. Consider the isomorphism +: X X X— X X X such that (x, y)
=(x,x +3y). The morphisms p,, p, and m is sent by + to p,, ¢ and p,,
respectively, where p: X X X— X, u(x,y) = y — x. Hence ?«*N =m(p}?®
p¥N) is isomorphic to p, . (pf? @ x*N). By the definition of the morphism

v: X— X, we have m*N = pfN®piN® (1 X ¢,)*2 and hence p*N =
D (—1)*NQpiNR(—1y X ¢y)*P. Therefore the functor ?*NV is isomorphic
t0 (O N)oFxox, (—1xxgmre° (® (—1x)*N). By our assumption on N, ¢, is an
isogeny, hence a flat morphism. Hence Ly .z, (_iixpmis = $ho0F o (—1)*

g.e.d.

Since LT. holds for N ([6] §16), N is a vector bundle on X. N is
simple, i.e., End‘m(](/’ ) = k by Corollary 2.5.
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ProposiTION 8.11. (1) ¢7;-Z\A7 = (N-1)@lwl

(2 Nenwi =g  N-1

@) If |((N)| =1, eg., N is a principal polarization of X, then N=
(G7)*N-.

(4) There is an isogeny n: X— Y of degree |y(N)| and « line bundle
L on Y such that N = n*L. Since Ker (r) C K(N), there is an isogeny r:
Y— X such that tor = ¢,. Then N is isomorphic to . L

Proof. (1) is obtained from (3.10) by putting ? = @, because then the
left side is 0, g N = Rp, . (p¥N) = 0, ®, H(X, N) [—i] and the right side
is N® ¢§’;N [—1i], where i = i(F). Replacing N by N-! in (1), we have
NOumMl ~ (—-¢N)*Z\/7} !, Operating + on both sides, we have (2) because
Nouw ~ (—dn)(—1)*N ' = ¢ N by (3.4). Since deggy =|x(N)}, ¢y 1s an
isomorphism if |y(V)| = 1. Hence (3) is a special case of (1) or (2). For the
first half of (4), see [6] § 23. It suffices to show the last statements. Since
Ix(L)] = 1, we have by (3), N = #*L = #,[, = #,4,,L-. On the other hand,
since N = n*L, we have ¢, = #o¢,on. Since ¢y =7ox and = is an isogeny,
we have ¢ = #o¢,. Hence N = o, L7 g.e.d.

(8.10) gives us an interesting relation between two functors R¥ and

&® N.

(812) (® NoghoRP) [g+i(N)] = (R O* ™) o gho dy, 4.
Especially, when the group scheme K(IV) is discrete, e.g., when x(N)
is prime to the characteristic exponent p of the ground field, then we have

(312) (®NoghoRPY [g+ iN)] = (@ THoW.
2E€K(N)
Proof. First operate R¥ on both sides of (3.10). By (3.7), we have

RI() Q@ RIWN) = (RF o ® Nog§o RP o ® No(—1)%) (2)
i.e., ) |

Q@ NoRP[—i(N)] = RP o @ NogtoRP o @ No(—1,)*.
Operating (—1;)*¥ o R¥ o ¢y, from the right, we have

® Nopyu[—g—ilN)] = RP o @ NoghoRP o @ NoRF o gy,
= RP <@ No g o RF o ® No g RS
~RPo(® NogtoRP) .

Hence @ Nogho® No by.x = (® NogtoRP) [g+i(N)]. By (1) of Proposi-
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tion 3.11, we have ¢;‘GN = (N-)®1"1 and hence ¢;’,;o®1\7 =(® ¢;‘;]\A7)o¢;$ =~
(@ (N-1)@ilyo g . which proves our assertion. q.e.d.

In the case (X, L) is a principally polarized abelian variety, X is identi-
fied with X by the isomorphism ¢,: X — X. Hence R¥ is considered to
be an automorphism of D(X). We summarize the results derived in this
section for this case.

TueoreM 3.13. Let (X, L) be a principally polarized abelian variety of
dimension g. Then we have

O RLY = (-1)*[-35],

2 R QP,=Tt-RY for xe X,

B) RFop = poRY for an isogeny ¢: X — X.

@) R¥od=((—1)*cdocR¥F)[g], where 4 is the dualizing functor of

D(X),
G) [ =L and L = (—1)*L,
6 ®L-R¥y =[-gl

(1) and (6) implies that the relation modulo the shift [ ] between two
automorphisms R¥ and ® L is same as the relation between the generators

[ 0 1] and [1 1] of SL(2, Z). In other words,

~10 01
(8.14) if X is principally polarized, then SL (2, Z) acts on D(X) modulo
the shift.

Remark 3.15. The relation between automorphisms of D(X) and semi-
homogeneous vector bundles on X will be discussed in [5]. Some appli-
cations of (3.14) to the vector bundles on an abelian surface will be treated
in a forthcoming paper.

§4. Picard sheaves

In this section as an application of Fourier functor, we calculate the
cohomology of Picard sheaves and determine the moduli of deformations
of Picard sheaves.

Let C be a nonsingular complete curve of genus > 2. We fix a point
c of C and put &, = 0y(n(c)). We identify C with the subvariety {(x)—
(0)]x e C} of the Jacobian variety X=J(C) and also identify a sheaf on C

A
with a sheaf on X supported by C. The subvariety W,=C+---+C of X
is said to be the distinguished subvariety of dimension i, for 0 <i < g 1.
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W,_, is a divisor of X and (X, L) is a principally polarized abelian variety
of dimension g, where L = 0x(W,_,). We denote the canonical point of
(X, L) by &, that is, k1 —W,_, = W,_,.

DerFINITION 4.1. The sheaf F, = R'¥(¢,) is called a Picard sheaf of
rank g — n — 1.

Our definition of F, is same as that in [8], because a normalized
Poincaré bundle ¥ on C X X is isomorphic to #|.. Replacing ¢ by
another point ¢’ € C, we get another Picard sheaf F.

ProposrrioN 4.2. F,=T%.  F,®P,_,.

Proof. F, = RP(Ts_¢£)
= RIEI)QP,
= RPE, QP ) ® P_on
=T oF,.Q P, .. g.e.d.

We summarize some fundamental properties of F,.

THEOREM 4.2 (See [8].)

(1) F, is zero for n>2g—2. Supp F, is t —W,,_, , forg—1<n<
2g—-2. Supp F, is X and the rank of F, at the generic point of X is g—n
—1forn<g-—1. F, is locally free for n < 0.

(2) The i-th Chern class c(F,) is rationally equivalent to W,_, for i
< g—1. Especially, det F, = L for n < g — 1.

(8) The projective fibre space P(a*F,) associated with «*F, is isomorphic
to the (28—2-—n)-th symmetric product Sym*-2-*(C). Where « is the auto-
morphism of X for which a(x) =k — x.

By the following proposition, we can apply the theory of Fourier func-
tor to Picard sheaves.

ProposiTioN 4.3. (1) For n<g—1, F, is £,, WILT. holds for F,,
i(F)=g—1and F, = (—1,)*,.

(2) For n> g — 1, F, is isomorphic to o* Extsy (Fop s ny Ox) and F(&,)
=~ g* ﬂ[omgx (Fzg_z-m @x)-

B) Extt (F,, 0y) is zero for i > 2, n>g— 1.

Proof. Since dim Supp &, = 1, R'.¥(g,) is zero for i > 1. On the other
hand, #(¢,) is zero for n < g ([8] § 3). Hence, when n < g, W.LT. holds for
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&, and i(¢,) = 1. Therefore (1) follows from Corollary 2.4. Since 4(0,) is
isomorphic to K [1] = &,,_,® P,[1], &, is isomorphic to 4(§,, .., ® P)[—1].
Hence, by (3.8), we have
RZ(E,) = R (U(Ese—2-n @ PY[—1])

= ((“1X)*4Ry(52g-2‘n QP)H—g—1]

Z (—1)*THARS (535 2D — 8 — 1]

= a*(dRF (brg-o-N— 8 — 1] .
When n > g — 1, R#(§,,_,_,) is isomorphic to F,[—1] by (1). Hence we
have

RF(E,) = a*(R Homoy (Fyg—y-o[—1], 0x)[8D[— & — 1]
= a*R Homoy (Fyg sy Oy) .

Therefore, R'¥(£,) is isomorphic to a* Extb, (Fy_; ., Ox), which shows (2)
and (3). q.e.d.

Applying the result in § 3 and § 4, we have the following three pro-
positions.

ProposiTioN 4.4 (Cohomology of Picard sheaf). Assume that n<g
—1.
Q) hX,F,®P,)=0 forall xeX. When 0 < i< g— 1, we have
. (g - 1) if —xeC
h(X, F,® Py) = i
0 if —x¢C

@ WX F,QL'®P,)=h'Ct, ., QP..,) foral xcX

® WEFOLOPR)={%¥ "1 ;g:;;g.

Proof. By Proposition 2.7, HY(X, F, ® P,) is isomorphic to Exti: (k(x),
(—1,)*¢,), which shows (1). By Corollary 2.5 and (5) of Theorem 3.13,
H{(X,F,9 L'®Q P,) = Ext. (L& P_,, F,) is isomorphic to Ext} ¢+ (L/®\P_x,
ﬁ‘,,) =~ Exti e (L' ® P,, (—14)*¢,). Since L|, = &,, we have H'(X, F,® L™
QP)=H (X, LOP_,Q(—1)%¢,) = H*"(C, £, ® (= 1)*L|;® P,) =
Hi-¢"(C, &,,,® P,,,), which shows (2). In a similar manner, we have
H{(X,F,QLQ® P,) = Exti;' ((—1)*(L® P,), (—19)*¢,) = H*(C, ¢, , QO P_,).
Since deg &,_, =n — g <0, we have by Riemann-Roch theorem, A°(C, &,_,
®P_,)=0 and A(C,&,.,Q®P_,)=2g —n—1. Hence we have proved (3).

g.e.d.
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ProrosiTioNn 4.5 (Local property of Picard sheaf).

H(C, ¢, ®P,) i=0

Tor¢x (F,, k(x)) = {H(C, ¢, Q P,) i=1

Torgx, (£(£,), k(x)) i>2
Proof. Assume that n < g — 1. Then we have by Proposition 2.7,
Exti, (k(x), F,) = H-¢*'(X, (—1,)*¢, ® P_,). Hence by the duality theorem,
Tor, (F,, k(x)) is isomorphic to Extg;¢(k(x), F,) = H'-C, &, ® P,), which
proves our assertion for n < g — 1 because #(¢,) is zero for n < g — 1.

By what we have shown, the minimal resolution of F, ® 0y , is

0 <—‘Fn ® @X,z: < @X,z ® HI(C’ $n®Px)('——_(OX,x®HO(C, $n®P.t)(‘—'—0'

By (2) of Proposition 4.3, the sequence

(46) 0 Fy , , ® Ox,00) < Ox,uiy @ HY(C, §, @ P,)V <= Oy 00y ® H'(C, &,
QP «—F(Erg2n)® Og iy« 0 is exact.

It is easy to see that the left three terms of (4.6) is the minimal re-
solution of F,, ,_, ® Oy, .., Hence Tore* (F,,_,_,, k(a(x))) is isomorphic to
HYC, &, ®P,) = H'(C, K, ®&_,®P_)) = H (C, &0, ® Pyy) for i =
0, 1 and isomorphic to Tor{Z, (¥ (&, 2-.), B(a(x))). Hence our assertion has
been proved for n > g — 1, too. q.e.d.

ProrosiTiON 4.7. Assume that n < g — 1. Then LT. holds for F,®
L, its index is zero and F,,/®\L = o*F,_,® L.

Proof. The first half has been proved in (3) of Proposition 4.4, By
(6) of Theorem 3.13, we have (® LoR¥ o ® L)(F.® L) = (R Lo R¥)()[1] =
&1 — g]. Hence F,@L is isomorphic to (Y Lo RF 1o Q@ L H)EN — g]
=(—1)*RL(E. QL) QL] = (—~1)*RF(§,_,QP)Q L) —-1]=a*F,_,
QL. q.e.d.

Next we consider the moduli of deformations of Picard sheaves. Define
the functor ¥pl, from the category of schemes (of finite type over k) into
the category of sets by

Pply (T) = {E|E is a T-flat coherent 0,,,-module and E, = E |,
is simple for every te T}/,

for every scheme T, where E ~ E’ if and only if £ = E'®,, L for some
line bundle L on 7, and Fply (f): Lplx (T") — Pply (T) is the usual pull
back for every morphism f: T— T’. For every simple coherent sheaf F
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on X, &pli denotes the connected component of #pl; containing F. The
following is the main theorem in this section.

THEOREM 4.8. Assume that n < g—1 and (x) g(C) =2 or C is not
hyperelliptic. Then &pl% is represented by X X X and the coherent sheaf

~

F, = pim*F, Q pt? on X X (X X X).

Let A,: X X X — &pl% be the morphism of functors such that A (f, )
=T#F, ® P, for every scheme T and T-valued point (f, g) of X X X, where
we always identify a scheme S and the contravariant functor hAg on the
category of schemes for which Ay (T) is the set of 7-valued points of S,
i.e., morphisms from 7'to S. Theorem 4.8 says that A, is an isomorphisms
for F= F,(n < g — 1) under the assumption (x). The following three lem-
mas are essential for the proof of the theorem.

LEmMMmA 4.9. Picard sheaf F, (n < g — 1) is simple and we have
dim, Ext} (F,, F,) =3g -2 if C is hyperelliptic

= 2g otherwise .

Proof. By Corollary 2.5 and Proposition 4.3, it suffices to show the
equality for dim, Ext, (§,,£,). Since there is a spectral sequence

H{(X, &xt), (6., ) = Ext{7 (6., 6. ,
we have the exact sequence

¢
O —> HJ(X> (g,’lalwx(gn)) —> EXt;X (Sm Sn) —> HO(X: 8thax (Sm Sn))

—> H¥X, 6ndoy (§,)) —> 0.
Since énd,, (§,) is isomorphic to O, HYX, &nd,, (£,)) is zero and we have

dim, Ext;, (§,, §,) = h'(C, Og) + WX, Exty, (€, §,))
= g 'I_ hO(X’ g’d}ﬂx (ém fn)) .

SuBLEMMA. Let £ be a line bundle on a subscheme C of X. Then
there is a canonical isomorphism ¢: &xti, (O, 0,) = Extl, (€, &) for every i.

Since &xt commutes with localizations, it suffices to give the canonical
isomorphism in the case X is affine and £ = ¢,. Let f: 0, = & be an iso-
morphism. Since &x, (¥, *) is a bifunctor, we have two isomorphisms

fo = Extly (4, f): Extly (Ugy Oc) 3 Extoy (O, §)
fo = Extiy (f,id): Extly (§,8) = Exter (Oc, §) .
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Put o =f;'of,. If g: O, & is another isomorphism, then there is a unit
z of 0, such that g = fo(xu). There is an affine neighbourhood Y of C
and a unit u of ¢, whose image by the natural homomorphism @, — @, is

G. Since (g;'08)lr = (Xweofyly) 'o (falye (Xw) = ply and &xtl, (O, O5)
Oy, is zero for every x & Y, ¢ does not depend on the choice of the iso-
morphism f. This proves the sublemma.

By this sublemma, we have only to compute the dimension of
HYX, Extoy (Oc, 00)) = HY(C, Ny x)
There is a natural exact sequence
0—> (Nyx)V —> 2,0, —> K, —> 0.

Since 24 is trivial, tensoring K, we have the exact sequence

0—> (Ngyx)V @K, —> K% —> K@ ——>0.
In the long exact sequence

HYK ) —> HYKS) —> H((Noyz)¥ @ Ko)
——> HY(K,)®® —> HY(K$) —> 0,
the map « is just the natural map H°(K,;) ® HY(K;) — H'(K$*). By Riemann-
Roch theorem, we have h°(IV;,y) = h'(Nyx)¥ ® K;) = dim Coker a + gh'(K,)
— hY(K$?) = dim Coker « + g. In the case C is hyperelliptic, dim Coker «

is g — 2 and otherwise « is surjective by a theorem due to Noether, [3]
p. 502, which completes our proof. q.e.d.

Lemma 410. If n<g—1 and T}F,® P, = T}F,® P, for x, ¥, y,
yeX, then x =« and y = y'.

Proof. The assumption implies that P, ® T*¢, = P,. ® T*,&, by (3.1).
Since Supp £, = C, y equals to y and since Pic® X — Pic® C is injective,
x is equal to x'. q.e.d.

We denote the tangential map of A, at (0, 0) by ;. Since the tangent

spaces of X at 0, of X at 0 and of #pl, at F are identified with H(X, T%),
H'(X, 0,) and Ext, (F, F), respectively, a; is a k-linear map from H(X, Ty)
@® H'(X, 0y) into Ext!, (F, F).

LemMA 4.11. «g, is injective for the Picard sheof F, (n < g — 1).
P .
Assume that W.IT. holds for F. By (3.1), we have T}F® P, = T}F
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® P_,. This is easily extended to scheme valued points and we have
SN A

T{Fs® P, = T}Fs® P_; for every scheme S and S-valued point (f, g) of

X x X. As a special case S = Spec k[¢]/(s?), we have

PropositioN 4.12. Assume that W.I.T. holds for a coherent sheaf F
on X. Then the diagram

ar: H(X, Ty) ® H(X, 0,) —> Ext!_ (F, F)
lZi lz Ry
ap: H(X, 0y) ® H'(X, Ty) —> Ext}, (F, F)
!!
H'X, Ty) egﬂlo‘f, )
is commutative, where j(a, b) = (b, —a).
By this proposition, the injectivity of «,, is equivalent to that of «,,.
Let
0 —> HY(X, énd,, (F)) —> Ext}_(F, F) —> HYX, &, (F, F))

be the exact sequence obtained from the local-global spectral sequence
with respect to Ext. The following proposition is easily verified.

ProposiTiON 4.13. (1) wax(H'(X, 0y)) is contained in H'(X, &nd,, (F)).
(2) The diagram

0—— H'(X, 0x) —> Txxz,0,6, —> H'X, Tx) —> 0

l v laF lsm

0 —>H(X, &nd,, (F)) —> Extl, (F, F) —> HYX, & (F, F))

is commutative, where B, and y. are the restrictions of a, to H'(X, 0,) and
H(X, Ty), respectively.

(3) Bris equal to H'(), where i is the natural homomorphism from 0,
into &nd,y ().

4) HYX, Ty) is the set of derivations of Oy. For D e Der, (0, 0y),
r#(D) is the extension class of

0O— F—>»F,— F—>0,

where F, is F® F as a sheaf of abelian groups and regarded as an 0,-
module by a(m, m’) = (am + D(a)m’, am’) for every ac @Oy and (m,m)e F

@ F.
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(B) eoyp is equal to H'75), where 7, is an Oy -homomorphism from Ty
into &xty, (F, F) such that 7|, is equal to yz,: Der, (0y, Oy) — Ext}, (Fy, Fy)
for every affine open subset U of X.

©6) If Y is a subscheme of X and F is a line bundle on Y, then 7
is the composition of the natural morphisms Ty — Tx @ 0y and Ty @ Oy —
Ny = Exts, (F, F).

In the case F is &,, a line bundle on C, 8, = H' [0y — 0,] is an
isomorphism, H[T, — T, ® 0,] is also an isomorphism and by the exact
sequence

0—> T, ——>TyQ@0O;,—> Ngjy —> 0,

H[T; @ 0, — Ng,] is injective. Hence by (6) of Proposition 4.13, eoyp =
H%7;) is an injection. Therefore by the diagram (2) of the proposition,
ap 1s an injection. This completes the proof of Lemma 4.11.

For the proof of Theorem 4.8, we need the following general facts
about the flat deformation of a simple coherent sheaf.

(4.14) (Relative representability of &pl) Let f: V— S be a proper in-
tegral morphism and F and G coherent @,-modules. Assume that F is
S-flat and F @ k(s) is simple for every s€ S. Then there exists a subscheme
W of S such that for every morphism «: T — S, F, is isomorphic to G,
Xop L with some line bundle L on T if and only if « factors through the
inclusion WG S. We call W the maximal subscheme over which F and
G are isomorphic to each other.

(4.15) (Pro-representability of &»/) Let F be a simple coherent -
module. The functor 2 on artinian local rings A over % such that

2(A) = {E|E is an A-flat coherent Oy ,-module such that EQ, A/m
is isomorphic to F}/isom.

is representable by a complete local ring R whose Zariski tangent space
t is canonically isomorphic to Extl, (F, F). We call R the local moduli
of F.

(4.16) (Jumping never happens) Let E be an element of &pl, (T). If
Elxy; = F for every closed point ¢ of an open dence subset U of 7, then
E|y., = F for every te T.

The proofs are not so difficult and those of (4.14) and (4.15) are similar
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to the case of simple vector bundles. The stronger fact that the étale
sheafification of #pl,,s is representable by an algebraic space has been
proved in [1]. Since the fact does not make our business so easy, we prove
our theorem directly by (4.14), (4.15) and (4.16).

Step I. The functor A, is injective.

Let f and g be two morphism from 7' to X X X such that 4, of =
Ay og. Since X X X is a group scheme and A, is an X X X-morphism
with respect to the natural action of X X X to &pl%», we may assume that
g is the constant map to (0,0). Let &(F,) be the maximal subscheme of
X X X over which F, and p*F, on X X (X x X) are isomorphic to each
other. Since A, of is the constant map to F, by our assumption, f factors
the inclusion @(F,) G X X X. By Lemma 4.10, @(F,) is supported by the
origin (0, 0) and by Lemma 4.11, the tangent space of @(F,) is zero. Hence
O(F,) is (0,0) and f is zero. (It is easily seen that @(F,) is a group sub-
scheme of X X X. Hence Lemma 4.11 is not necessary for the proof of
our assertion in the case char k = 0.)

Step II. A, is an open immersion.

Ay induces the homomorphism f: R— @ of complete local rings,
where (R, m) is the local moduli of F, and (@, n) is the completion of
Oxxx, 00 Since Ay is injective, the fibre @/m@ of f is isomorphic to Q/n.
Hence f is a surjection. By Lemma 4.9, we have

2¢ =dim@ < dimR < dim#, = 2¢g.
Hence dim R = 2g, R is regular and f is a bijection. For every morphism
g: T — $pl%, by virtue of (4.14), T X %@,.(X X X) is representable by a
scheme U. By what we have shown, @T,h(u) —+@l,,u is an isomorphism for
every ue U.

A
X X X252y pplEn

Tﬂ yT cartesian
Hence h is étale. By Step I, A is an open immersion.

Step III. A, is a closed immersion.

In the above situation, we have to show that U is a union of con-
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nected components of 7. Hence we may assume that T is irreducible and
it suffices to prove that the set of k-rational points U(k) of U is empty or
equal to T'(k). Hence we may also assume that 7' is reduced. Assume that
U(k) #+ ¢. Since X X X is an abelian variety, every rational map from T
to X X X is a morphism. Hence there is a morphism e = (¢, ¢,): T— X
X X whose restriction to U is equal to 4. Let p: X X X X &pli» — Fplir

be the natural action of X X X on #pl4». Put ¢ = [Tii—e’ﬁ))X X X X
SPolEn L5 #plEe]. Then c(U(k)) = {F,} and hence by virtue of (4.16), we

have ¢(T'(k)) = {F,}, that is, g(a) = T}, F, ® P,,., for every a € T(k). Hence
U(k) is equal to T'(k).

Step IV. A, is an isomorphism.

It suffices to show that A, (k): (X X X)(k) — Fpli»(k) is a surjection.
By the definition, &pl%* is connected. Hence, for every F e &pl5 (k), there
exist a connected scheme 7' and a morphism g: T — &pl5* such that
g(T(k)) contains both F and F,. By what we have shown in Step II and
Step III, g factor through A,,. Hence F is contained in Im A, (k).

We have completed the proof of Theorem 4.8.

Remark 4.17. Even if the condition (*) does not hold, A, (k) is
bijective for n < g — 1. But if C is hyperelliptic and g(C) > 3, then the
dimension of the tangent space of ¥pl5is greater than 2g, hence ¥pl%"is
not reduced.

§5. A characterization of Picard sheaf

In this section we give a characterization of the Picard sheaf in the
case g(C) = 2.

Let &, be the same as in the beginning of §4. There is a natural
exact sequence

0_———>Sn—1_—'>$n—'_)k(0)—'—)0 .
This gives the exact sequence
00— L&) —> F(E,) —> O —f> F,,—>F,—>0.

If n<g—1, then &#(¢,) is zero ([8] §3). Hence, for n < g — 1, we have
the exact sequence

(5.1) 0-——>0X—f—>Fn_,————>F,L————>O.
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By (1) of Proposition 4.4, both dim Hom,, (¢, F,) = h°(F,) and
dim Ext}, (F,, 0x) = h#~'(F,) is equal to 1 for n < g — 1. Hence we have

LemMmA 5.2. Assume that n < g — 1. Then f is the unique (up to con-
stant multiplications) nonzero homomorphism from 0y into F, and (5.1) is
the unique nontrivial extension of F, by 0.

We denote the set {T}F,® P,|x,ye X} by 2,.
The above lemma is generalized for members of Pic® X and O,.

ProrosiTioN 5.3. Assume that n < g — 1.

(1) Every nonzero homomorphism f from P,ePic°X to Fed,_, is
injective and Coker f is isomorphic to a member of @,.

@) If P,ePic° X, Fe @, and the exact sequence

0— P, —>F —>F—0
does not split, then F’ is isomorphic to a member of @,_,.

Proof. We prove only (2), because (1) can be proved in a quite similar
manner. First we may assume that F = F,. Since Ext}, (F,, P,) # 0, we
have by (1) of Proposition 4.4, that x belongs to C and dim Ext}, (F,, P,)
is equal to 1. Since x € C, there is a surjection ¢, — k(x) and we have
the non-splitting exact sequence

0— &, P, —> &, —> k(x) —> 0.
Operating R¥, we have the exact sequence
0— P, —>T¥F, ,—>F,—>0.
Since this does not split, F” is isomorphic to T*F,_,. q.e.d.

For every nontorsion coherent sheaf F on X, let p(F) denote the
rational number r(F)-'deg(det F)|,. Umemura has showed that F, is p-
stable for n < g — 1 in the case g(C) = 2([9]). The following theorem says
that the converse is also true.

THEOREM 5.4. Assume that g(C) = 2 and F is a torsion free coherent
sheaf with r(F) =r =1, det F' algebraically equivalent to 0,(C) and y(F)
zero. Then the following conditions are equivalent to one another:

1) F is p-stable, i.e., p(E) < p(F) for every E C F with r(E) <r.
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1) F is py-semi-stable, i.e., (E) < i(F) for every E C F.
2) Hom,, (F, P) is zero for every PecPic® X. If H is a homogeneous
vector bundle with r(H) <r contained in F, then the quotient F|/H is torsion

free.
3) F=T*F,_,QP for some xc X and Pe Pic® X.

Proof. Obviously 1) implies 1’). Assume that F is p-semi-stable and
H is a homogeneous vector bundle with r(¥) < r contained in F. Since
1(F) = 2[r is greater than y(P)=0, Hom,, (F, P) is zero for every P e Pic® X.
Let f: F— F/H be the projection and T the torsion part of F/H. Then
H' = f~(T) contains H and r(H’) is equal to r(H). We have a nonzero
homomorphism det H— det H’. Hence det H = det H® 0,(D) for some
divisor D > 0. Since det He Pic® X and F is p-semi-stable, we have

(0x(D). 04(C)) _ (det H'. 0,(C)) _ 2
a0 ST

Since D > 0, (0,(D). 04(C)) is not less than zero and different from one
([9] Lemma 3.5). Hence by the inequality above (0x(D). 0,(C)) is zero.
Hence D = 0 and det H — det H’ is an isomorphism. Since H is locally
free, H' is isomorphic to H. Therefore T is zero. Hence 1) implies 2).
3) implies 1), because if F is p-stable, so is T}F® P for every xe X and
PecPicX. Hence we have only to show that 2) implies 3). We prove it
by induction on r.

Caser =1. Sym? C— X is the blowing up whose center is the canoni-
cal point x. Hence, by (3) of Proposition 4.2, F, is isomorphic to N & my ,
with some line bundle N, where my,, is the maximal ideal of @, at 0.
By (2) of Proposition 4.2, N is isomorphic to @,(C). Since r(F) =1 and
F is torsion free, F' is contained in det F. By the assumption, det F =
0,(C) ® P for some PePic® X. Since length (det F/F) = y(det F) — y(F)
— 1, det F/F is isomorphic to the one dimensional sky-scraper sheaf k(x)
supported by a point xe X. Hence F is isomorphic to det F® my, , =
T}F,QPQP._,.

Case r > 2. We need the following easy but useful lemma.

LeEmmA 5.5. Let F be a nonzero coherent sheaf on an abelian surface.
If y(F) is zero, then Hom,, (P, F) or Hom,, (F, P) is not zero for some Pe
Pic® X.

Assume the contrary. Since dim Hom,, (F, P) is equal to A*(F® P")
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by virtue of the duality theorem and since y(F® P-') is zero, h'(F & P")
is zero for all PePic® X. Hence R'F(F) is zero for every i. This means
that RP(F) is zero. Therefore by virtue of Theorem 2.2, F is zero. This
shows Lemma 5.5.

By the assumption and the above lemma, Hom,, (P, F) is not zero for
some PePic® X. Let f: P— F be a nonzero homomorphism. Since F is
torsion free, f is injective. Since P is homogeneous, F’ = Coker f is torsion
free. We have the exact sequence

0-—>PlFr 20,
Since Hom,, (F, P) is zero, this exact sequence does not split. Hence by
(2) of Proposition 5.3, it suffices to show F’ = T*F, ,® @ for some xe X
and Qe Pic® X. F’ is torsion free, det F' = det F ® P-' is algebraically
equivalent to 0(C) and y(F”) = y(F) — y(P) is equal to zero. By induction
hypothesis, we have only to show that 2) holds for F’. Obviously
Hom,, (F’, @) is zero for every @ € Pic® X. Let H’ be a homogeneous vector
bundle contained in F’, H = g-'(H’) is an extension of H’ by P. Hence
by the theorem after Lemma 3.3, H is also homogeneous. By the assump-
tion on F, F'/|H' = F|H is torsion free. Hence 2) holds for F’, which
completes the proof of Theorem 5.4. q.e.d.
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