
S. Mukai
Nagoya Math. J .
Vol. 81 (1981), 153-175

DUALITY BETWEEN D(X) AND D(X) WITH ITS

APPLICATION TO PICARD SHEAVES

SHIGERU MUKAI

Introduction

As is well known, for a real vector space V, the Fourier transformation

f(a) = ί f(v)e2πί<v>a>dv
Jv

gives an isometry between L\V) and L2(VV), where Vy is the dual vector
space of V and < , >: Vx Vv -> R is the canonical pairing.

In this article, we shall show that an analogy holds for abelian varieties
and sheaves of modules on them: Let X be an abelian variety, X its dual
abelian variety and Θ* the normalized Poincare bundle on X X X. Define
the functor y of 0^-modules M into the category of ^-modules by

Then the derived functor Ry of y gives an equivalence of categories be-
tween two derived categories D(X) and D(X) (Theorem 2.2).

In § 3, we shall investigate the relations between our functor Ry and
other functors, translation, tensoring of line bundles, direct (inverse) image
by an isogeny, etc. The result (3.14) that if X is principally polarized
then D(X) has a natural action of SL (2, Z) seems to be significant.

In §§ 4 and 5, we shall apply the duality between D(X) and D(X) to
the study of Picard sheaves. We shall compute the cohomology of Picard
sheaves (Proposition 4.4), determine the moduli of deformations of them
(Theorem 4.8) and give a characterization of them in the case of dimX= 2
(Theorem 5.4). Other applications of the duality will be treated elsewhere.

After the original paper was written, the author learned by a letter
from G. Kempf that Proposition 3.11 and some results in § 4 had also been
proved independently by him.
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154 SHIGERU MUKAI

NOTATIONS. We denote by k a fixed algebraically closed field and

mean by a scheme a scheme of finite type over k. For the product

variety Xx YxZ, πx (or p j and πXtY (or p12) are the projections of Xx YxZ

to X and Xx Y, respectively. For a coherent sheaf F on a variety X, r(F)

denotes the rank of F at the generic point of X. F v denotes Mom0χ (F, Θx).

§ 1. Preliminary

Let X and Y be schemes and F an 0XXF-module. We define the functor

^X->Y,F from the category Mod(X) of 0x-modules into Mod (30 by

(1.1) ^ ^ ( ? ) = * r , ^ ® ^ ? ) ,

where ? is an 0^-module or an ^-homomorphism.

EXAMPLE 1.2. Let Γf be the graph of a morphism f: X~> Y and F

the structure sheaf ΘΓf of Γf.

Then yx^Y)F = /* and S?γ^XtF = f*.

We denote by D{X) the derived category of Mod (X) and by Dqc(X)

(resp. DC(X)) the full subcategory of D(X) consisting of the complexes

whose i-th cohomologies are quasi-coherent (resp. coherent) for all i. D'{X)

(resp. Db(X)) is the full subcategory of D(X) consisting of the complexes

bounded above (resp. bounded on both sides) and D~C(X) = D~(X)ΠDqc(X),

Dl(X) = D\X)f]Dc(X), etc.
For an object F of D'(Xx Y), we define the functor RS?x^YiF from D~(X)

into D'(Y) by

(1.4) A5Vr.Λ?) = R*γ.JF φ ^) .

If F is an ^x-flat module, then RSfx->YtF is the derived functor of £fx^YtF.

To consider the derived functors has the following advantage:

PROPOSITION 1.3. Let Z be a scheme and G an object of D~(Xχ Y).

Then there is a natural isomorphism of functors:

where H = Rπx>Zi*(πx,γF ® πYtZG).

Proof We use (1) the commutativity of R and the composition of

functors, (2) the projection formula and (3) the base change theorem. (See
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PICARD SHEAVES 155

[2] Proposition 5.1, 5.3, 5.6, 5.12)

Let ? be an object or morphism in D~(X).

φ (3)
S RπZt*Rπγ,z,*(πγ,zG φ 7r$,FF(| π*?) (2)

(π*,zG φ ττ*,FF φ *$,**$?) (1)

φ $?) = RS?Σ^ZtB{Ί) (2)

q.e.d.

PROPOSITION 1.4. (1) 7/ F /ιαs /ΐmfe Tor-dimension as a complex of

Θx-modules, then we can extend the domain of definition of R^X^Y,F to

R^x^y. D(X)—>D(Y)

and Ryx_YtF maps D\X) into Db(Y).

(2) If F belongs to D~c(Xχ 7), then RS?x_YiF maps D~C(X) into D~C(Y).

(3) If X is proper and FeD;(Xx Y), then R¥χ^γ,F maps D~{X) into

Proof For (1), see [2] Proposition 4.2 and Corollary 4.3. (2) and (3)

follow from [EGA] III 1.4.10 and 3.2.1, respectively. q.e.d.

§2. Fourier functor

Let X be an abelian variety of dimension g (the business is similar

for a complex torus) and X its dual abelian variety. Let & be the nor-

malized Poincare bundle on XxX. Here "normalized" means that both

^\xxo and &\Qxz are trivial. For xβX (resp. xeX), P$ (resp. Px) denotes

0>\xx£ (resp. 0>\xx±). We put & = S?X->X,^ and & = Sfx^it,. Since X is

complete and 0* is ^-flat, we have by Proposition 1.4,

PROPOSITION 2.1. The derived functor R£f: D(X)-> D(X) of ¥ can be

defined. It maps D\X\ Dqc(X) and D;(X) into D\X), D~C(X) and D~{X) re-

spectively.

The following theorem is fundamental:
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156 SHIGERU MUKAI

THEOREM 2.2. There are isomorphisms of functors:

and

where [—g] denotes "shift the complex g places to the right". In other

words, RSf gives an equivalence of categories between D{X) and D(X), and

its quasi-inverse is (— lχ)*°Ry[g]>

Proof. It suffices to show that (RSf\D-tf))o(R#\D-(X)) = (—lr)*[—£].

By (1.3) the left side is isomorphic to R9?

Σ^XtH with H = Rp^pf^ ®p%&),

where pί3 are projections of Xx Xx X. Since p%β> ® p%β> = (m X Vf& (which

is easily verified by the seesaw principle), H ^ Rpί2t^(mχΐ)^^ ^ m*Rplt%0>.

As was shown in the course of the proof of the theorem in [6] § 13, R%t^

= 0 for every i Φ g and Rgph*& = k(0), i.e., Rplt*0> ^ k{ϋ)[-g]. Hence H

is isomorphic to ΘE[—g], where E is the graph of — l x : X->X. Therefore

R&z~Σ,B = i-lz)*[~g] (see Example 1.2). q.e.d.

In order to apply the theorem, we need

DEFINITION 2.3. We say that W.I.T. (weak index theorem) holds for

a coherent sheaf F on X if R^iF) = 0 for all but one ί. This / is denoted

by i{F) and called the index of F. We denote the coherent sheaf RUF)y(F)

on X by F and call it the Fourier transform of F.

We say that I.T. (index theorem) holds for F {iί H%Xy F® P) = 0 for

all Pe Pic° X and all but one i.

Since ( ^ ® τr$F)| x x i = P£®F9 we see by virtue of the base change

theorem, that IT. implies W.I.T. and F is locally free if I.T. holds for F.

We always identify 0x-module F with the complex consisting of F in degree

0, and 0 elsewhere. Hence if W.I.T. holds for F, then R^(F) is isomorphic

to F[—i(F)]. Hence we have

COROLLARY 2.4. If W.I.T. holds for F, then so does for F and ί(F) =

g—i(F). Moreover F is isomorphic to (—1X)*F.

COROLLARY 2.5. Assume that W.I.T. holds for F and G. Then ExtJz (F, G)

^ ExtJ+' (F, G) for every integer i, where μ = ί(F) — i(G). Especially, we

have an isomorphism Ext^x (F, F) ~ Extjj. (F, F) for every i.
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Proof, Ext*x (F, G) s HomΛCX> (F, G[i])

S Horn,,*, (F[- i(F)] , G[i - i(G)])

^ Extjy (F, G) q.e.d.

EXAMPLE 2.6. Let k(x) be the one dimensional sky-scraper sheaf sup-

ported b y ί e ί . Since H%Xy k(x) <g) P) = 0 for every ί > 0 and P e Pic° X,

I.T. holds for β(x), *(*(*)) = 0 and &(£) - Pg. Hence by Corollary 2.4,

W.I.T. holds for PA, i(P^) = ^ and j ζ - A(-x). Note that I.T. does not hold

for P$.

Combining the above with Corollary 2.5, we have

PROPOSITION 2.7. Assume that W.I.T. holds for a coherent sheaf F on

X. Then we have

iF)+i (Kx), F)

and

(x), F) ^ H^F\J

Proof. By Corollary 2.4, it suffices to show the first isomorphism.

Since P$ is locally free, H%X,F®P^ is isomorphic to Ext^ (P_Λ, F).

Hence by Corollary 2.5, it is isomorphic to Ext&" (P_ f, F) ̂  ExtJJ" (*(jc), F),

where ^ = ifP.^) - ί(F) =g- i{F). q.e.d.

COROLLARY 2.8. The Euler-Poίncare characteristic of F is equal to

(-l) ί ( F )r(F).

Proof

q.e.d.

= Σ (-D 1 dim Ext^-«F> (£(x), F)
i
Σ
i

EXAMPLE 2.9 ([4] § 4). A vector bundle U on X is said to be unipotent

if it has a filtration

0 = Uo c Ux c c Un.x c C/w = C7

such that UJUi.! = ίPx for i = 1, 2, , rc. Since the functor iZ1^ is semi-

exact for all i, W.I.T. holds for ί7, i(U) = g and the coherent sheaf Ό is

supported by 0 e X. Hence RgP gives an equivalence of the categories
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(Unipotent vector bundles on X) and (Coherent sheaves on X supported
by 0) = (Artinian J3-modules), where B is the local ring ^ ^ of X at 0.
Moreover we have by Proposition 2.7.

\ U).

§3. Relations between RS? and other functors

The properties of the Poincare bundle &> give relations between Sf and
other functors. From this we obtain by the universal property of R^,
relations between R£f and other functors. For example, from the iso-
morphism T%^& = ̂ ® π*P$, we obtain the isomorphism of functors ^ o T |
= (® P-*)°<r because ^(Γ |?) = πx^®T*^π%Ί) ^ πz§*TfΌtί) (T%
4?) S πz%j? ®ττ*P_, <g> τr|?) ^ #>(?) Θ P_,.
Hence we have

(3.1) (Exchange of translations and ® Pic°)

EXAMPLE 3.2. W.I.T. holds for every homogeneous vector bundle H
on X. The index i(H) is equal to g and H is a coherent sheaf supported
by a finite set of points. Hence Rgy gives an equivalence of categories
between Hx = (Homogeneous vector bundles on X) and Cf

x = (Coherent
sheaves on X supported by a finite set of points).

Proof. If a coherent sheaf M on X is supported by a finite set of
points, then M(g)P^M for all PePic°X and hence S?(M) is a homo-
geneous vector bundle by (3.1). Therefore it suffices to show the first
statement. Put Mt = RlP{H). Since T*H^H for all x e X, Mt ® P ~ Mt

for all P e Pic° X by (3.1). Hence by the lemma (3.3) below M€ is supported
by a finite set of points. By Theorem 2.2, there is a spectral sequence whose
E2 term is R^3(M^ and which converges to zero when i + j Φ g. Since
R^J(Mi) = 0 iί j Φ 0, the spectral sequence degenerates and Mt is zero
for every i Φ g. q.e.d.

LEMMA 3.3. Let M be a coherent sheaf on an abelian variety X. If
M®P ^ M for all Pe Pic° X, then Supp M is finite.

Proof. Suppose that dim Supp M > 1. Take a curve C contained in
Supp M and let C be its normalization. Put N = M® φχΘe and L ~ Nj
"the torsion part of iV". Then N is a vector bundle on C and N®f*P
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=Nίoγ all P e Pic° X, where / is the natural morphism C —> C Q X. There-

fore, taking the determinant of both sides, we see that (/'*P)®r<Λr> is trivial

for all P e Pic° X. This is a contradiction because the morphism /*: Pic° X

-> Pic° C is not zero. q.e.d.

Combining Example 2.9 and 3.2, we have

THEOREM (Matsushima, Morimoto, Miyanishi, Mukai). A vector bundle

F on X is homogeneous if and only if F is ίsomorphίc to 0?=i P* ® Ut for

some Pί9 , Pn e Pic° X and unipotent vector bundles Uί9- , Un.

Let Y be an abelian variety, φ\ Y - ^ I a n isogeny and φ: X -> Y the

dual isogeny of <p.

(3.4) (Exchange of the direct image and the inverse image)

φ* o RSf γ ^ R9>x o φ* .

Proof. The second isomorphism is obtained from the first in the fol-

lowing manner. Replacing φ by φ in the first isomorphism, we have

0* o R&γ ^ Ryx oψ^. By Theorem 2.2,

o ̂ ^ o RS?τ[g]

o φ* .

Hence it sufficesjto show φ* o<?x ^ y r o ^ . By the definition of <p9 (φX

Hence we have

x ^)^(i x φ)*&γ ® 4?)

Y —^ X

#| H I
Y< YxY >XxY q.e.d.
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160 SHIGERU MUKAI

Remark 3.5. The second isomorphism can be also proved in the same
way as the first by the isomorphism (1 x φ)*&x = (ψ X 1)*̂ V which was
proved in [7].

EXAMPLE 3.6. If H is a homogeneous vector bundle on X (resp. Y),

so is φ*H (resp. (p*H). Moreover the following diagram is (quasi-)com-

mutative.

Now we investigate other properties of the Fourier functor RSf. Let
m: Xx X->X be the group law of X. For ^-modules M and N, we
define the Pontrjagin product M*N of M and N by M*N= m*(p?M®
pfN). * is a bifunctor from Mod (X) X Mod (X) into Mod (X). We denote
its derived functor by *.

(3.7) (Exchange of the Pontrjagin product and the tensor product)

i\ s

where FeD(X) and ? is an object or a morphism in D(X).

Proof. It suffices to show the first isomorphism. We use the iso-
morphism ( lχm)*^ S p ^ ® PΪs^> where p(/s are projections of I x X x X .

X

X w)*((l X

q.e.d.
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Let Δx be the dualizing functor. Since the canonical module of X is

trivial, ΔX{Ί) = R Jίom,x (?, Θx) [g].

(3.8) (Skew commutativity of RS? and Δ)

Proof. We use the isomorphism 5Z~1 £ ((—lx) x 1±)*^> and the Gro-

thendieck duality.

Jx.for,r,*(^ ® 4 ? )

X l ί 4)

q e.d.

EXAMPLE 3.9. Let U and V be unipotent vector bundles on X. As

we saw in Example 2.9, J7 and V are artinian B-modules. C7(x) V and [7V

are also unipotent vector bundles. [7® V is isomorphic to L^V and [7V

is isomorphic to (—lβ)*z/(C7). £7*y is f7(g)fc V regarded as a .B-modules via

the co-multiplication μ: B —> B (x) B of the formal group B. — 1 5 is an

automorphism of B induced by —1±: X-^X and Δ is the dualizing functor

of Mod (B).

Next we investigate the relation between R& and ® N for a line

bundle N on X In the rest of this section we always assume that N is

nondegenerate, i.e., χ(N) Φ 0. Hence φN ([6] p. 59, p. 131) is an isogeny.

(3.10) ΊlN^(®Noφ%oR^o® No ( - iτ)*) (?)

where ? is an object or a morphism in D(X).

Proof. Consider the isomorphism ψ: X X X—> X X X such that ψ(x, y)

= (x, x -\- y). The morphisms pl9 p2 and m is sent by ψ to pl9 μ and p2,

respectively, where μ\ X X X->X, μ(x,y) = y — x. Hence ?*iV =m*(p?Ί(g>

p*iV) is isomorphic to p2, *(/>?? ® μ*N). By the definition of the morphism

^ : Z->X, we have w*Λ τ^]}fJV(g)p*JV(8)(lX^)¥ and hence μ*2V ^

p*(-lz)*iV(8)p2*iVr® ( - l z X 0*)*^. Therefore the functor ?*iV is isomorphic

to (® N)o£fx_x> (_lχXίiΛΓ)^o((x) (—lx)*iV). By our assumption on N, φN is an

isogeny, hence a flat morphism. Hence ^x^χ, (^lχXφN)^ = φ%°& °(—lχ)*
q.e.d.

Since IT. holds for N ([6] § 16), N is a vector bundle on X N is

simple, i.e., End^(iV) = A by Corollary 2.5.
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PROPOSITION 3.11. (1) φ%N ^ (N-

(2) JQΦIXWI s φNt^N-1

(3) // \χ(N)\ — 1, e.g., N is a principal polarization of X, then N s

(ΦNVN-K

(4) There is an ίsogeny π: X-+ Y of degree \χ(N)\ and a line bundle

L on Y such that N ^ 7r*L. Since Ker (π) C K(N), there is an ίsogeny τ:

Y->X swc/i £Λα£ τ<>π = φN. Then N is isomorphic to τ*L~\

Proof. (1) is obtained from (3.10) by putting ? = Θx, because then the

left side is Θx * iV ^ Rp2,*(p*N) ^ Θx ®k H%X, N)[-i] and the right side

is N(£)φ%N [—£], where j = i(F). Replacing N by N'1 in (1), we have

^ (—φN)^N~\ Operating A on both sides, we have (2) because

s ( - ^ ^ ( - i ^ ^ J V - 1 ^ ^^iV"1 by (3.4). Since d e g ^ =|χ(iV)|2, φN is an

isomorphism if |χ(iV)| = 1. Hence (3) is a special case of (1) or (2). For the

first half of (4), see [6] § 23. It suffices to show the last statements. Since

jχ(L)| = 1, we have by (3), N ^ ττ*L ^ π*L s rt^φL^L'\ On the other hand,

since N = π*L, we have φN = πoφLoπ. Since φN = τoπ and π is an isogeny,

we have τ = rtoφL, Hence N = τ*L~\ q.e.d.

(3.10) gives us an interesting relation between two functors R^ and

(3.12) (® No φ%

Especially, when the group scheme K(N) is discrete, e.g., when χ(N)

is prime to the characteristic exponent p of the ground field, then we have

(3.120 (®.Noφ*oR<?y [g + i(N)] ς* ( 0

Proof First operate R<f on both sides of (3.10). By (3.7), we have

i.e.,

Operating (— l x ) * oR<?oφN ^ from the right, we have

(® No φ*

Hence ®Noφ*o®No φNt^ ^ (® iVo ^* o Ryf [g+i(N)]. By (1) of Proposi-
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tion 3.11, we have φ%N ̂  (JV-1)®1*^1 and hence φ%o®N g± (Θφ%N)°φ% ^

(® (N~1)®lχ(N)l)oφNι^., which proves our assertion. q.e.d.

In the case (X, L) is a principally polarized abelian variety, X is identi-

fied with X by the isomorphism φL: X-> X. Hence R9* is considered to

be an automorphism of D(X). We summarize the results derived in this

section for this case.

THEOREM 3.13. Let (X, L) be a principally polarized abelian variety of

dimension g. Then we have

(2) RS?o(g)Px ^ T%oR&> for xeX,

(3) RSfoφ ^ <poR<? for an isogeny φ: X-> X.

(4) R9ΌΔ^ ( ( - l x ) * ° JoRy)[g]9 where Δ is the dualizing functor of

D(X), ^

(5) L ^ L-1 and L1' ^ (-1^)*L,

(6) (®L

(1) and (6) implies that the relation modulo the shift [ ] between two

automorphisms RSf and ® L is same as the relation between the generators

Γ J Jl and ΓJ :|j of SL(2, Z). In other words,
(3.14) if X is principally polarized, then SL (2, Z) acts on D(X) modulo

the shift.

Remark 3.15. The relation between automorphisms of D(X) and semi-

homogeneous vector bundles on X will be discussed in [5]. Some appli-

cations of (3.14) to the vector bundles on an abelian surface will be treated

in a forthcoming paper.

§4. Picard sheaves

In this section as an application of Fourier functor, we calculate the

cohomology of Picard sheaves and determine the moduli of deformations

of Picard sheaves.

Let C be a nonsingular complete curve of genus > 2. We fix a point

c of C and put ξn = Θc(n(c)). We identify C with the subvariety {(x)—

(c)\xe C} of the Jacobian variety X=J(C) and also identify a sheaf on C

with a sheaf on X supported by C. The subvariety Wi = C-\ \-C of X
is said to be the distinguished subvariety of dimension i, for 0 < ί < g — 1.
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Wg_ί is a divisor of Xand (X, L) is a principally polarized abelian variety

of dimension g, where L = Θz{Wg^. We denote the canonical point of

(X, L) by κ9 that is, * - Wg.x = Wg^.

DEFINITION 4.1. The sheaf Fn = B}^{ξn) is called a Picard sheaf of

rank g — n — 1.

Our definition of Fn is same as that in [8], because a normalized

Poineare bundle if on C X X is isomorphic to ^|C X 2 Γ . Replacing c by

another point c' e C, we get another Picard sheaf F'n.

PROPOSITION 4.2. F'n ^ T*{c,_e)Fn ® Pc_c,

Proo/. Fί

= T*c,_c)Fn®Pc_c,. q.e.d.

We summarize some fundamental properties of Fn.

THEOREM 4.2 (See [8].)

(1) Fn is zero for n > 2g—2. Supp Fn is /c — W2g_2_n forg—l<,n<L

2g — 2. Supp Fn is X and the rank of Fn at the generic point of X is g — n

— 1 for n < g — 1. Fn is locally free for n < 0.

(2) The i-th Chern class ct(Fn) is rationally equivalent to Wg_t for i

<: g — 1. Especially, det Fn ^ L for n < g — 1.

(3) The projective fibre space P(a*Fn) associated with a*Fn is isomorphic

to the (2g—2—n)'th symmetric product Sym2g~2~n(C). Where a is the auto-

morphism of X for which a(x) — tz — x.

By the following proposition, we can apply the theory of Fourier func-

tor to Picard sheaves.

PROPOSITION 4.3. (1) For n < g - 1, Fn is ξn, W.I.T. holds for Fn,

i(Fn) = g - l and Fn 9Z (-lx)*ξn.

(2) For n>g-l,Fn is isomorphic to a* Cχt\x{Flg_2_n, Θx) and

(3) Sxt\x (Fn, Θx) is zero for ί > 2, n > g - 1.

Proof Since dim Supp ξn = 1, R^iξJ is zero for ί > 1. On the other

hand, S?(ξn) is zero for n < g ([8] § 3). Hence, when n < g, W.I.T. holds for
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ξn and i(ξn) = 1. Therefore (1) follows from Corollary 2.4. Since Δ(ΘC) is

isomorphic to Kc[l] ^ ξ2g_2 <8> P,[l], fn is isomorphic to J(?2*-2-»® P«)[-l]

Hence, by (3.8), we have

- g -

When n>g — 1, R^(ξ2g-z-n) is isomorphic to Fn[— 1] by (1). Hence we

have

Therefore, R^iξJ is isomorphic to a* βχtiz(F2g_2_n, Θx), which shows (2)

and (3). q.e.d.

Applying the result in § 3 and § 4, we have the following three pro-

positions.

PROPOSITION 4.4 (Cohomology of Picard sheaf). Assume that n < g

- 1 .

(1) h*(X, Fn (g) Px) = 0 for all xeX. When 0 < i < g - 1, we

0 if -xeC
/o\ hiίV 771 (\t\ T ~* (:γ\ P \ hi~£ + ^(C^ £ (^t\ P ^ ff\r* nil *v a V
\£) iv \-Λ-j •*• n ^-^ ^ ^-^ •*- x) — '" \^> ζn + g ^y •*• K + X) IVI U/l/L Λ/ t x\.

I 0 for i> 0

Proof. By Proposition 2.7, H%X, Fn (x) Px) is isomorphic to Ext^1 (k(x),

(—lx)*ξn), which shows (1). By Corollary 2.5 and (5) of Theorem 3.13,

H%X, Fn®L-χ® Px) ^ Ext*,(L(x)P_x, Fn) is isomorphic to Extj,7+1
 (L®ΓP_X,

Fn) ^ Ext^7+1 (L-1 (g) P x , (- l z )*f n ) Since L\c ^ ξg9 we have H%X9 Fn ® L"1

Hίg+1(C,ξn+g<8)Pκ+x), which shows (2). In a similar manner, we have

H%X, Fn®L®Px) = Ext^1 ( ( - 1J*(L ® P J , ( - lx)*f „) = i/ ί+1(C, f n_^ (x) P_J.

Since degfn_^ = n — g < 0, we have by Riemann-Roch theorem, /ι°(C, fn_̂ .

= 0 and h\C, ξn-g®P-x) = 2g— n — 1. Hence we have proved (3).

q.e.d.
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PROPOSITION 4.5 (Local property of Picard sheaf).

(H\C, ξn®Px) i = 0

Tor?* (Fn, k(x)) s H\C, ξn®Px) ί = 1

Proof. Assume that n < g — 1. Then we have by Proposition 2.7,

Extίx (A(x), Fn) ^ Hig+1(X, ( - l x)*£ n (x) P_ J . Hence by the duality theorem,

Tor*x (Fn, k(x)) is isomorphic to Ext^ (k(x), Fn) ^ H'-'iQξ^ Px), which

proves our assertion for n < g — 1 because £f(ξn) is zero for n < g — 1.

By what we have shown, the minimal resolution of Fn ®ΘX,X is

0 < Fn® Θx,x < Θx,x (x) H\C, ξn®Px)< ΘXyX®H\C, ξn®Px)< 0.
k

By (2) of Proposition 4.3, the sequence

(4.6) 0 <- F2g_2_n (8) ΦXtaW <- (9x>aix) ® H°(C, f n ® P J V ̂  ^ i β ( x ) ® IP(C9 ξn

® P,) v <- ̂ (f2^-2- J ® ΦX i i r ( β, ^- 0 is exact.

It is easy to see that the left three terms of (4.6) is the minimal re-

solution of F2g_2_n ® 0ZMx). Hence Tor?x (F2g_2_n, k(a(x))) is isomorphic to

H\C9 ξn ® PXY ^ ff-ίC, ^ ® f., ® P_J s IP-'ίC, ^ _ 2 _ , ® Pα U )) for i =

0, 1 and isomorphic to Torff2 (^(ξ2g_2^n), k(a(x))). Hence our assertion has

been proved for n > g — 1, too. q.e.d.

PROPOSITION 4.7. Assume that n < g — 1. TTiera J.T. /ιoZds /or JP̂  (8)

L, iίs mdex is -εero and Fn®L^ a*Fn__g

Proof. The first half has been proved in (3) of Proposition 4.4. By

(6) of Theorem 3.13, we have (® LoR&>o® L){FJg)L) = ((g)Lo j?^)3(f J [ l ] ^

f«[1 - g] Hence J?Γ®^ is isomorphic to (® L"1 o R^1 o ® L"1)^n)[l - g"]

®L" 1 . q.e.d.

Next we consider the moduli of deformations of Picard sheaves. Define

the functor ^plx from the category of schemes (of finite type over k) into

the category of sets by

(T) = {E\E is a Γ-flat coherent 0XXΓ-module and Et = E\xxt

is simple for every t e

for every scheme T, where E ~ E' if and only if E ^ Ef ® Oτ L for some

line bundle L on Γ, and S?Plx(f)\ <9
p

Pίx(T/)->yPίx(T) is the usual pull

back for every morphism /: T'-> T77. For every simple coherent sheaf P
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on X, ^pίx denotes the connected component of ^pϊx containing F. The

following is the main theorem in this section.

THEOREM 4.8. Assume that n < g — 1 and (*) g(C) = 2 or C is not

hyperelliptίc. Then SfplF

x

n is represented by X X X and the coherent sheaf

Fn = p&m*Fn ® p%& on Xχ(Xx X).

Let AF: X X X—> ̂ plx be the morphism of functors such that AF(f g)

= TfFτ <g> P^ for every scheme T and Γ-valued point (/, g) of X X X, where

we always identify a scheme S and the contravariant functor hs on the

category of schemes for which hs(T) is the set of T-valued points of S,

i.e., morphisms from T to S. Theorem 4.8 says that AF is an isomorphisms

for F = Fn(n < g — 1) under the assumption (*). The following three lem-

mas are essential for the proof of the theorem.

LEMMA 4.9. Pίcard sheaf Fn (n < g — 1) is simple and we have

dim, Extϊx (Fn, Fn) = 3g - 2 if C is hyperelliptic

— 2g otherwise .

Proof By Corollary 2.5 and Proposition 4.3, it suffices to show the

equality for dimft Έxtι

ΦZ (ξn, ζn). Since there is a spectral sequence

we have

t i -

the

> 1

exact

HHX, t

H\X, £*?,,

sequence

r(f«. f

Ix

) ΛR

ti (£.,'f.)—^

Since A J ^ (f n) is isomorphic to (0C9 H
2(X, £nAGx (ξ J) is zero and we have

dim, Ext1^ (ξn9 ξn) = h\C9 Θc) + h%X, gχt\z (ξn, ξn))

= g+h\X9^z(ξn9ξn)).

SUBLEMMA. Let ξ be a line bundle on a subscheme C of X. Then

there is a canonical isomorphism φ: £χtiχ(Θc>@c) ^ <^4^(?, ?) for every L

Since Sxt commutes with localizations, it suffices to give the canonical

isomorphism in the case X is affine and ξ = Φc. Let /: Θc ^ ξ be an iso-

morphism. Since <?*4*(*>*) is a bifunctor, we have two isomorphisms

fa = ίχί* r ( id,/): g*\z (ΦC9 Θc) ^ £*eφχ {Θc, ξ)
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Put φ = / " 1 o / α . If g: ΘG^ξ is another isomorphism, then there is a unit

U of Θc such that g — / o ( χ ΰ ) , There is an affine neighbourhood Y of C

and a unit u of 0Z whose image by the natural homomorphism Θγ -> Θc is

U. Since {g^oga)\γ = ((Xu)ofb\γ)-io(fa\γo(χu)) = φ\γ and Λ*ix (0C, 0σ) ®

ΘXtX is zero for every x £ Y, ψ does not depend on the choice of the iso-

morphism /. This proves the sublemma.

By this sublemma, we have only to compute the dimension of

HXX, t«\x (β0, Θc)) s H\C, Nc/X) .

There is a natural exact sequence

0 • (Nc/Xy > Ωx ® Θc • Kc • 0 .

Since Ωx is trivial, tensoring Kc, we have the exact sequence

o — • (Nc/Xy ®κc — • κ$* — • κ$2 — • o .

In the long exact sequence

H°(Koyte - % H\KT) • H%NC/Xy (x) Kc)

• H\Kc)®s > H\KT) > 0 ,

the map a is just the natural map H\KC) ® H\KC) -> H\K§2). By Riemann-

Eoch theorem, we have h°(Nc/x) = h\{Nc/xy (x) Kc) = dim Coker a + gh\Kc)

— h\Kf2) = dim Coker a + g. In the case C is hyperelliptic, dim Coker a

is g — 2 and otherwise a is surjective by a theorem due to Noether, [3]

p. 502, which completes our proof. q.e.d.

LEMMA 4.10. If n < g - 1 and T*Fn ® Py ^ T$Fn <8> Pv, for x, x\ y,

y e X, then x = xf and y = / .

Proo/. The assumption implies that Px ® Γίyf n ^ P^ ® Γίy,f n by (3.1).

Since Suppfn = C, y equals to / and since Pic° X->Pic° C is injective,

x is equal to xf. q.e.d.

We denote the tangential map of AF at (0, 6) by aF. Since the tangent

spaces of X at 0, of X at 0 and of <fPlx at F are identified with £Γ°(X, Tx\

H\X9 Θx) and Ext1^ (F, F), respectively, aF is a Minear map from i/°(X, Tx)

0 fΓ(Z, tfx) into Ext1^ (F, F).

LEMMA 4.11. aFn is injective for the Picard sheaf Fn (n < g — 1).

Assume that W.I.T. holds for F. By (3.1), we have T*iί® Py ^ T*F
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<g) P_x. This is easily extended to scheme valued points and we have

T?F^(gΓPg ^ T*F8 <g> P-f for every scheme S and S-valued point (/, g) of

X X X. As a special case S = Spec k[ε]/(ε2), we have

PROPOSITION 4.12. Assume that W.LT. holds for a coherent sheaf F

on X. Then the diagram

aF:

OCβl

H

H

Γ.

)θ

li

#
i

r)—>

0—•>

Ext^(F,

Ext1^ (F,

F)

F)

is commutative, where j(a, b) = (b, — a).

By this proposition, the injectivity of aFn is equivalent to that of aξn.

Let

0 • H\X, iniΰχ (F)) > Extix (F, F) ̂ > H\X, g*\x (F, F))

be the exact sequence obtained from the local-global spectral sequence

with respect to Ext. The following proposition is easily verified.

PROPOSITION 4.13. (1) aF(H\X, Θx)) is contained in H\X, iniΘχ (F)\

(2) The diagram

0 _ > H\X, Θx) —> TXXXΛOth —> H\X, Tx) —> 0

\βF \aF εoγF

0 >i?χχ, sndcχ (F)) > Ext1^ (F, F) ̂ > JΪ°(Z, ίxίi, (F, F))

is commutative, where βF and γF are the restrictions of aF to H\X, Θx) and

H°(X, Tx), respectively.

(3) βF is equal to H^i), where ί is the natural homomorphism from Θx

into £ndφχ(F).

(4) H°(X, Tx) is the set of derivations of φz. For D e Derfc (Θx, Θx),

γF(D) is the extension class of

0 >F >FD >F >0,

where FD is F®F as a sheaf of abelίan groups and regarded as an Θx-

module by a(m, mf) — (am + Ώ(d)m!, ami) for every a e Θx and (m, mf) e F

https://doi.org/10.1017/S002776300001922X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300001922X


170 SHIGERU MUKAI

(5) εoγF is equal to H°(fF), where γF is an Θx-homomorphism from Tz

into δxt\z (F, F) such that fF\v is equal to γFu: Όerk {ΘU9 φΌ) -> Ext1^ (Fv, Fv)

for every affine open subset U of X.

(6) If Y is a subscheme of X and F is a line bundle on Y, then γF

is the composition of the natural morphisms Tx —> Tx® ΘY and Tx® ΘY

Y

In the case F is ξn, a line bundle on C, βF = H1 [Θx -> Θc] is an

isomorphism, H°[TX —• Tx ® (Pc] is also an isomorphism and by the exact

sequence

0 > Tc —> Tx ® Θc > Nc/X • 0 ,

H°[TX ® Oc -> Nc/X] is injective. Hence by (6) of Proposition 4.13, εoγF =

H°(fF) is an injection. Therefore by the diagram (2) of the proposition,

aF is an injection. This completes the proof of Lemma 4.11.

For the proof of Theorem 4.8, we need the following general facts

about the flat deformation of a simple coherent sheaf.

(4.14) (Relative representability of S?Pl) Let /: V-> S be a proper in-

tegral morphism and F and G coherent 0F-modules. Assume that F is

S-flat and F ® k(s) is simple for every s e S. Then there exists a subscheme

W of S such that for every morphism a: T-> S, Fτ is isomorphic to Gτ

(x)^ L with some line bundle L on T if and only if a factors through the

inclusion W Q S. We call W the maximal subscheme over which F and

G are isomorphic to each other.

(4.15) (Pro-representability of Sfpΐ) Let F be a simple coherent Θx-

module. The functor Θ on artinian local rings A over k such that

=z {E\E is an A-flat coherent 0Z4-module such that

is isomorphic to 1^/isom.

is representable by a complete local ring R whose Zariski tangent space

tR is canonically isomorphic to Ext^x (F, F). We call R the local moduli

of F.

(4.16) (Jumping never happens) Let E be an element of £fplx (T). If

E\xxt = F for every closed point t of an open dence subset U of T, then

E\xxt ^ F for every t e T.

The proofs are not so difficult and those of (4.14) and (4.15) are similar
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to the case of simple vector bundles. The stronger fact that the etale

sheafification of ^pίv/s is representable by an algebraic space has been

proved in [1]. Since the fact does not make our business so easy, we prove

our theorem directly by (4.14), (4.15) and (4.16).

Step I. The functor AFn is injective.

Let / and g be two morphism from T to X X X such that AFn of —

AFn o g. Since X X X is a group scheme and AFn is an X X X-morphism

with respect to the natural action of X X X to 6^pi^n, we may assume that

g is the constant map to (0, 0). Let Φ(Fn) be the maximal subscheme of

X X X over which Fn and p?Fn on X X (X X X) are isomorphic to each

other. Since AFnof is the constant map to Fn by our assumption, / factors

the inclusion Φ(Fn) Q X X X. By Lemma 4.10, Φ(Fn) is supported by the

origin (0, 0) and by Lemma 4.11, the tangent space of Φ(Fn) is zero. Hence

Φ{Fn) is (0, 0) and / is zero. (It is easily seen that Φ(Fn) is a group sub-

scheme of X X X. Hence Lemma 4.11 is not necessary for the proof of

our assertion in the case char k = 0.)

Step II. AFn is an open immersion.

AFn induces the homomorphism /: R-+ Q of complete local rings,

where (R, m) is the local moduli of Fn and (Q, n) is the completion of

0χxz,(o,o) Since AFn is injective, the fibre Q/mQ of / is isomorphic to Q/n.

Hence / is a surjection. By Lemma 4.9, we have

2g = dim Q < dim R < dim tR = 2g .

Hence dim R = 2g, R is regular and / is a bijection. For every morphism

g: T->¥piF

x\ by virtue of (4.14), Γ χ ^ ( I χ I ) is representable by a

scheme U. By what we have shown, 3Tihiu)-±3UiU is an isomorphism for

every u e U.

0\ cartesian

U > T

h

Hence h is etale. By Step I, h is an open immersion.
Step III. AFn is a closed immersion.

In the above situation, we have to show that U is a union of con-
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nected components of T. Hence we may assume that T is irreducible and

it suffices to prove that the set of ^-rational points U(k) of U is empty or

equal to T(k). Hence we may also assume that T is reduced. Assume that

U(k) Φ φ. Since X X X is an abelian variety, every rational map from T

to X X X is a morphism. Hence there is a morphism e = (el9 e2): T -> X

χ l whose restriction to U is equal to £. Let μ\ Xx Xx ^pίx

n -> ̂ pϊF

x

be the natural action of X X X on SfPlx\ Put c = [T{~e'g)> X X Xx

Then c(U(k)) = {FJ and hence by virtue of (4.16), we

have c(T(k)) = {Fn}, that is, g(α) = Γ* ( α )F n ® Pβ 2 ( α ) for every α € T(Λ). Hence

is equal to T(k).

Step IV. AFn is an isomorphism.

It suffices to show that AFn(k): (X X X){k) -> ^plF

x

n{k) is a surjection.

By the definition, £fplF

x

n is connected. Hence, for every F e S^Pίx

n(k), there

exist a connected scheme T and a morphism #: T-+6fPlx

n such that

g(T(k)) contains both F and .Fn. By what we have shown in Step II and

Step III, g factor through AFn. Hence F is contained in Im AFn{k).

We have completed the proof of Theorem 4.8.

Remark 4.17. Even if the condition (*) does not hold, AFn(k) is

bijective for n < g — 1. But if C is hyperelliptic and g(C) > 3, then the

dimension of the tangent space of ^pίx

n is greater than 2g, hence ^pίF

x

n is

not reduced.

§ 5. A characterization of Picard sheaf

In this section we give a characterization of the Picard sheaf in the

case g(C) = 2.

Let ζn be the same as in the beginning of § 4. There is a natural

exact sequence

0 > $n_! >ξn • k(0) • 0 .

This gives the exact sequence

0 > y(ξn^) > <?{ξn) >Gz-ί-+ Fn_, > Fn > 0 .

If n < g — 1, then y(ξn) is zero ([8] § 3). Hence, for n < g — 1, we have

the exact sequence

(5.1) 0 >φχJ^Fn_1 >Fn >0.
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By (1) of Proposition 4.4, both dim Hom^ (Θx, Fn) = h\Fn) and

dim Extix (Fn, Θx) = hg-\Fn) is equal to 1 for n < g — 1. Hence we have

LEMMA 5.2. Assume that n < g — 1. Then f is the unique (up to con-

stant multiplications) nonzero homomorphism from Θx into Fn and (5.1) is

the unique nontrivίal extension of Fn by Θx.

We denote the set {T*Fn <g) Py\ x,yeX} by Φn.

The above lemma is generalized for members of Pic° X and Φn.

PROPOSITION 5.3. Assume that n < g — 1.

(1) Every nonzero homomorphism f from Px e Pic° X to FeΦn_1 is

injective and Coker/ is isomorphic to a member of Φn.

(2) If Px e Pic° X, FeΦn and the exact sequence

0 > Px > Ff > F > 0

does not split, then Ff is isomorphic to a member of Φn-U

Proof, We prove only (2), because (1) can be proved in a quite similar

manner. First we may assume that F = Fn. Since ExtJ,x (FM Px) Φ 0, we

have by (1) of Proposition 4.4, that x belongs to C and dim Ext^x (Fn, Px)

is equal to 1. Since xe C, there is a surjection ξn -> k{x) and we have

the non-splitting exact sequence

0 > £„_! ®PX >ξn > k(x) • 0 .

Operating R£f, we have the exact sequence

v r ± x T J. x ± n_1 r J. n ^ KJ .

Since this does not split, Ff is isomorphic to T*Fn_x. q.e.d.

For every nontorsion coherent sheaf F on X, let μ(F) denote the

rational number r(F)~ι deg(det F)\c. Umemura has showed that Fn is μ-

stable for n < g — 1 in the case g(C) = 2 ([9]). The following theorem says

that the converse is also true.

THEOREM 5.4. Assume that g(C) = 2 and F is a torsion free coherent

sheaf with r(F) = r ^ 1, det F algebraically equivalent to (DX{C) and χ(F)

zero. Then the following conditions are equivalent to one another:

1) F is μ-stable, i.e., μ(E) < μ(F) for every EQF with r{E) < r.
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10 F is μ-semi-stable, i.e., μ(E) < μ(F) for every E c F.

2) Hom,x (F, P) is zero for every P e Pic° X. If H is a homogeneous

vector bundle with r(H) < r contained in F, then the quotient F/H is torsion

free.

3) F ^ T*F^r ® P for some xeX and Pe Pic° X.

Proof. Obviously 1) implies 1'). Assume that F is μ-semi-stable and

H is a homogeneous vector bundle with r(F) < r contained in F. Since

μ(F) = 2/r is greater than μ(P)=0, Hom,x(F, P) is zero for every P e Pic° X.

Let /: F-+FJH be the projection and T the torsion part of F/H. Then

fP = f~\T) contains H and Kiϊ7) is equal to r(H). We have a nonzero

homomorphism det if —> detί/7. Hence detfl7 = det i f ® &χ(D) for some

divisor £) > 0. Since det He Pic° X and F is μ-semi-stable, we have

,™ = 2

r(iϊ) r(H0 ~ μK ' r

Since D > 0, (ΘX(D). ΘX{C)) is not less than zero and different from one

([9] Lemma 3.5). Hence by the inequality above (ΘX(D). ΘX(C)) is zero.

Hence D = 0 and det if—> det H7 is an isomorphism. Since H is locally

free, H' is isomorphic to H. Therefore T is zero. Hence I7) implies 2).

3) implies 1), because if F is μ-stable, so is T*F®P for every xeX and

P e Pic X Hence we have only to show that 2) implies 3). We prove it

by induction on r.

Case r = 1. Sym2 C-+ Xis the blowing up whose center is the canoni-

cal point K. Hence, by (3) of Proposition 4.2, Fo is isomorphic to iV(x) mXf0

with some line bundle N, where mx>0 is the maximal ideal of Θx at 0.

By (2) of Proposition 4.2, N is isomorphic to ΘX(C). Since r(F) — 1 and

F is torsion free, JF is contained in det F. By the assumption, det F ~

ΦX(C) ® P for some P e Pic° X. Since length (det F/F) = χ(det F) - χ(F)

— 1, det F/F is isomorphic to the one dimensional sky-scraper sheaf k(x)

supported by a point xeX. Hence F is isomorphic to aetF®mXfX =

T*FO®P®P_X.

Case r > 2. We need the following easy but useful lemma.

LEMMA 5.5. Let F be a nonzero coherent sheaf on an abelίan surface.

If χ(F) is zero, then Hom^ (P, F) or Hom^ (F, P) is not zero for some P e

Pic° X.

Assume the contrary. Since dim Hom^ (F, P) is equal to h\F®P'1)
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by virtue of the duality theorem and since χ(F® P"1) is zero,

is zero for all P e Pic° X. Hence Rι^{F) is zero for every L This means

that Ry(F) is zero. Therefore by virtue of Theorem 2.2, F is zero. This

shows Lemma 5.5.

By the assumption and the above lemma, Hom^ (P, F) is not zero for

some P e Pic° X Let /: P~> F be a nonzero homomorphism. Since F is

torsion free, / is injective. Since P is homogeneous, Ff — Coker / is torsion

free. We have the exact sequence

0 >pJ-+F-?->F' >0 .

Since Hom^ (F, P) is zero, this exact sequence does not split. Hence by

(2) of Proposition 5.3, it suffices to show Ff ^ Γ*F 2. r ® Q for some xeX

and QePic°X F' is torsion free, det F' = det F ® P"1 is algebraically

equivalent to ΘX(C) and χ(F') = χ(F) — χ(P) is equal to zero. By induction

hypothesis, we have only to show that 2) holds for F;. Obviously

Hom^ (F', Q) is zero for every Q e Pic° X. Let Hf be a homogeneous vector

bundle contained in F\ H — g~\Hf) is an extension of Hr by P. Hence

by the theorem after Lemma 3.3, H is also homogeneous. By the assump-

tion on F, F'\H' ^ F/H is torsion free. Hence 2) holds for F', which

completes the proof of Theorem 5.4. q.e.d.
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